SPECTRAL THEORY OF THE ATIYAH-PATODI-SINGER OPERATOR
ON COMPACT FLAT MANIFOLDS

ROBERTO J. MIATELLO — RICARDO A. PODESTA

ABsTrACT. We study the spectral theory of the Dirac-type boundary operator D defined
by Atiyah, Patodi and Singer, acting on smooth even forms of a compact flat Riemannian
manifold M. We give an explicit formula for the multiplicities of the eigenvalues of D
in terms of values of characters of exterior representations of SO(n), where n = dim M.
As a consequence, we give large families of D-isospectral flat manifolds that are non-
homeomorphic to each other. Furthermore, we derive expressions for the eta series in
terms of special values of Hurwitz zeta functions and, as a result, we obtain a simple
explicit expression of the eta invariant.

1. INTRODUCTION

Let M be an oriented Riemannian manifold of dimension n = 4h—1 and denote by Q(M)
the space of differential forms on M. In this paper we will study the operator D defined on
even forms by

(1.1) D:QV(M) — QM) D¢ = (=1)""PT(xd — dx)o,

where Q¢ (M) = @;2,};61 Q?P(M) and ¢ € Q?’(M). We shall call this operator the APS-
boundary operator, first considered in [?].

This operator is closely related to the signature operator. Indeed, there is a natural
“Dirac-type” differential operator defined on forms by d + d* whose square is the Laplacian
on forms (d + d*)? = dd* + d'd = Ar. Let N be a compact Riemannian manifold. If N
has dimension n = 2/, there is an involution 7 on Q(N) given by 7¢ = PP~D+ s ¢ for
¢ € QP(N) and * is the Hodge-star operator. Denote by QF(N) = {¢ € Q(N): 7¢ = +¢}
the corresponding +1-eigenspaces of 7. Since (d + d*)7 = —7(d + d*), we have that
(d+d") gz vy QOF(N) — QF(N). The operator Dg := (d+d") g+ () is called the sig-
nature operator because, if N is closed (ON = @), by Hodge theory the index of Dg
equals the signature of N. In fact, by the Hirzebruch index theorem, we further have
Ind(Ds) = Sign(N) = [, L(p), where L is the Hirzebruch L-polynomial in the Pontrjagin
classes.

However, if N is not closed, i.e. if ON = M # @, Atiyah, Patodi and Singer showed
that under certain conditions on the boundary, the difference Sign(N) — [, L(p), called the
defect of signature, is not necessarily zero. More precisely, one has that

Sign(N) = /N L(p) — np(0)
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where 7p(0) is the n-invariant (see (?7?)) associated to the operator D defined in (?7). Here,
D= (DS)‘M is the restriction of the signature operator on N to the boundary M. It turns

out that identifying Q¢ (M) with QF (N)|as» then D takes the form given in (?7).

Let D be a self-adjoint elliptic differential operator of order d acting on smooth sections
of a compact manifold M of dimension n. Then D has a discrete spectrum, denoted by
Specp (M), consisting of real eigenvalues A with finite multiplicity dy, which accumulate
only at infinity. The spectrum is said to be asymmetric if for some A\ € Specp (M) one has
that dy # d_,. Atiyah, Patodi and Singer introduced the so called eta series

(1.2) s = S signT = Y g
0#£NESpecp €At
where A = {\ € Specp : dy # d_,} is the asymmetric spectrum and AT = ANRT.

This series converges for Re(s) > %, and defines a holomorphic function np(s) which
has a meromorphic continuation to C having (possibly) simple poles at s = n — k, with
k € Nyg. Remarkably the residue of np(s) at the origin vanishes (see [?], work of P. Gilkey,
M. Wodzicki and also recently by R. Ponge). The number

(1.3) 1 :=np(0)
is a spectral invariant, globally defined, which is called n-invariant and gives a measure of

the spectral asymmetry of A. It is also of interest the study of the reduced eta invariant
defined by

__ n+dimker D
o 2

In recent years the eta invariant has been studied by many authors in different contexts
(for instance see work of P. Gilkey, W. Miiller, S. Goette, U. Semmelmann, R. Meyerhoff,
M. Ouyang and H. Moscovici — R. Stanton). For the spectral theory of Dirac type operators
we mention the articles of C. Bar and the book of N. Ginoux ([?]). Also, the eta invariant
has been computed in several particular cases (see for instance [?], [?], [?], [?], [?], [?], [?],

71 121, 1205 170 121, 120 12D

The goal of this paper is to study the spectral theory of the Dirac-type APS-boundary
operator D in (??) acting on smooth even forms of a general compact flat Riemannian
manifold M of dimension n = 2m 4+ 1 = 4h — 1 and to compute the corresponding eta
invariant. Since any compact flat manifold M bounds ([?]), its eta invariant will give the
defect of signature of any Riemannian manifold having M as its boundary. Furthermore,
the cusp cross-sections of hyperbolic manifolds with cusps are compact flat manifolds, so
their eta invariant is relevant in connection with the signature of such manifolds. There has
been quite some research on the question of realizing any flat manifold as the boundary of
a hyperbolic manifold (see [?], [?], [?], [?]). For instance, it is known that if a flat manifold
is the boundary of a hyperbolic manifold with only one cusp, then its eta invariant is an
integer ([?]).

In the present paper, as a first step, we develop the theory for a general flat torus
(see Section ?7?) giving explicitly a basis of eigenfunctions of mixed degree (2p,n —2p — 1),
(2p,n—2p+1), together with an expression for the multiplicities of the eigenvalues (Theorem
?77?). We illustrate by showing the eigenfunctions in low dimensions n = 7,11 for small
eigenvalues (see Example 77).

In Section ?7, we consider the case of a general flat Riemannian manifold M and derive
a formula for the multiplicities of the eigenvalues of D (Theorem ??7). We then refine

mod Z .
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the formula expressing the multiplicities in terms of characters of exterior representations
evaluated at elements of the maximal torus of SO(2m) and giving also an expression for the
characters of such elements (see Theorem ?? and Proposition ?? respectively) that is very
useful in explicit computations.

As a byproduct of the multiplicity formulas, we exhibit large families of D-isospectral
flat manifolds that are non-homeomorphic to each other (Proposition ??). Namely, any two
manifolds having holonomy groups Z5, for a fixed k, turn out to be D-isospectral. This is
connected to the isospectrality result in [?] in the case of the full Hodge-Laplace operator
A = Az acting on the space of forms of all degrees Q(M).

Section 77 is devoted to the computation of the eta series and of the corresponding eta
invariant. As a main result in the section we obtain an explicit expression of 7(s) in terms
of Hurwitz zeta functions (Theorem ?7?) and in particular it follows that 7(s) is an entire
function, as expected, by flatness of M.

Formula (??) for n(s) in Theorem ?? can be used effectively to compute the n-invariant
in many cases, in particular for all flat manifolds with holonomy group Z,, p an odd prime.
These examples, together with a comparison with Donnelly’s formula in [?] and other ap-
plications of (??) will be developed in a future publication.

2. THE OPERATOR D ON A FLAT TORUS

In this section we will determine a complete set of eigenfunctions of D on a flat torus
Ty = A\R"™, A a lattice in R™.

We assume throughout this paper that n =2m +1=4h — 1. We set I, = {1,...,n}. If
J={j1,..-,Jp} C I, such that j; < jo <--- < j,, we will use the standard notation

dxy:=dzxj N...Ndzj, drg = 1.

Similarly, we will use e; :=e;, A...Aej, for a basis {e;} of R" and ey = 1.

Let M be an oriented Riemannian manifold of odd dimension n. The Hodge star operator
* =%y, 1 QP(M) — Q" "P(M) is defined by *dx; = 0 ydz jo where o is a sign determined by
(21) dry ANdxje = oydrr, = oy dvol
For each p we have *,_, %, = (—1)P(=P) Id, hence %> = Id since n is odd. Furthermore,
the operator * is an isometry with respect to the Hermitian inner product on Q(M) ® C,
and (x,)* = (=1)PP=Px, I d: QP71 (M) — QP(M) denotes exterior differentiation, its
adjoint d* is given by d* = (—1)"P+D+! x dx on QP(M).

Since D = (—1)P*"*+1(xd — dx) on 2p-forms, and

xd : PP(M) — QP72 (M),  dx: QP(M) — Q" (M),
using that n = 4h — 1, it follows that D sends a 2p-form to an even form of mixed type
D: QO%P(M) — Q*Ch=P=D (A1) @ Q2Ch=P) (M),

It is convenient to introduce the linear endomorphism

(2.2) Sp = (—1)PTt1g for ¢ € Q*P(M).
Then D can be written as D = TS with T' = *d — d*. Note that S satisfies
(2.3) S(xd) = —(*d)S, S(dx) = (dx)S.

We denote by A the Hodge-Laplacian dd* +d*d acting on Q(M) and by A, the restriction
of A to even forms. By using (?7?) one can check that

(2.4) D? = A,
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and that D is self-adjoint since n is odd.

It is a standard fact that the eigenfunctions of A, have the form
(2.5) fu(x)dzy, where f,(x):=e*™% y € A* and J C I, |J| even,
with corresponding eigenvalue 4724 of multiplicity d,, a.(A) = 2"_1|AZ| where
An=fue A s ful = ).
Hence, by (?7?), the eigenvalues of D must be of the form +27||u|| with « € A* and further-
more, if diD(A) denotes the multiplicity of the eigenvalue +2mu, with p > 0, then
(2.6) dyp(A) +d, p(A) = dya, (M) = 2" 1A}

Since D2 = A,, it is clear that the eigenfunctions of D with eigenvalue £\ # 0 can be
written w &+ %Dw, where A.w = MNw. If we take w = f,dry with f,(z) and J as in (?7?)
then

(2.7) d(fudey) = dfu Ndxy =2mif, dundzy,  du=»  u;dz;.
jeJ
Thus, by computing (Id + ;D) f,dx; with A = £27||ul|, using (??) and putting 4 = Tl

for u € A* \ {0}, since di = @, we obtain that a general eigenfunction of D has the form

(2.8) Fful@){dzy £i(—1)" 5 (e (dit A day) — dit A wday) ) |
Let J C I, with |J| = 2p and let B = {e3,...,e,} be the canonical basis in R". We
assume first that w = ||ulle,, that is, &« = e,. Then we see that the expression in (?7?)

simplifies considerably. Indeed, depending on J, one of the terms *(duAdz y) or duA*(dz )
vanishes and we obtain

fe, (z) (de FiSx(dz, A de)) = fe, (2) dxf ng.J,
—~+
fe, () (dzJ FiS(dxy, /\*de)) = fe, (x)dz; n € J,
where
29) dmf =dryFi(-1)Pthoy dz je fn}, n¢J,
2.9 1
dr; =dv;Fi(-1)Ptho; dT jeutny, neJ,

and o is as defined in (?7).
Now, for a general u € A* \ {0}, we proceed as follows. We fix an ordered orthonormal
basis B, of R™ containing 4 = ﬁ in the last position

(210) B, = {eu,la sy Cun—1,€un = ﬁ},

and C = C, € SO(n) sending B, to B such that Cye, ; = e; for 1 < j < n. In particular,
Cyt = ey,. Thus, we have Cye, ;s = e;. On the other hand, since (z; o Cy)e, ; = 0, then
we have Cdx; = d(xj o Cy) = dx,, ; and therefore

Crdry=dx,, .
Thus, for a general u we have that (??) takes the form

~+
fu@)Cides, n¢J, — and  fu(x)Cidz,, ne.lJ.

~—
where dz (u) and dx (u) are as in (??). We now normalize and name these eigenforms.
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Definition 2.1. In the previous notations, for w € A* and J C I, |J| even, we define

(biJ(x) = %C’; (dzy Fi(=1)PTho ) da je gny) neJ,
(211) "
wiJ(x) = &WCZ (dacJ Fi(—1)Ptroy decU{n}) ne.J.

where vy = vol(A).

The forms qbij(x) and wiJ(x) in (??) are eigenfunctions of D with eigenvalue 2r||u]|,
and degrees of mixed types (2p,n — 2p — 1) and (2p,n — 2p + 1) respectively.

From now on, we will identify 7*(R") with R™ via the correspondence dx; < e;. With
this identification, dx; corresponds to e; and the expression in (??) becomes d(f,e;) =
2mify, Lo (ey), where £, denotes wedge multiplication by u = )" u,e;. Also, Cldx; turns

into C tey.
Taking into account these identifications, we may alternatively write
+ 2miu-x + 4+ 2miu-x ~t
(2.12) Gy (1) = eﬁ ey (u) and P, s(2) = eﬁ ey (u)
where
(2.13) eF(u) = Crlted =0t (es Fi(=1)P oy ese ny), nedJ,
é?(u) =0t éf =t (eJ Fi(-1)P* o, eJcU{n}), neJd.

We now show that there is some linear dependence among the qﬁj ;(z)’s and similarly

9

among the wi'](x) S.

Lemma 2.2. Let {e;}j" be any orthonormal basis of R". Let J C I,, with |J| even. Then
efc\{j}(ej) = cet(ej) forj & J and éjfcu{j}(ej) = ¢é%e(ej) for j € J, where ¢, & € {£i},
€,€ € {£1}, with + depending on n, j and J. In particular, using the basis B, for each

u € A}, we have ('biJc\{n} (x) = cgbffeJ(:r) forn¢g J and qpijcu{n} (x) = 5@/}33(%) form e J.

Proof. Tt suffices to check the relations for the forms eF(e;) and é%(e;), respectively. If

ngJ,put J =J°~{n}. Thenn ¢ J" and J” = J. Similarly, if n € J, put J* = J°U {n}.

Then n ¢ J* and J** = J. This proves the first assertion. By (??) the lemma follows. O
For each pu > 0, let

(2.14) HE(A) == {w* € Q°(Th): Dw* = £2mpw*},

the eigenspace of D on Ty, with corresponding eigenvalue +27u, and, in a similar way, let

Ho(A) = {w € Q°°(T}) : Dw = 0} be the space of even harmonics. We now give a complete
orthonormal system in HE(A) and Ho(A) for a flat torus Tj.

Theorem 2.3. Let A C R"™ be a lattice with n = 2m + 1 =4h — 1. If up > 0, for each
ue A, ={ue A |ul| = p}, let ¢f7J(m) and wiJ(x) be the forms defined in (?7). Let
@lﬂf:{qSiJ(z) cue N, ngJ |J|=2pwith0<p<h-1}

Wi:{wiJ(x) ru€eld,,neld |J[=2pwithl <p<h-1lorp=h,1€J}.

Then @f U \Ifff, is an orthonormal basis of Hf (A). The multiplicities of the eigenvalues

+27p are given by

(2.16) dr p(A) = d p(A) = 2" |As).

Furthermore, if p =0 then {e; : |J| =2p, 0 < p < 251} is an orthonormal basis of Ho(A)
and do,D(A) =21

(2.15)
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Proof. Assume first that g = 0. Since ker D = ker D? = ker A., the 0-eigenforms of D are
the constant coefficient even forms e; with J C I, and |J| =2p, 0 <p < ”?_1 Hence,

dop(A)= > (") =21
q even
Now, let it > 0. It is clear from their construction that (bi ;(z) and ’(/J;E ;(z) are eigenforms
of D with eigenvalues £27u, where p = ||u|| and v € A*. We now check that they have
norm 1. Using that * is an isometry with respect to the Hermitian inner product (-,-) on
A*(R™) @ C, for n & J, we have

<¢ij(x)7 ¢ij(x)> = ﬁ/ fﬁm(u_u)mdl‘ (<€J, €J> + <8JU{n}, eju{n}>) = 1,

A

since |J¢ ~ {n}| # |J|. Thus, ||¢3J(x)|\ = 1. The computations in the case of the wiJ(x)’s
are entirely similar.

We now show the orthogonality of the eigenforms in (??). Since

(fulx)es, fu(z)ey) = / 2T gy (e e 00) = Ouur VA (€7, €0),
Ta

fu(x)ey and fy/(x)ey are orthogonal if u # u' for any J, J' C I, thus we are left to consider
eigenforms for a fixed u € A%. Also, since H," is orthogonal to H,, , we have (7 (u), e¥, (u)) =
0, {e5(u),éF,(w)) = 0 and (&% (u),éF (u)) = 0. Furthermore, since C, € SO(n), we need
only check the conditions

(€5, e

e, e, ~+ ==+ ~+

=0, <6J’6J>:0, <6:}:76J>:0a
for every J, J' C I with J' # J.

We shall work out the calculation for <e§, ef); the remaining cases are proved similarly.
Take J,J' C I,_1, with |J| = 2p, |J'| = 2¢. Then, by (??), we have

(e?, ef,) = <eJ Fi(—1)P*ho; eje{n}> €' F i(—1)Pth

= <eJ»eJ/> + <eJC\{n}a eJ’C\{n}> + Z.€(<eJa eJ’C\{n}> + <€JC\{n}a eJ’>)7
where € = (=1)P*" (05 — o).

Note that [J¢~{n}|=n—2p—1=2(2h—p—1) for n ¢ J and hence |J°~\ {n}| # |J]|.
Thus, there are three cases to consider. First, if 2p # 2¢, then 2p # n — 2¢ — 1 and we
immediately obtain (ef7 e§,> = 0. Secondly, if 2p = 2g, then n —2p —1 =n —2¢ — 1 (and
2p #n —2q—1). Since n & J we get

<€§7 6?1:/) = (es,e1) + (€refn}s €rre{n}) = 2{eg,eq1) =267 5.
Finally, if 2p =n — 2¢ — 1, then 2¢ =n — 2p — 1 = 2(2h — p — 1), and we have that

aj eJm\{n}>

(eF,et) = ie((eg,egreqny) + (€geqny €a)) =0,
since we have J’ # J¢ ~ {n}, and this implies that both inner products equal 0.

Relative to the linear independence of the eigenfunctions, Lemma 7?7 implies that one
should take half of the subsets J C I with |J| = 2p. More precisely, for each u, in the case
of the ¢, s’s, we take all J’s such that n € J and |J| < |J° \ {n}|, while in the case of the
¥y, ;s we choose those J’s such that n € J and |J| < [J°U{n}|. Furthermore, in the special
case when n € J and p = h, since |J° U {n}| = |J|, we also require that 1 € J.

Now, we compute the multiplicities le—;D(A) = dim HF(A). Note that ||+ V| equals

JcI, . |J]|=2 Jcl, . |J|=2 JCI, . _ *
<#{ ncng : Oéplghyil} +#{ nCGJ . 1‘§p‘§h€1}+#{17%EJ : |J| - Qh}) |AM|'
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Thus, using that n — 1 = 2(2h — 1) and (27;;_22) = (";12) = %(";11) we obtain
2 2

h—1 h—1

o+ = (30 (5 + X2 () + 367 I
p=0 p=1
n—1
p=0

Finally, by the above equality, we see that ®;7 U W7 U ®; U ¥, has cardinality 2" *[A%|,
hence by (??) it is an orthonormal basis of H;f(A), and thus the theorem follows. O

Next, we will illustrate Theorem 7?7 by giving some examples in low dimensions.

Example 2.4. For n = 2m + 1 = 4h — 1, by Theorem ?7?, there is a basis of eigenforms of
D on T having degrees of the following mixed types

wo@),ngJ|(0,2m) (2,2m—2) ... (m—1m+1)
YE(r),ned | (2,2m) (4,2m—2) ... (m+1m+1)

with w € Aj and J C I, (where in the case of the wiJ(:zr) of type (m + 1,m + 1) we
furthermore take 1 € J).

We will next exhibit some explicit eigenforms on the canonical torus T,, = Z™\R" in
dimensions n = 7,11 for p = 1 corresponding to the non-zero eigenvalues £2m.

e Dimension 7. Let n =7, hence m = 3. The ¢>f’.](:c)’s are of type (0,6) and (2,4) while
the wiJ(x)’s are of type (2,6) and (4,4). By (?7?), for each u € A*, the following choices of
J C I for ¢i ;(x) and wi ;(z) give independent eigenfunctions.

ws@) | 1J]=0 || =2

J C Ig %) {1,2}, {1,3}, {1.4}, {1,5}, {1,6},
{23}, {24}, {25}, {2.6}, {34},
{3,5}, {3,6}, {4,5}, {4,6}, {5,6}

and
£ () 7| =2 J|=4 (1€J)
JC I || {17} {2,7}, {3,7} | {1,2,3,7}, {1,2,4,7}, {1,2,5,7}, {1,2,6,7},
7 e J {4’7}’ {5’7}’ {677} {1?37477}7 {1737577}) {1?37677}7
{1,4,5,7}, {1,476,7}, {1,5,6,7}

In the case of A = +2m, we have A; = {£eq,...,ter}. Let u = ey and take the ordered
basis

By =Be, ={eu1, .., €up ur =61} ={er,ea,...,e5,€1}.

Then, we choose C,, sending the basis B, to the canonical basis B = {ey,...,e7} as C, =
1
(1 Ids ), where Ids is the 5 x 5 identity matrix. One has that C;* = C,,.
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According to Theorem ?? and (??), the eigenfunctions associated to u = e; of type
¢i ;(z) are given by

627”'71'1 627"“”1

qﬁ;tl,@(:c):Wcu(liieel/\.../\e(;)zﬁ(1$i662/\.../\e7)

+ _ 1 271 -
¢617{jl7j2}(x) =5z 0 (ejl A €jy *Tie ejs N ejy Aejs A ejs)

V2
where J C Is = {j1,...,j6}. For example, if J = {1,2} then
2mix .
¢ei1,{1’2}(x) = % (—ea Nertic e3 Neg Nes A eg).
Similarly, the z/Jf;J(ac)’s are given by
+ 2mizy .~
Voo i (@) = S5 Culej, Ner ticej, Aej, Nej, Nejs Nejg Ner)
+ 2mizy .~
U2, G gags ) () = 5 Cu (ej, Nej, Nej, Ner i€ ej, Nej, Nej, Aer)
where 7€ J C I = {j1,...,Js, 7}. For instance, if J = {1,7} and J' = {1,2,3,7} we have
flJ(x) = —% (e Nertices AesAeg ANes Aeg Aer)

2mizy

;thJ/(x) = *67 (61 /\62 /\63 /\67 :i:ié'el /\64 /\65 /\66).
In the expressions above, €, €, €, € € {£1} are signs depending on w, J that can be explicitly
determined.
Relative to Lemma ??, note that if we take weth(x) with |J| = 4, say J = {1,2,3,4},
we obtain qbeiw,, (z) or ¢F ;(2) with J" = J¢ {7}, up to a scalar multiple. In fact,

627\'1121

weilw,(x) = (—ea NesNegNer Liees Aeg)

2mizy

¢2[1,J’($) = 87 (es Neg Fic ea Aes Aeg Aer).
Thus we have that
Ficu (@) = v @)
Proceeding similarly for (;Seii’J(m), (bfei“,(x), w;tj(m) and 1/J1_Lei,J(33) for 1 <i <7, we get
a basis for H(T7). In this way, we get that

dEp(ZT) = () + Q) + () + () IAs = (1 +15+6+10)- 14 =2 14,

which is the value obtained by using Theorem ?77.

e Dimension 11. Let n = 11, hence m = 5. The qbiJ(:z:)’s are of type (0, 10), (2,8), (4,6)
while the wiJ(x)’s are of type (2,10), (4,8),(6,6). In this case, the czSiJ(:v)’s are obtained
using J with |J| = 0,2,4 and 11 ¢ J, while the wi,(x)’s by using J with 11 € J and
|J| =2,4,6, and also 1 € J if |J| = 6. In this case, we get

(@) = (9 + () + () + (9) + () + () 141] = 512 || = 2y
as given in Theorem ?77. O

Example 2.5. Consider D acting on the 3-dimensional canonical torus Tz = Z3\R3, i.e.
A =73 = A* and vy = 1. We will construct a basis of eigenforms of D associated to the
three lowest eigenvalues 1,v/2, /3, and we will compute their corresponding multiplicities.
More precisely, for each u € A}, we have

+ 2mwiu @ eZ-rrzu»z

u,@(x) = & 7 C;l (1:|:i6€1/\€2), wi{l,?}}(x) = T Cgl (61/\63:|:i6/62/\63),
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where €, € are computable signs.

e Digenvalue © = 1. We have that A, = {+e1, ey, +es} and we choose the bases
B., = {es,ea,e1}, Be, = {e1,e3,e2} and B, = {e1,ea,e3} and corresponding matrices
Ce, = (1 1 1)7 Ce, = (1 ) 1), Cey = (1 1 1). Note that C; ' = C.,, 1 < i < 3. We thus
get

2miexq + 2miex]

C/fel,z(x) =<7 (IFices Nes), 7/1561,{1,3}($) =
2miexy

. 2miex .
¢fe2,z(33) = € 75 (1+ieer Nes), wiz,{1,3}(x) =""2(e; ANeg L eies Aes),

€

(e1 Nexteieg Aes),

S

2micxy 2miczy

¢f€3’g(x) = ET (1+iee; ANeg), ¢$37{173}(1‘) =¢ 7 (e1 Nes L eies Aes).

Then a basis of H 1i is given by

{¢eiel,®($)7 eiez,ﬂ(x)7 ejiig,@(x)7 $17{173}($)7¢i27{173}($)aw$37{173}($)}
and hence de(A) =2|A;| =12

e Eigenvalue p = v/2. We have A, = {e(e; £ e2),e(er £ e3),e(ea + e3)}, with € € {£1}.
Take the bases Be,tey, Beytes and Be,ye, as in (?7). For example, we take

+(e;Fe;) *(eite;
B:t(ei:tej) = {ek?a (\/:,25 ])a (\/5 ])}7

for i < j and {i,7,k} = {1,2,3}. Thus, for instance, we have

0L L 0o -L L 1 0 O
Vi V3 Vel 0 1
Certe, = 0%% > Ceytes = (1)91 (1) ) Ceptes = 0\7/? ‘?
10 0 V2 V2 V2 V2

and hence we obtain

§61+082)7g(z) = % g?mic(@itor) (1 + 6%(62 Nes—oep A 63)),
¢ei(e1+ae3),rz(x) = % ?ric(itors) (1+ 6%(62 Nes+oer Aes)),
¢ei(52+oeg),z(x) = \% g2mic(@ztors) (1F 6%(61 Nes —oer Aer)),

and
wieﬁgeg),{m}(x) % e2mie1om2) (o) A ey e%(el Nes—+oes Nes)),
§e1+ae3),{1,3} (z) = % e2mic(z1tors) (61 AesF e%(el ANes+aex A 63)),
ei(e2+oe3),{1,3} (z) = % g2rei(zatozs) (62 AesF e%(el ANes+oer A 63)).

A basis of H\j;i is given by
{¢3:(6i+06]’),®(x)’w;‘zei+oej),{1,3}(x) 1€,0 € {:t]-}a 1 S 1< ] S 3}
and hence diiD(A) =2|A ;| = 24.

e Eigenvalue p = /3. We have, A, = {6161 + €9e9 + €363 : €1,€9,€3 € {:I:l}}. For
u = e; + ey + e3, we can take the orthonormal basis of R® and the matrix

S

L sk
o gl
Shskgk

:{€1+€2—263 er1—es €1+62+63}
V3 ’

861+62+63 N ) 5 Cel+ez+63 =
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Then, we compute

¢2:1+€2+637®(I) _ % 627ri(:131+a:2+€3) (1 F %(61 Ney — er Neg+ex A 63))

+ _ 1 27 +xo+ A A i (2e1/A Ne: Ne:
w61+€2+637{173}(x) - ﬁ ¢ et 5173)((61\/;3 + 62\/583) + ﬁ( 6\1/562 + 81\/;3 - 82\/;3))

In general, we have the bases Be, e, +egeqteses = {6161+€2‘\;%—632€37 6161\;5262 , 5151+6\2/%,2+€363}
and, by (?7),

+ + .
{¢6161+6262+53837g(x)’ ¢€1€1+62€2+63e3;{173} (aj) D€1,€2,€3 € {il}}

is a basis of H\jji and hence d%’D(A) = 2|A 5| = 16. O

3. SPECTRAL THEORY OF D FOR COMPACT FLAT MANIFOLDS

We now shift our attention to the spectrum of D acting on an arbitrary compact flat
manifold M of dimension n = 2m +1 = 4h — 1 (i.e. m = 2h — 1 = 231 covered by a flat
torus T (see Theorems ?? and ?7).

3.1. Multiplicity formulas. We will use similar methods as in [?]. We begin by proving
two useful lemmas. For p > 0, recall that AY, = {u € A*: |lul| = p} and set (A%)" = {u €
A - Bu = u}.
Lemma 3.1. Let u € (A})P, J C {1,...,n} with |J] = 2p and e; = e, s as defined in
(??). Then we have
<B*e§(u),e§(u)>:%<Bet],et]>, 0§p<h,
<B*é§(u),é§(u)> =1 (Bey,e;) £ 6‘2" i{(B— B Yey, A xey), 0<p<h,
where e+ (u) and &% (u) are defined in (7).
Proof. Using that n — 2p — 1 # 2p and that Bx = xB for B € SO(n), we have
(B*e¥ (u), eF(u)) LB ey F (-D)"Pix (G Aey)),eq F (=1)"Pix(aNey))
= (B leseq) + (B (aNey), (aney)))
= 1((Bej.eq)+{aAB es, i Ney)) = 2(Bey,es).

In the case of é?(u), for 1 < p < h —1, we proceed in the same way. If p = h, we have
that n — 2p 4+ 1 = 2p, and hence

(B*éE(u), et (u)) = 1{((B e, es) + (WA B xey, A xey))
+i((B~ anx*ey),es) — (B ey, aA*ey))}
= 1(2(Bej,es) £i((B—B ey, aAxey)),
and the second identity follows. O
Let V be an oriented real vector space of dimension n — 1 = 2m. Since n = 4h — 1,

m = 2h — 1. Consider the complex irreducible exterior representations (7,, AP(V)c), 0 <
p<m-—1,and (15, A7(V))c of SO(2m), where A™(V)c = AT(V)c & A™(V)¢ and AT(V)¢

m

are the +i-eigenspaces of * on A™(V)c. We denote by 7, the sum 7,5 @ 7,,. Alternatively,
AT (V)¢ can be seen as the +1-eigenspaces of the involution

x= (=)™ = (—1)hix
on A™(V)c. In fact, x> = —+2 = (—1)™*+!Id = Id. We denote by y, and X respectively,
the characters of the representations 7, and 7;t.
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Now, put V,, := (Ru)" for u € R™. Let 7, and 7= . be the exterior representations of

SO(2m) on AP(V,)c, 0 < p <m —1, and AT(V,)c, respectively, denoting their characters
by Xp,. and Xﬁ,u- Also, we put

SO(n —1,u) :=={B € SO(n) : Bu=u} ~SO(n —1).
If B € SO(n) with Bu = u, the matrix of B in the basis B, given in (??) is B, = (B« »)
with B!, € SO(n — 1). From now on we will identify B,, with B, for simplicity.

Lemma 3.2. Let u € R", let B, = {eu1,.--,€un-1,6un = G4 = ﬁ} be an ordered

orthonormal basis of R™ and suppose that B € SO(n — 1,u). Then, we have

(3.1) > (Bes,es) = xopu(B), > (Beses) =x2p-1u(B),

ngJCIy, neJCl,
71=2p |7i=2p
and
(3.2) Z (Bleg+ ie, Axeg), ey ie, Axey) = 2xi(’;1)h(3),
h

where n = 4h — 1.

Proof. For simplicity, we will set ey = e, . We first check the identities in (??). The
set {e; : |J| = ¢} is an orthonormal basis of A9(R™)¢ for each ¢, 0 < ¢ < m — 1.
Hence {ey }, with J' = J ~ {n}, is an orthonormal basis of A?(V,)c. Since (Bej,es) =
(Beyr,ep)(Ben,en) = (Bey,ey), we have that

Y (Beses)= > (Beses) = xapu(B).

ngJCIp, JCIp_1
[J|=2p |J|=2p

One can proceed similarly to show that the second sum in (??) equals x2p—1,4(B).
We now verify (??). If J C I,, with n € J, |J| even, then

(3.3) en N*peg = (kn_1€5) A e,
where, for each d, %4 now denotes the star operator on A*(R9).

Indeed, if J = {j1,...,Je—1,n} and J° = {i1,...,in—¢} C In_1, then x,e; = sgn(o) eje
and x,_1e; = sgn(o’) ejc where

(12 =1 L4l n r_ (12 £=1 £ 41 n—1
T = \Jrd2 = gecam i1 = dng ) O = \Jrd2 = jec1 i1 2w dn_g ) -
Now, ej, A=+~ Aej, , Nep ANejy A---Ne;,, =sgn(o)er A--- Aey, and since n — £ is odd,
ej,AN---Nej, , Neig A---Ne;, , = —sgn(o)er A---Ae,_1, hence —sgn(o) = sgn(o’). In this
way, e, A\ *pey = sgn(o) e, Aeje = —sgn(o)ege A ey, = sgn(o’)ege Aey, = (kp_1€5/) A €,

hence (?7) follows.
Thus, if |J| = m + 1 = 2h, by (??) and using that *,_; = (—1)"*1ix, we have
ejtien Aspeg=ep Nep £ (=) xep Ne, = (eJ/ + (71)h*€‘]/) Aey.
Thus, since Bu = u, the left hand side of (?7?) equals

Z <B(eJ + (—l)h*ej),ej + (—1)h*eJ>.

1€JCI,—1
|J|=2h—1

It is easy to check that the e; 4 (—1)" x e are eigenforms of x with eigenvalues +(—1)"
and that |le; & (—=1)" xe;||? = 2. One can also check that e; + (—1)" xe; is orthogonal to
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ex £ (=1)"xex for K # J and hence, {%(6‘] + (=)hxey):1€JCl,q,|J| =m}isan
orthonormal basis of the +(—1)"-eigenspaces A7*(R?™) of x. Thus, the previous expression
equals 2 Tr Ty,j;,(;l)h(B), and hence (?7) follows. O

Compact flat manifolds. We now recall some well-known facts on compact flat manifolds. A
flat manifold is a Riemannian manifold with zero constant curvature. It is known that any
such manifold is isometric to a quotient Mp := I'\R™, where I is a Bieberbach group, that is,
a discrete cocompact torsion-free subgroup of I(R™), the isometry group of R™. Any element
v € I(R™) = O(n) x R™ decomposes uniquely as 7 = BLy,, where B € O(n) and L; denotes
translation by b € R™. The translations in I' form a normal, maximal abelian subgroup of
finite index, Ly, A a lattice in R™ that is B-stable, for each BL; € I'. The restriction to I
of the canonical projection r : I(R™) — O(n) given by BLj — B is a homomorphism with
kernel Ly and F' := r(T') is a finite subgroup of O(n) called the point group. The group
A\T' ~ F is called the holonomy group of I' and gives the linear holonomy group of the
Riemannian manifold Mpr. We shall assume throughout this paper that M is orientable,
i.e. FF C SO(n). The action by conjugation of A\I" on A defines an integral representation
of F', called the integral holonomy representation. A flat manifold with holonomy group F
will be called an F-manifold.

We are now in a position to state one of the main results in this section that gives the
spectrum of D for an arbitrary compact flat manifold.

Theorem 3.3. Let Mr = T'\R" be an orientable compact flat manifold of odd dimension
n =2m+ 1 = 4h — 1 with holonomy group F = A\I'. Then, the non-zero eigenvalues of D
are of the form +2mu, u = ||ul| where u € (A*)B, BLy, € F, with multiplicities given by

m—1
@) daD =g 3 @ (X B + i B).
p=0

BLyEF ue(Ay,)P

Furthermore, we have

(3.5) dop(T) =1 Y, D xpu(B).

BL,€F p=0

Proof. Suppose first that p > 0. Let pf : Hﬁf(A) — Hff(I‘) = (Hf(A))F be the orthogonal
projection given by pff = ﬁ > fy*‘Hf, with H;—L(F) as in (?7). As a result,
yEF

(3.6) d; p(I') = dim (H;; (A))" = Trp;; = H Te v -
YEF

If for each u € (A%)P we fix a basis B, as in (?7), by Theorem ?? we get the following
expression for the traces of 'y‘*Hi
2

Ty e = 30 (D0 (76t @), 68 ,@) + D (vvd, @), vE, (@)
ueA;, JES Jes

where
S={JcI,ngd: :|J=2p,0<p<h-—1}
S:{JCI,nGJ:|J\:2p71§p§h—l or 1€J, p=h}.
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Now, the action of v = BL, € T on f,(z)e; € QR"™) —see (??), (??)- is given by
T (ful@) e1) = fulya) Brey = 2 (BotB) Bre, — 2niB b py L (@) B,
Therefore,
oy s (@), 00 5 (@) = 2T g (@) B (u), fula) e (w)
= 2 5Bu,u 627MB7 b <B*6§(u)7 6?(“»

and similarly for lbqu s(2). Thus, if Bu # u we get 0 in the expression above. On the other
hand, for u € A}, with Bu = u, we obtain

(v 0 4 (2), 0 4 (2)) = 22T (B e (u), €5 (u)),

and similarly (’y*wil,(x), T/JU,J(x» = 2™ (B*&% (1), 6% (u)). In this way, we arrive at the
following expression

(37) TI"}/ |Hi -9 Z 27Tiu-b (Z <B* _|_ Z B*~i ~i( )>)

u€(A})P Jes Jes

where (A%)? = {u € A% : Bu=u}.
By splitting the contributions of the terms involving éf(u) with |J| = 2h in (??), and
applying Lemma 7?7 conveniently, we obtain

Tr7|Hi— Z e%w'b{ Z (Beu, s, €u,g) + Z (Bew.7,€u.7)

A*)B ngJ neJ
ue(Af) |J|=2p |J|=2p
0<p<h-—1 1<p<h—1
1 .
g euJ:I: Teyn N*ey ), eyt zeu,nA*eu7J>}.
1,ned
|J|=2h

Now, applying Lemma 77 we get

h—1 h—1

* TiU- h

Tyge = > e (3 xapB) + Y xaporalB) + G (B7).
uE(A;)B p=0 p=1

Since Xi(,gl)h(B b= Xm(u " (B), the result clearly follows from (77).

Now consider 1 = 0. By repeating the previous argument, using the orthonormal basis
{ej:|J|=2p,0<p< m} of Hyo(A), we have

dop(M) =iy D TeYim, =18 >, D>, (Blesen).

YyeF BLy€F JCI,,|J|=2p
0<p<m

Thus, by way of Lemma ??, we get that the inner sum equals

m m n—1
Z ( Z (BYej,eg) + Z <B*@J7@J>) = Z X2p,u(B) + X2p—1,u(B) = Z Xp,u(B
p=0 neJ ngJ p=1 p=0
|J|=2p |J|=2p
and hence the first identity in (??) follows. O

3.2. Character expressions. Our next goal will be to give an alternative expression for
the multiplicities df_D(I‘) in Theorem 77, so that the traces occurring can be more explicitly
computed. To this end, we will need some facts on the conjugacy classes of SO(n — 1) in

SO(n).
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Conjugacy classes. Let ey, ..., e, be an orthonormal basis of R™ with e,, = (0,...,0,1). For
each u € R, there exists C = C,, € SO(n) such that Ct = e,. Now, if B € SO(n) and
Bu = u then CBC™! fixes e, i.e. CBC~™! € SO(n — 1). Furthermore, if Di = e, then
DBD~! and CBC~! are conjugate in SO(n — 1).

If u e A}, let B, be as in (??). For each 0 <p <m, if {e, s :J C Iy, |J| =p}isa
basis of AP(V,,), then {Ce, j:J C I,,_1, |J| = p} is a basis of AP(R"~!). Furthermore
(3.8) Xpu(B) = xp(CBCTY).
where x, denotes the character of the p-exterior representation of SO(n — 1).

To get explicit expressions for the traces, we will work in the maximal torus T,_; of
SO(n — 1). There exists g € SO(n — 1) such that

gBugfl — J)(tl,...,tm) = d1ag< [costl —sintl] N [costm —sintm]) c Tn—17

sinty costy sint,, costy,

Withtl,...,tmGR. ~
Consider the matrix U = (Y _;) € SO(n), where

(3.9) U= ( ) €0(n —1).

Note that, if z(t1,...,tm) € Tp_1, then Ux(ty,...,t,) UL = x(—t1,t2,...,t;m). Thus,
x(t1,...,tm) and x(—ty1,. .., t,) are conjugate in SO(n), but not in SO(n — 1), generically.
In this way, gB,g~! = x5 := 2(£t1(B),t2(B),. .., t,m(B)), and we have the identities
(3.10) Xp(Bu) = xp(9Bug™") = xp(2u,5)-

Given B € SO(n) with Bu = u, choose zp € T, _1 conjugate to B in SO(n). By the
previous comments, B is conjugate either to x5 or to UzgU ! in SO(n—1). In this manner,
for each u € (R™)P we define the sign
{ 1 if CBC™! ~ xp,

3.11 Uu =
(3.11) B _1 if CBC™ ~ UzgU—1,

)

where ~ denotes conjugation in SO(n — 1) and C't = e,,. Note that,
(3.12) O—uw,B = —0uB and Otu,B = 0y,B, t>0.
We now see how the change of conjugacy class affects the traces in SO(n — 1).

Lemma 3.4. If B € SO(n — 1) with n = 2m + 1 we have x,(UzgU™') = xp(zp) for
0<p<m-—1andxtUzgU™t) = x}(xp), where U is defined in (7).
Proof. We use that Uey = —ey,if 1 € J,and Uey = ey, if 1 € J. Since {ey : J C Iop, |J| =
p} is a basis of AP(R?>™) and (UzgU ‘es,e;) = (xpeys,es), the first identity in the lemma
follows.

For the second one, we know that {%(GJ + (-1 xey):1€JC Ipy,|J| =m} is an

orthonormal basis of AT(R*™). Since Vx = — %V for any V € O(n — 1) \. SO(n — 1) then
Uleg £ (=1)"xey) = —(e; F (—=1)" xe;). Then, we have
X;—Z(UJ;BU_l) = Z <xB Ules £ (—1)h *xey),Uley £ (—1)h *eJ)>

1eJ,|J|=m

= Z (zples £ (=1)"xey),es £ (-1 xe;) = X7 (z5),
1eJ,|J|=m
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and the lemma follows. O

We can now give an alternative expression for the multiplicities dffD(F) in (?77?) that is
better suited for explicit calculations.

Theorem 3.5. Let M = T'\R" be an orientable compact flat manifold of odd dimension
n =2m+ 1= 4h — 1 with holonomy group F = A\I'. Then, we have

m—1
T io’i%
(3.13) GpM) = Y (Y plen) + v (@)
BL,€A\T p=0

where 0;73 = (-1)"*lo, p and xp is a fived element in T,,_1 conjugate in SO(n) to B. In

particular, if FF C T,,_1 then we may take xtg = B for every BL, € T.
Furthermore,

(3.14) dop :7 Z ZXP l‘B

BL,EF p=0

Both df’D(F) and do p(T') can be computed explicitly using (77) and (??) below.

Proof. We have that og(u) = 1 or —1 depending on whether z,, g ~ g, or z, g ~ UzgU~1.
Then, by (??), (??) and Lemma ??, we have that x, .(B) = xp(zu,B) = Xp(zp) for 0 <
p<m—1,and x ,(B) = xi (zu,B) = XﬁU“'B (zp). By substituting these identities in (?7)
and (?77?) we get the desired expression. The remaining assertion is clear. (Il

Remark 3.6. The multiplicities given in Theorem 7?7 are expressed in terms of the original
data BLj € F. However, the traces x,.(B) and x7, ,(B) show a dependence on u € A%, As
we shall see, the characters x,(zp), X (r5) in expression (??) can be explicitly computed
in terms of the rotation angles t;(zg), using (??) and (??) below.

Character formulas on the maximal torus. Here we give explicit formulas for the characters
Xps 0 < p<n—1,and xi on elements of the maximal torus T, of SO(2m).

Proposition 3.7. Let n = 2m + 1. The characters of the irreducible representations
AP(R?™)c , 0 < p < 2m, and AT (R?*™)c of SO(2m), on = x(t1,...,tm) € Tom, are
respectively given by

p J4
B15) @@= > () Y ([Jestn)  (0<p<m),
=1

£=0 {J1,e2de}CIm
)

and by duality xn—p(z) = xp(z) form+1<p <2m. Also

m 0 m
(3.16)  xE(x) = ( Sottmh) Y (H costjh>> + Qm_lim(Hsintj),
K(g:dld ’ {41,-:de}Clm h=1 J=1
O

where I, = {1,...,p}.

Proof. The weight vectors of SO(2m) on A1 (R? ) = Al((CQm) have the form eg;_; =+ ieg;
with corresponding weights & ¢;(x(t1,...,t,)) = e | for 1 < j < m. Thus, the character



16 ROBERTO J. MIATELLO — RICARDO A. PODESTA

of this representation is given by:
m m
x1(z(ty, ... tm)) = Ze’tﬂ' +e = 2Zcostj .
j=1 j=1

More generally, if 1 < p < m, the weight vectors for the exterior representation of
SO(2m) on AP(C?™), have the form (egj, —1 Fiegj,) A (€2j,—1 T iej,) A... A (e2j,—1 £iea;,)
with corresponding weights Y 7_, +¢,,, where {j1,...,jp} C I, = {1,2,...,m}. We note
that when, among the p chosen weight vectors, both of the vectors egj,_1 & ies;, occur for
some i, then their two weights +¢; add up to 0. Thus, if we order the weight vectors by

putting at the end all those coming in pairs, say eap, -1 = i€2p,, ..., €2n,—1 £ t€ap, , then the
corresponding weights are of the form ). =e¢j,, with £ = p — 2r, added over all possible
1<i<e

choices of signs, for each subset {j1,...,75} C I, ={1,2,...,p}.

We now compute the multiplicity of each weight. We note that a weight of the form

le +e¢;, can be obtained in a unique way, corresponding to the wedge product of p
weight vectors (with a choice of a sign for each) associated to a p-set of angles ¢; (no two
of which come in pairs). Therefore their multiplicity is equal to 1. For £ = p — 2r < p, the
multiplicity is higher than 1 and equal to the number of choices of r pairs of weight vectors
with 1 < r < 222 That is, for a weight of the form Zle +ej,, with £ = p — 2r and
0 <7 < =52, the multiplicity is (@6).

We shall need the identities

£

e h=t + s1gn
; Evi ( )
(3.17) 27 ] (cost, £isint;, ) = [
h=1 iyt
%1 e =" (= sign),
(o]

where ). (resp. Y _4q) stands for the sum over all possible choices of an even (resp. odd)
number of — signs. To check (??), we note that

¢ ¢ ¢

2 T[ (cost;, i‘sint;,) = [J(e™n +e7"m) & it C J] (en —ein).
h=1 h=1 h=1
Now, in the + case, if we compute the products in both summands in the r.h.s. in all possible
ways, the products of ¢ factors e**s: having an odd number of — signs in the exponents
cancel, hence we get twice the sum of products having an even number of — signs and we
thus get the identity in (??) in the + case. The identity in the — case is obtained in the
same way.

If p < m, the representation AP(C?™) is irreducible and the character x,(x(t1,...,tm))

is the sum of all of its weights, i.e. of all exponentials of type eXiz1 +itji with ¢ = p — 2r
for some r > 0, each one counted with its multiplicity. As explained before, for each fixed
choice of {j1,...,7¢} C {1,...,m}, the contribution is

L
(r;;é) Z 622:1 ity 2£ (@Z) H CcosS tjh s
h=1

obtained by adding both products in (??), since we have to consider all possible choices of
signs. Thus we get the expression in (?7).
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In the case p = m, the representation splits as a sum of the two irreducible subrepre-
sentations AT(C?™) with highest weights 217:11 &; £ &p,. Thus, AT(C*™) (resp. A™(C?*™))
has weights with multiplicity one, of the form Y_.*, =+¢; over all sums having an even (resp.
odd) number of minus signs. The remaining weights of A7*(C?™) have the form Zle +ejy,,
for each {i1,...,i¢} C I, and all possible choices of signs, with multiplicities %(TTQK) for
both A7*(C?™). In this way we get the expression in (?7). O

We now list some useful facts on the values of the characters .

Corollary 3.8. For x = xz(t1,...,ty) € Toy, we have:

() Xo(@):- s X1 (w) € R and X (x) = x5 @)
() (6~ i) (2) = )" ([] sint,).

(iii) x;=(x) € R if and only if m is even or t; € nZ for some 1 <i < m.

(iv) x;h(x) = xm(x) if and only if t; € 7Z for some 1 < i < m. In particular, this holds
for any x of order 2.

Proof. Ttems (i), (ii) and (iii) are clear from (?7?) and (??). Now (iv) follows from (ii)
since x;\ (x) = x;,(x) if the r.h.s. in (ii) equals 0, that is, if and only if ¢; € 7Z for some
i=1,...,m. If x is of order 2 then = = x(&ty,to,...,t,,) with t; € 7Z and t; = 7 for at
least one . O

3.3. Symmetry and D-isospectrality. Suppose Mr is a n-dimensional orientable com-
pact flat manifold with translation lattice A and holonomy group F ~ A\T'. If y = BL, € T
then B € SO(n) and BA = A. Denote by o(B) the order of B. Set

(3.18) eur(@) = Y et

u€(Ay)B
We can now state a simple criterion for spectral symmetry.

Corollary 3.9. Let Mt be an orientable compact flat manifold of odd dimension n with
holonomy group F ~ A\T'. If x;}(B) = x,,(B) for every B with ng = 1, then Mr has
symmetric spectrum for D and, in this case,

2m
(3.19) At p(0) =d p(0) =5 D eun(D) D xp(B)
y=BL,eA\T p=0

Proof. We use (?7). It is clear that x;\ (B) = x;,,(B) for every B € F implies that dID(I‘) =
d, p(T). Actually, we need the condition x;\,(B) = x,,(B) only for B € Fy with o(B) > 3.
Indeed, np > 1 for every BL, € I'. If ng > 2 then x5 ~ x(0,t2,...,t,), and hence by (iv)
of Corollary ?? we have x;- (zg) = x,,(zB).

Now, x;h(z5) + x;(x5) = xm(zp) and by duality x,(z5) = Xn—p(zp) (since Mr is
orientable). Thus, we have that 2 22:01 Xp(zB) = Z;:OI Xp(zB)+ Z;Zmﬂ Xp(zp). Hence
(?7?) follows from (?7), with e, ,(I") as given in (?77?). O

Remark 3.10. Note that the corollary is consistent with the fact that d:’D ) +d, p(I') =
dy2 A, (I'), as it should be.
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D-isospectrality of 75-manifolds. Here we will show that all Z5-manifolds are D-isospectral
to each other. This is a large class. Indeed, it has been shown in [?] that, if & = n — 1,
there are at least 2”2 manifolds of dimension n and holonomy group ngl that are

pairwise non-homeomorphic to each other.

We will next show that Z5-manifolds have symmetric D-spectrum and that expression
(??) for the multiplicities dramatically simplifies for the whole class of Z5-manifolds.

Proposition 3.11. Let My be an n-dimensional Z5-manifold, 1 < k < n — 1, with lattice
of translations A. Then Mr has symmetric D-spectrum and

(3.20) & p(T) =2""F2|A%] (u>0), dop(T) =2"7F1,

Furthermore, for any fized k, all Z5-manifolds with isospectral covering tori are mutually
D-isospectral. In particular, all Z5-manifolds covered by the same torus are D-isospectral to
each other.

Proof. Since Mr is a Z5-manifold, B = B! for any BL; € T'. Thus, by Lemma ??, we have
that (B*&% (u), &5 (u)) = 3 (Bey,j,€q,7) with |J| = 2p for every 1 < p < h, and thus the
difference between d:;D(F) and d, (I') disappear. Indeed, substituting this in (??), and
following the computations, one gets (??) with ;. , (B) replaced by & xm,«(B) in this case.
The symmetry of the spectrum of D can also be easily deduced from Corollary ?? or from
the expressions of characters by using Theorem ?? and Corollary ?? (iv).

We now prove (?7). Since D? = A, D-isospectral implies A.-isospectral. Now Z5-
manifolds have symmetric D-spectrum, hence Qd:;D(M )=2d, n(M)=d,2 A, (M). By The-
orem 2.1 in [?], all Z&-manifolds having isospectral covering tori are mutually A -isospectral,
that is d, . (M) = d, . (M') for any pair M, M’ of Z5-manifolds. From these two facts
one obtains that dffD(M) = diD(M’) thus proving the assertion. O

Open question 8.12. Since D? = A, D-isospectral implies A,-isospectral. Proposition ?7
shows the converse is trivially true for all Z5-manifolds, but we do not know if it holds in
general for flat manifolds. We do not know a pair of A.-isospectral compact flat manifolds
(or even just compact Riemannian manifolds) that are not D-isospectral. We note that for
the spin Dirac operator D, by using different spin structures, it is not too difficult to give
examples of Ay, -isospectral Z5-manifolds that are not D-isospectral (see [?], Example 4.4).
Here, D? = Aspin-

4. ETA SERIES AND ETA INVARIANTS
For a compact flat manifold Mr, the eta series in (??) can be written in the form

d} p(T) —d, p(T)
(2mp)®

(1.1) (s = Y

1
+
re 27 A

for Re(s) > 1, where AT = ANRT and A = {\ € Specp : dy # d_,}, the asymmetric part
of the spectrum. The multiplicities diD(F) were computed in (?7).

We know that any flat torus Ty = A\R™ and any Z4-manifold Mt have symmetric D-
spectrum (see Theorem ?? and Proposition ??) hence they have eta series and n-invariant
equal to 0.

Our goal is to give an expression for the eta series for a general compact flat manifold.



SPECTRAL THEORY OF THE APS OPERATOR ON COMPACT FLAT MANIFOLDS 19

Suppose Mr is an n-dimensional orientable compact flat manifold with translation lattice
A and holonomy group F' ~ A\I'. If v = BL;, € T then B € SO(n) and BA = A. We will
need some notations. Put

(4.2) Fi=FT):={BcF:ng=1} where np:=dim (R")”

If tp = z(t1(B),...,tm(B)) € T,_1 is conjugate to B, we denote the rotation angles by
t;(xp) and put

(4.3) Fl=FT):={BeF :ti(zp) ¢ 7Z, 1 <i<m}
Note that F| excludes the identity element and all elements of order 2.

For any B € F, we pick vg € A* one of the two generators of the 1-dimensional lattice
fixed by B, that is

(4.4) (A*)B := Zvg.

Note that vg depends on A, although we do not reflect this in the notation.

Lemma 4 1. Let T be a Bieberbach group of I(R™). For any v = BL, € Fi(T") we have
v b€ )Z where o(B) is the order of B. That is, vg - b= % with £, € Z.

Proof. Put b = b, + ' where b, and b’ are the orthogonal projections of b onto (R™)? and
((R™)B)+ respectively. Now,

(BLy)*B) = BO(B)LZ?:?A iy = Loy, € L,

o(B)-1
since Y. BIb € ker(B—I)Nker(B—1I)*. Thus b, € - )A hence vg-b =vp-by € ( )
=0
since vp € A*. So, we can write vg-b=vp by = ng) for some £, € Z, as asserted. O

In the previous notations, we can now state the following theorem.

Theorem 4.2. Let Mr be an orientable compact flat manifold with translation lattice A,
holonomy group F ~ A\TI' and dimension n = 2m + 1 = 4h — 1. Then, the eta function on
Mt associated to D is given by

(4.5) np(s) = —Q‘Ty;rll Z (27TH’UBHO(B (Hsmt xB)

BLy€A\T
BEF]
[0(52)—1]
. 275l j j
> sin(Z3) (s o) = 1= 5
j=1

where o(B) is the order of B, £ is as defined in Lemma 7?7 and ((s,o) = > m is the
=0

Hurwitz zeta function for a € (0,1].

Furthermore, the eta invariant is given by

(4.6) np(0) = —% Z Ty (H sint; (J;B)> cot(oﬂg)).

y=BLy€A\T
BEF],t,¢o(B)Z
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Proof. We begin by looking at the difference d:,D (I') —d, p(I') in (?7). By using (??) and
(ii) of Corollary ??, we get

— —1)ht? TIU- —
A p(0) = dyp() = SH— > 0., @™ (= xw) (@5)

BLy€A\D
ue(A1)?
(4.7 .
= 2|71::\l Z (Hsintj(xB)) Z Tun e?minb,
BL,eA\Tl' j=1 u€(Ay)B

where we have used that m = 2h — 1.

Since [[-, sint;(xp) = 0 if and only if t;(xp) € 7Z for some 1 < j < m, we see that
only the elements v = BL, with B € F] (see (??)) can have a non-trivial contribution to
the sum in (??). In fact, if ng > 1 then ng > 3 (by orientability) and hence xp is conjugate
to z(0,ta,...,tm). In case ng = 1 and —1 is an eigenvalue of B, then zp is conjugate to
x(myta, . tm).

For elements B € F{, one has ng = 1, thus (A*)® = Zvp with vp € A* as in (??), hence
any u € (A*)® is of the form u = fvp, with ¢ € Z. In this way, we have that

AT = {2nl|lvg||: L €N,B € F;(T)}
and, by (??) and (??), we get

m o o 627riu<b
_ 2m — u,B
ns) = o > ([[smti@n) Yo Y 7
BL,eA\I' j=1 =1 ue{xL||vgs]|}
BEF,

Using (?7?) and putting together the contributions of v and —u we have

2milvg-b —2mibvg-b __ o . .
Opypy 5 € +0 € =2io, ,sin(2rlvp-b).

Thus, we arrive at the expression

(48) ) =-Zg Y iy ([Isnts) Zsm(%’eﬂ

BLbEA\F Jj=1 =
BeF,

=

Now, by Lemma ??, for each v = BLy € I', we have vg - b = O% with £, € Z. Thus,
writing £ =to(B) + j with t € Z and 0 < j < o(B) — 1 we have that
o(B)—1

. sin(27lvg - b) 1 o omit e 1
(4.9) T = sy X sn(GEp) X Gt L)

=1 j=1 t=0 o(B)
By substituting (?7?) in (?7?) we get

m o(B)—-1
gm+1 Tug, . . 2wl j
(410) n(s) = =2 Y. @mdtemyr (Isinti@s) Do sin(E5) (s o) -
y=BLy€A\T j=1 j=1

BeF,
where ((s,a) = > ﬁ for 0 <@ <1andRes > 1.
=0
Note that, for any k € Z, one has that

sin (277(0(5(33);]’)]9) _
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By using this fact in (?7) we get (?7). Note that if o(B) is even, there is a term coming alone
o(B)
2

in the sum over j, corresponding to j = . For this term we get sin( 2;?;)”) = sin(mly) =0,

since £, € Z. From the final formula (??) we deduce that 7(s) is an entire function, since
((s,a) has a simple pole at s = 1. Note that only those v € T' such that £, ¢ o(B)Z do
contribute to the sum.

We will now verify the expression for the eta invariant. We have

m o(B)—1
m+1 . 275l j
n(0) = ,Q‘F‘ Z Ovp.B (H smtj(xB)) Z sin( (33) ) ¢(0, O(JB)).
y=BL,EA\T =1 =1

BEF,

By using that ((0,a) = 3 — o ([?]) and since Py 1Sln(27yk) = 0 for any k,p € N, we
obtain, for v such that ¢, ¢ o(B)Z,

o(B)-1 _ oB) 1 ;
Z sin (557) = atly) =~y 2 sin (7) =~ oot ().

27rjk) —

where we have used the identity Z j sin ( v —g cot (”le), valid for integers k, d with

dtk (see[?, (5.6)] for a proof). The desired formula for 7(0) thus follows. O

Remark 4.3. Consider the operator D; = dx : dQ?*~1 C Q%* — Q%! The eigenfunctions
of Dy are given by the wiJ(x) as in (??) with the J’s restricted to those with |J| = 2h.
Thus, by proceeding similarly as in the proof of Theorem ??, and using (??) we get

(4.11) dyp,(0) = T et ks (g,
BLyeA\T
ue(A;)B

where €, g = F(—1)"*'o, , and

(4.12) do.p, (T) = > Xml(zs).

BL,eA\T

Thus, although dj; ,(T") # d; p ('), we have d ,(I') — d, ,(I') = df  (T') — d;, 1 (I).
Therefore, the eta series, as well as the eta invariants, for D and D; are the same, i.e.
n(s) = n(s), n(0) = n1(0). These equalities are valid for general Riemannian manifolds,
as was observed in [?, Prop. 4.20]. However, it should be pointed out that the reduced eta
invariants, defined by 77 = %(n + dim ker D) mod Z, might be different, since one might have

dy p(T) # dyp, (T)-
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