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Abstract. We study the spectral theory of the Dirac-type boundary operator D defined
by Atiyah, Patodi and Singer, acting on smooth even forms of a compact flat Riemannian
manifold M . We give an explicit formula for the multiplicities of the eigenvalues of D
in terms of values of characters of exterior representations of SO(n), where n = dimM .
As a consequence, we give large families of D-isospectral flat manifolds that are non-
homeomorphic to each other. Furthermore, we derive expressions for the eta series in
terms of special values of Hurwitz zeta functions and, as a result, we obtain a simple
explicit expression of the eta invariant.

1. Introduction

LetM be an oriented Riemannian manifold of dimension n = 4h−1 and denote by Ω(M)
the space of differential forms on M . In this paper we will study the operator D defined on
even forms by

(1.1) D : Ωev(M)→ Ωev(M) Dφ = (−1)h+p+1(∗d− d∗)φ,

where Ωev(M) =
⊕2h−1

p=0 Ω2p(M) and φ ∈ Ω2p(M). We shall call this operator the APS-
boundary operator, first considered in [?].

This operator is closely related to the signature operator. Indeed, there is a natural
“Dirac-type” differential operator defined on forms by d+ d∗ whose square is the Laplacian
on forms (d + d∗)2 = dd∗ + d∗d = ∆F . Let N be a compact Riemannian manifold. If N
has dimension n = 2`, there is an involution τ on Ω(N) given by τφ = ip(p−1)+` ∗ φ for
φ ∈ Ωp(N) and ∗ is the Hodge-star operator. Denote by Ω±(N) = {φ ∈ Ω(N) : τφ = ±φ}
the corresponding ±1-eigenspaces of τ . Since (d + d∗)τ = −τ(d + d∗), we have that
(d+ d∗)|Ω±(N) : Ω±(N) → Ω∓(N). The operator DS := (d+ d∗)|Ω+(N) is called the sig-
nature operator because, if N is closed (∂N = ∅), by Hodge theory the index of DS
equals the signature of N . In fact, by the Hirzebruch index theorem, we further have
Ind(DS) = Sign(N) =

∫
N
L(p), where L is the Hirzebruch L-polynomial in the Pontrjagin

classes.
However, if N is not closed, i.e. if ∂N = M 6= ∅, Atiyah, Patodi and Singer showed

that under certain conditions on the boundary, the difference Sign(N)−
∫
N
L(p), called the

defect of signature, is not necessarily zero. More precisely, one has that

Sign(N) =
∫
N

L(p)− ηD(0)
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where ηD(0) is the η-invariant (see (??)) associated to the operator D defined in (??). Here,
D = (DS)|M is the restriction of the signature operator on N to the boundary M . It turns
out that identifying Ωev(M) with Ω+(N)|M , then D takes the form given in (??).

Let D be a self-adjoint elliptic differential operator of order d acting on smooth sections
of a compact manifold M of dimension n. Then D has a discrete spectrum, denoted by
SpecD(M), consisting of real eigenvalues λ with finite multiplicity dλ, which accumulate
only at infinity. The spectrum is said to be asymmetric if for some λ ∈ SpecD(M) one has
that dλ 6= d−λ. Atiyah, Patodi and Singer introduced the so called eta series

(1.2) ηD(s) =
∑

06=λ∈SpecD

sign(λ) |λ|−s =
∑
λ∈A+

dλ−d−λ
λs ,

where A = {λ ∈ SpecD : dλ 6= d−λ} is the asymmetric spectrum and A+ = A ∩ R+.
This series converges for Re(s) > n

d , and defines a holomorphic function ηD(s) which
has a meromorphic continuation to C having (possibly) simple poles at s = n − k, with
k ∈ N0. Remarkably the residue of ηD(s) at the origin vanishes (see [?], work of P. Gilkey,
M. Wodzicki and also recently by R. Ponge). The number

(1.3) η := ηD(0)

is a spectral invariant, globally defined, which is called η-invariant and gives a measure of
the spectral asymmetry of A. It is also of interest the study of the reduced eta invariant
defined by

η̄ :=
η + dim kerD

2
mod Z .

In recent years the eta invariant has been studied by many authors in different contexts
(for instance see work of P. Gilkey, W. Müller, S. Goette, U. Semmelmann, R. Meyerhoff,
M. Ouyang and H. Moscovici – R. Stanton). For the spectral theory of Dirac type operators
we mention the articles of C. Bär and the book of N. Ginoux ([?]). Also, the eta invariant
has been computed in several particular cases (see for instance [?], [?], [?], [?], [?], [?], [?],
[?], [?], [?], [?], [?], [?], [?]).

The goal of this paper is to study the spectral theory of the Dirac-type APS-boundary
operator D in (??) acting on smooth even forms of a general compact flat Riemannian
manifold M of dimension n = 2m + 1 = 4h − 1 and to compute the corresponding eta
invariant. Since any compact flat manifold M bounds ([?]), its eta invariant will give the
defect of signature of any Riemannian manifold having M as its boundary. Furthermore,
the cusp cross-sections of hyperbolic manifolds with cusps are compact flat manifolds, so
their eta invariant is relevant in connection with the signature of such manifolds. There has
been quite some research on the question of realizing any flat manifold as the boundary of
a hyperbolic manifold (see [?], [?], [?], [?]). For instance, it is known that if a flat manifold
is the boundary of a hyperbolic manifold with only one cusp, then its eta invariant is an
integer ([?]).

In the present paper, as a first step, we develop the theory for a general flat torus
(see Section ??) giving explicitly a basis of eigenfunctions of mixed degree (2p, n− 2p− 1),
(2p, n−2p+1), together with an expression for the multiplicities of the eigenvalues (Theorem
??). We illustrate by showing the eigenfunctions in low dimensions n = 7, 11 for small
eigenvalues (see Example ??).

In Section ??, we consider the case of a general flat Riemannian manifold M and derive
a formula for the multiplicities of the eigenvalues of D (Theorem ??). We then refine
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the formula expressing the multiplicities in terms of characters of exterior representations
evaluated at elements of the maximal torus of SO(2m) and giving also an expression for the
characters of such elements (see Theorem ?? and Proposition ?? respectively) that is very
useful in explicit computations.

As a byproduct of the multiplicity formulas, we exhibit large families of D-isospectral
flat manifolds that are non-homeomorphic to each other (Proposition ??). Namely, any two
manifolds having holonomy groups Zk2 , for a fixed k, turn out to be D-isospectral. This is
connected to the isospectrality result in [?] in the case of the full Hodge-Laplace operator
∆ = ∆F acting on the space of forms of all degrees Ω(M).

Section ?? is devoted to the computation of the eta series and of the corresponding eta
invariant. As a main result in the section we obtain an explicit expression of η(s) in terms
of Hurwitz zeta functions (Theorem ??) and in particular it follows that η(s) is an entire
function, as expected, by flatness of M .

Formula (??) for η(s) in Theorem ?? can be used effectively to compute the η-invariant
in many cases, in particular for all flat manifolds with holonomy group Zp, p an odd prime.
These examples, together with a comparison with Donnelly’s formula in [?] and other ap-
plications of (??) will be developed in a future publication.

2. The operator D on a flat torus

In this section we will determine a complete set of eigenfunctions of D on a flat torus
TΛ = Λ\Rn, Λ a lattice in Rn.

We assume throughout this paper that n = 2m+ 1 = 4h− 1. We set In = {1, . . . , n}. If
J = {j1, . . . , jp} ⊂ In such that j1 < j2 < · · · < jp, we will use the standard notation

dxJ := dxj1 ∧ . . . ∧ dxjp dx∅ = 1.

Similarly, we will use eJ := ej1 ∧ . . . ∧ ejp for a basis {ei} of Rn and e∅ = 1.
LetM be an oriented Riemannian manifold of odd dimension n. The Hodge star operator

∗ = ∗p : Ωp(M)→ Ωn−p(M) is defined by ∗dxJ = σJdxJc where σJ is a sign determined by

(2.1) dxJ ∧ dxJc = σJ dxIn = σJ d vol.

For each p we have ∗n−p ∗p = (−1)p(n−p) Id, hence ∗2 = Id since n is odd. Furthermore,
the operator ∗ is an isometry with respect to the Hermitian inner product on Ω(M) ⊗ C,
and (∗p)∗ = (−1)p(n−p)∗n−p. If d : Ωp−1(M) → Ωp(M) denotes exterior differentiation, its
adjoint d∗ is given by d∗ = (−1)n(p+1)+1 ∗ d ∗ on Ωp(M).

Since D = (−1)p+h+1(∗d− d∗) on 2p-forms, and

∗d : Ω2p(M)→ Ωn−2p−1(M), d∗ : Ω2p(M)→ Ωn−2p+1(M),

using that n = 4h− 1, it follows that D sends a 2p-form to an even form of mixed type

D : Ω2p(M)→ Ω2(2h−p−1)(M)⊕ Ω2(2h−p)(M).

It is convenient to introduce the linear endomorphism

(2.2) Sφ = (−1)p+h+1φ for φ ∈ Ω2p(M).

Then D can be written as D = TS with T = ∗d− d∗. Note that S satisfies

(2.3) S(∗d) = −(∗d)S, S(d∗) = (d∗)S.
We denote by ∆ the Hodge-Laplacian dd∗+d∗d acting on Ω(M) and by ∆e the restriction

of ∆ to even forms. By using (??) one can check that

(2.4) D2 = ∆e
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and that D is self-adjoint since n is odd.
It is a standard fact that the eigenfunctions of ∆e have the form

(2.5) fu(x) dxJ , where fu(x) := e2πiu·x, u ∈ Λ∗ and J ⊂ In, |J | even,

with corresponding eigenvalue 4π2µ2 of multiplicity dµ,∆e(Λ) = 2n−1|Λ∗µ| where

Λ∗µ = {u ∈ Λ∗ : ‖u‖ = µ}.

Hence, by (??), the eigenvalues of D must be of the form ±2π‖u‖ with u ∈ Λ∗ and further-
more, if d±µ,D(Λ) denotes the multiplicity of the eigenvalue ±2πµ, with µ > 0, then

(2.6) d+
µ,D(Λ) + d−µ,D(Λ) = dµ,∆e

(Λ) = 2n−1|Λ∗µ|.

Since D2 = ∆e, it is clear that the eigenfunctions of D with eigenvalue ±λ 6= 0 can be
written ω ± 1

λDω, where ∆eω = λ2ω. If we take ω = fudxJ with fu(x) and J as in (??)
then

(2.7) d(fudxJ) = dfu ∧ dxJ = 2πifu du ∧ dxJ , du :=
∑
j∈J

ujdxj .

Thus, by computing (Id± 1
λD)fudxJ with λ = ±2π‖u‖, using (??) and putting û = u

‖u‖

for u ∈ Λ∗ r {0}, since dû = d̂u, we obtain that a general eigenfunction of D has the form

(2.8) fu(x)
{
dxJ ± i(−1)h+

|J|
2 +1

(
∗(dû ∧ dxJ)− dû ∧ ∗dxJ

)}
.

Let J ⊂ In with |J | = 2p and let B = {e1, . . . , en} be the canonical basis in Rn. We
assume first that u = ‖u‖en, that is, û = en. Then we see that the expression in (??)
simplifies considerably. Indeed, depending on J , one of the terms ∗(du∧dxJ) or du∧∗(dxJ)
vanishes and we obtain

fen(x)
(
dxJ ∓ iS∗(dxn ∧ dxJ)

)
= fen(x) dx±J n 6∈ J,

fen(x)
(
dxJ ∓ iS(dxn ∧∗dxJ)

)
= fen(x) d̃x

±
J n ∈ J,

where

(2.9)
dx±J := dxJ ∓ i (−1)p+h σJ dxJcr{n}, n 6∈ J,

d̃x
±
J := dxJ ∓ i (−1)p+h σJ dxJc∪{n}, n ∈ J,

and σJ is as defined in (??).
Now, for a general u ∈ Λ∗ r {0}, we proceed as follows. We fix an ordered orthonormal

basis Bu of Rn containing û = u
‖u‖ in the last position

(2.10) Bu =
{
eu,1, . . . , eu,n−1, eu,n = û

}
,

and C = Cu ∈ SO(n) sending Bu to B such that Cueu,j = ej for 1 ≤ j ≤ n. In particular,
Cuû = en. Thus, we have Cueu,J = eJ . On the other hand, since (xj ◦ Cu)eu,i = δi,j , then
we have C∗udxj = d(xj ◦ Cu) = dxu,j and therefore

C∗udxJ = dxu,J .

Thus, for a general u we have that (??) takes the form

fu(x)C∗u dx
±
J , n 6∈ J, and fu(x)C∗u d̃x

±
J , n ∈ J.

where dx±J (u) and d̃x
±
J (u) are as in (??). We now normalize and name these eigenforms.
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Definition 2.1. In the previous notations, for u ∈ Λ∗ and J ⊂ In, |J | even, we define

(2.11)
φ±u,J(x) := e2πiu·x

√
2vΛ

C∗u
(
dxJ ∓ i(−1)p+hσJ dxJcr{n}

)
n 6∈ J,

ψ±u,J(x) := e2πiu·x
√

2vΛ
C∗u
(
dxJ ∓ i (−1)p+hσJ dxJc∪{n}

)
n ∈ J.

where vΛ = vol(Λ).

The forms φ±u,J(x) and ψ±u,J(x) in (??) are eigenfunctions of D with eigenvalue 2π‖u‖,
and degrees of mixed types (2p, n− 2p− 1) and (2p, n− 2p+ 1) respectively.

From now on, we will identify T ∗(Rn) with Rn via the correspondence dxi ↔ ei. With
this identification, dxJ corresponds to eJ and the expression in (??) becomes d(fueJ) =
2πifu Lu(eJ), where Lu denotes wedge multiplication by u =

∑
ujej . Also, C∗udxJ turns

into C−1
u eJ .

Taking into account these identifications, we may alternatively write

(2.12) φ±u,J(x) = e2πiu·x
√

2vΛ
e±J (u) and ψ±u,J(x) = e2πiu·x

√
2vΛ

ẽ±J (u)

where
e±J (u) := C−1

u e±J := C−1
u

(
eJ ∓ i(−1)p+hσJ eJcr{n}

)
, n 6∈ J,

ẽ±J (u) := C−1
u ẽ±J := C−1

u

(
eJ ∓ i (−1)p+hσJ eJc∪{n}

)
, n ∈ J .

(2.13)

We now show that there is some linear dependence among the φ±u,J(x)’s and similarly
among the ψ±u,J(x)’s.

Lemma 2.2. Let {ei}ni=1 be any orthonormal basis of Rn. Let J ⊂ In with |J | even. Then
e±Jcr{j}(ej) = c e±εJ (ej) for j 6∈ J and ẽ±Jc∪{j}(ej) = c̃ ẽ±ε̃J (ej) for j ∈ J , where c, c̃ ∈ {±i},
ε, ε̃ ∈ {±1}, with ± depending on n, j and J . In particular, using the basis Bu for each
u ∈ Λ∗µ we have φ±u,Jcr{n}(x) = c φ±εu,J(x) for n 6∈ J and ψ±u,Jc∪{n}(x) = c̃ ψ±ε̃u,J(x) for n ∈ J .

Proof. It suffices to check the relations for the forms e±J (ej) and ẽ±J (ej), respectively. If
n 6∈ J , put J ′ = Jc r {n}. Then n 6∈ J ′ and J ′′ = J . Similarly, if n ∈ J , put J∗ = Jc ∪ {n}.
Then n 6∈ J∗ and J∗∗ = J . This proves the first assertion. By (??) the lemma follows. �

For each µ > 0, let

(2.14) H±µ (Λ) := {ω± ∈ Ωev(TΛ) : Dω± = ±2πµω±},
the eigenspace of D on TΛ, with corresponding eigenvalue ±2πµ, and, in a similar way, let
H0(Λ) = {ω ∈ Ωev(TΛ) : Dω = 0} be the space of even harmonics. We now give a complete
orthonormal system in H±µ (Λ) and H0(Λ) for a flat torus TΛ.

Theorem 2.3. Let Λ ⊂ Rn be a lattice with n = 2m + 1 = 4h − 1. If µ > 0, for each
u ∈ Λ∗µ = {u ∈ Λ∗ : ‖u‖ = µ}, let φ±u,J(x) and ψ±u,J(x) be the forms defined in (??). Let

Φ±µ = {φ±u,J(x) : u ∈ Λ∗µ, n 6∈ J, |J | = 2p with 0 ≤ p ≤ h− 1}
Ψ±µ = {ψ±u,J(x) : u ∈ Λ∗µ, n ∈ J, |J | = 2p with 1 ≤ p ≤ h− 1 or p = h, 1 ∈ J}.

(2.15)

Then Φ±µ ∪Ψ±µ , is an orthonormal basis of H±µ (Λ). The multiplicities of the eigenvalues
±2πµ are given by

(2.16) d+
µ,D(Λ) = d−µ,D(Λ) = 2n−2 |Λ∗µ|.

Furthermore, if µ = 0 then {eJ : |J | = 2p, 0 ≤ p ≤ n−1
2 } is an orthonormal basis of H0(Λ)

and d0,D(Λ) = 2n−1.
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Proof. Assume first that µ = 0. Since kerD = kerD2 = ker ∆e, the 0-eigenforms of D are
the constant coefficient even forms eJ with J ⊂ In and |J | = 2p, 0 ≤ p ≤ n−1

2 . Hence,

d0,D(Λ) =
∑
q even

(
n−1
q

)
= 2n−1.

Now, let µ > 0. It is clear from their construction that φ±u,J(x) and ψ±u,J(x) are eigenforms
of D with eigenvalues ±2πµ, where µ = ‖u‖ and u ∈ Λ∗. We now check that they have
norm 1. Using that ∗ is an isometry with respect to the Hermitian inner product 〈·, ·〉 on
Λ∗(Rn)⊗ C, for n 6∈ J , we have

〈φ±u,J(x), φ±u,J(x)〉 = 1
2 vΛ

∫
TΛ

e2πi(u−u)·xdx
(
〈eJ , eJ〉+ 〈eJ∪{n}, eJ∪{n}〉

)
= 1,

since |Jc r {n}| 6= |J |. Thus, ‖φ±u,J(x)‖ = 1. The computations in the case of the ψ±u,J(x)′s
are entirely similar.

We now show the orthogonality of the eigenforms in (??). Since

〈fu(x)eJ , fu′(x)eJ′〉 =
∫
TΛ

e2πi(u−u′)·xdx 〈eJ , eJ′〉 = δu,u′ vΛ 〈eJ , eJ′〉,

fu(x)eJ and fu′(x)eJ′ are orthogonal if u 6= u′ for any J, J ′ ⊂ I, thus we are left to consider
eigenforms for a fixed u ∈ Λ∗µ. Also, sinceH+

µ is orthogonal toH−µ , we have 〈e±J (u), e∓J′(u)〉 =
0, 〈e±J (u), ẽ∓J′(u)〉 = 0 and 〈ẽ±J (u), ẽ∓J (u)〉 = 0. Furthermore, since Cu ∈ SO(n), we need
only check the conditions

〈e±J , e
±
J′〉 = 0, 〈ẽ±J , ẽ

±
J 〉 = 0, 〈e±J , ẽ

±
J 〉 = 0,

for every J, J ′ ⊂ I with J ′ 6= J .
We shall work out the calculation for 〈e±J , e

±
J′〉; the remaining cases are proved similarly.

Take J, J ′ ⊂ In−1, with |J | = 2p, |J ′| = 2q. Then, by (??), we have

〈e±J , e
±
J′〉 =

〈
eJ ∓ i(−1)p+hσJ eJcr{n}, eJ′ ∓ i(−1)p+hσJ′ eJ′cr{n}

〉
= 〈eJ , eJ′〉+ 〈eJcr{n}, eJ′cr{n}〉+ iε(〈eJ , eJ′cr{n}〉+ 〈eJcr{n}, eJ′〉),

where ε = (−1)p+h(σJ′ − σJ).
Note that |Jc r {n}| = n− 2p− 1 = 2(2h− p− 1) for n 6∈ J and hence |Jc r {n}| 6= |J |.

Thus, there are three cases to consider. First, if 2p 6= 2q, then 2p 6= n − 2q − 1 and we
immediately obtain 〈e±J , e

±
J′〉 = 0. Secondly, if 2p = 2q, then n − 2p − 1 = n − 2q − 1 (and

2p 6= n− 2q − 1). Since n 6∈ J we get

〈e±J , e
±
J′〉 = 〈eJ , eJ′〉+ 〈eJcr{n}, eJ′cr{n}〉 = 2〈eJ , eJ′〉 = 2δJ,J ′ .

Finally, if 2p = n− 2q − 1, then 2q = n− 2p− 1 = 2(2h− p− 1), and we have that

〈e±J , e
±
J′〉 = iε(〈eJ , eJ′cr{n}〉+ 〈eJcr{n}, eJ′〉) = 0 ,

since we have J ′ 6= Jc r {n}, and this implies that both inner products equal 0.
Relative to the linear independence of the eigenfunctions, Lemma ?? implies that one

should take half of the subsets J ⊂ I with |J | = 2p. More precisely, for each u, in the case
of the φu,J ’s, we take all J ’s such that n 6∈ J and |J | < |Jc r {n}|, while in the case of the
ψu,J ’s we choose those J ’s such that n ∈ J and |J | < |Jc∪{n}|. Furthermore, in the special
case when n ∈ J and p = h, since |Jc ∪ {n}| = |J |, we also require that 1 ∈ J .

Now, we compute the multiplicities d±µ,D(Λ) = dimH±µ (Λ). Note that |Φ±µ |+ |Ψ±µ | equals(
#
{
J⊂In
n 6∈J : |J|=2p

0≤p≤h−1

}
+ #

{
J⊂In
n∈J : |J|=2p

1≤p≤h−1

}
+ #

{
J⊂In
1,n∈J : |J | = 2h

})
|Λ∗µ|.
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Thus, using that n− 1 = 2(2h− 1) and
(
n−2
2h−2

)
=
(n−2
n−1

2

)
= 1

2

(n−1
n−1

2

)
we obtain

|Φ±µ |+ |Ψ±µ | =
( h−1∑
p=0

(
n−1
2p

)
+
h−1∑
p=1

(
n−1
2p−1

)
+ 1

2

(
n−2
2h−2

))
|Λ∗µ|

= 1
2

( n−1∑
p=0

(
n−1
p

))
|Λ∗µ| = 2n−2|Λ∗µ| .

Finally, by the above equality, we see that Φ+
µ ∪ Ψ+

µ ∪ Φ−µ ∪ Ψ−µ has cardinality 2n−1|Λ∗µ|,
hence by (??) it is an orthonormal basis of H±µ (Λ), and thus the theorem follows. �

Next, we will illustrate Theorem ?? by giving some examples in low dimensions.

Example 2.4. For n = 2m+ 1 = 4h− 1, by Theorem ??, there is a basis of eigenforms of
D on TΛ having degrees of the following mixed types

φ±u,J(x), n 6∈ J (0, 2m) (2, 2m− 2) . . . (m− 1,m+ 1)

ψ±u,J(x), n ∈ J (2, 2m) (4, 2m− 2) . . . (m+ 1,m+ 1)

with u ∈ Λ∗µ and J ⊂ In (where in the case of the ψ±u,J(x) of type (m + 1,m + 1) we
furthermore take 1 ∈ J).

We will next exhibit some explicit eigenforms on the canonical torus Tn = Zn\Rn in
dimensions n = 7, 11 for µ = 1 corresponding to the non-zero eigenvalues ±2π.

• Dimension 7. Let n = 7, hence m = 3. The φ±u,J(x)’s are of type (0, 6) and (2, 4) while
the ψ±u,J(x)’s are of type (2, 6) and (4, 4). By (??), for each u ∈ Λ∗, the following choices of
J ⊂ I7 for φ±u,J(x) and ψ±u,J(x) give independent eigenfunctions.

φ±u,J(x) |J | = 0 |J | = 2

J ⊂ I6 ∅ {1,2}, {1,3}, {1,4}, {1,5}, {1,6},

{2,3}, {2,4}, {2,5}, {2,6}, {3,4},

{3,5}, {3,6}, {4,5}, {4,6}, {5,6}

and

ψ±u,J(x) |J | = 2 |J | = 4 (1 ∈ J)

J ⊂ I7 {1,7}, {2,7}, {3,7} {1,2,3,7}, {1,2,4,7}, {1,2,5,7}, {1,2,6,7},

7 ∈ J {4,7}, {5,7}, {6,7} {1,3,4,7}, {1,3,5,7}, {1,3,6,7},

{1,4,5,7}, {1,4,6,7}, {1,5,6,7}

In the case of λ = ±2π, we have Λ1 = {±e1, . . . ,±e7}. Let u = e1 and take the ordered
basis

Bu = Be1 = {eu,1, . . . , eu,6, eu,7 = e1} = {e7, e2, . . . , e6, e1} .

Then, we choose Cu sending the basis Bu to the canonical basis B = {e1, . . . , e7} as Cu =(
1

Id5
1

)
, where Id5 is the 5× 5 identity matrix. One has that C−1

u = Cu.
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According to Theorem ?? and (??), the eigenfunctions associated to u = e1 of type
φ±u,J(x) are given by

φ±e1,∅(x) = e2πix1√
2

Cu(1± i ε e1 ∧ . . . ∧ e6) = e2πix1√
2

(1∓ i ε e2 ∧ . . . ∧ e7)

φ±e1,{j1,j2}(x) = 1√
2
e2πix1 Cu (ej1 ∧ ej2 ± i ε′ ej3 ∧ ej4 ∧ ej5 ∧ ej6)

where J ⊂ I6 = {j1, . . . , j6}. For example, if J = {1, 2} then

φ±e1,{1,2}(x) = e2πix1√
2

(−e2 ∧ e7 ± i ε′ e3 ∧ e4 ∧ e5 ∧ e6).

Similarly, the ψ±u,J(x)’s are given by

ψ±e1,{j1,7}(x) = e2πix1√
2

Cu (ej1 ∧ e7 ± i ε̃ ej2 ∧ ej3 ∧ ej4 ∧ ej5 ∧ ej6 ∧ e7)

ψ±e1,{j1,j2,j3,7}(x) = e2πix1√
2

Cu (ej1 ∧ ej2 ∧ ej3 ∧ e7 ± i ε̃′ ej4 ∧ ej5 ∧ ej6 ∧ e7)

where 7 ∈ J ⊂ I7 = {j1, . . . , j6, 7}. For instance, if J = {1, 7} and J ′ = {1, 2, 3, 7} we have

ψ±e1,J(x) = − e
2πix1√

2
(e1 ∧ e7 ± i ε̃ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ∧ e7)

ψ±e1,J′(x) = − e
2πix1√

2
(e1 ∧ e2 ∧ e3 ∧ e7 ± i ε̃′ e1 ∧ e4 ∧ e5 ∧ e6).

In the expressions above, ε, ε′, ε̃, ε̃′ ∈ {±1} are signs depending on u, J that can be explicitly
determined.

Relative to Lemma ??, note that if we take ψ±e1,J(x) with |J | = 4, say J = {1, 2, 3, 4},
we obtain φ±e1,J′(x) or φ∓e1,J′(x) with J ′ = Jc r {7}, up to a scalar multiple. In fact,

ψ±e1,J(x) = e2πix1√
2

(−e2 ∧ e3 ∧ e4 ∧ e7 ± i ε e5 ∧ e6)

ψ±e1,J′(x) = e2πix1√
2

(e5 ∧ e6 ∓ i ε′ e2 ∧ e3 ∧ e4 ∧ e7).

Thus we have that
∓iε′ψ±e1,J′(x) = ψ

±(−εε′)
e1,J

(x).

Proceeding similarly for φ±ei,J(x), φ±−ei,J(x), ψ±ei,J(x) and ψ±−ei,J(x) for 1 ≤ i ≤ 7, we get
a basis for H±1 (T7). In this way, we get that

d±1,D(Z7) =
((

6
0

)
+
(

6
2

)
+
(

6
1

)
+
(

5
2

))
|Λ1| = (1 + 15 + 6 + 10) · 14 = 25 · 14 ,

which is the value obtained by using Theorem ??.
• Dimension 11. Let n = 11, hence m = 5. The φ±u,J(x)’s are of type (0, 10), (2, 8), (4, 6)

while the ψ±u,J(x)’s are of type (2, 10), (4, 8), (6, 6). In this case, the φ±u,J(x)’s are obtained
using J with |J | = 0, 2, 4 and 11 6∈ J , while the ψ±u,J(x)’s by using J with 11 ∈ J and
|J | = 2, 4, 6, and also 1 ∈ J if |J | = 6. In this case, we get

d±1,D(Z11) =
((

10
0

)
+
(

10
2

)
+
(

10
4

)
+
(

10
1

)
+
(

10
3

)
+
(

9
4

))
|Λ1| = 512 |Λ1| = 29|Λ1|

as given in Theorem ??. ♦

Example 2.5. Consider D acting on the 3-dimensional canonical torus T3 = Z3\R3, i.e.
Λ = Z3 = Λ∗ and vΛ = 1. We will construct a basis of eigenforms of D associated to the
three lowest eigenvalues 1,

√
2,
√

3, and we will compute their corresponding multiplicities.
More precisely, for each u ∈ Λ∗µ we have

φ±u,∅(x) = e2πiu·x√
2

C−1
u (1± i ε e1 ∧ e2), ψ±u,{1,3}(x) = e2πiu·x√

2
C−1
u (e1 ∧ e3 ± i ε′ e2 ∧ e3),
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where ε, ε′ are computable signs.
• Eigenvalue µ = 1. We have that Λµ = {±e1,±e2,±e3} and we choose the bases

Be1 = {e3, e2, e1}, Be2 = {e1, e3, e2} and Be3 = {e1, e2, e3} and corresponding matrices
Ce1 =

(
1

1
1

)
, Ce2 =

(
1

1
1

)
, Ce3 =

(
1

1
1

)
. Note that C−1

ei = Cei , 1 ≤ i ≤ 3. We thus
get

φ±εe1,∅(x) = e2πiεx1√
2

(1∓ i ε e2 ∧ e3), ψ±εe1,{1,3}(x) = e2πiεx1√
2

(e1 ∧ e2 ± εi e1 ∧ e3),

φ±εe2,∅(x) = e2πiεx2√
2

(1± i ε e1 ∧ e3), ψ±εe2,{1,3}(x) = e2πiεx2√
2

(e1 ∧ e2 ± εi e2 ∧ e3),

φ±εe3,∅(x) = e2πiεx3√
2

(1± i ε e1 ∧ e2), ψ±εe3,{1,3}(x) = e2πiεx3√
2

(e1 ∧ e3 ± εi e2 ∧ e3).

Then a basis of H±1 is given by{
φ±εe1,∅(x), φ±εe2,∅(x), φ±εe3,∅(x), ψ±εe1,{1,3}(x), ψ±εe2,{1,3}(x), ψ±εe3,{1,3}(x)

}
and hence d±1,D(Λ) = 2|Λ1| = 12.

• Eigenvalue µ =
√

2. We have Λµ = {ε(e1 ± e2), ε(e1 ± e3), ε(e2 ± e3)}, with ε ∈ {±1}.
Take the bases Be1+e2 , Be1+e3 and Be2+e3 as in (??). For example, we take

B±(ei±ej) = {ek, ±(ei∓ej)√
2

,
±(ei±ej)√

2
},

for i < j and {i, j, k} = {1, 2, 3}. Thus, for instance, we have

Ce1+e2 =

(
0 1√

2
1√
2

0 −1√
2

1√
2

1 0 0

)
, Ce1+e3 =

(
0 1√

2
1√
2

1 0 0
0 −1√

2
1√
2

)
, Ce2+e3 =

(
1 0 0
0 1√

2
1√
2

0 −1√
2

1√
2

)
and hence we obtain

φ±ε(e1+σe2),∅(x) = 1√
2
e2πiε(x1+σx2)

(
1± ε i√

2
(e2 ∧ e3 − σ e1 ∧ e3)

)
,

φ±ε(e1+σe3),∅(x) = 1√
2
e2πiε(x1+σx3)

(
1± ε i√

2
(e2 ∧ e3 + σ e1 ∧ e2)

)
,

φ±ε(e2+σe3),∅(x) = 1√
2
e2πiε(x2+σx3)

(
1∓ ε i√

2
(e1 ∧ e3 − σ e1 ∧ e2)

)
,

and

ψ±ε(e1+σe2),{1,3}(x) = 1√
2
e2πiε(x1+σx2)

(
e1 ∧ e2 ± ε i√

2
(e1 ∧ e3 + σ e2 ∧ e3)

)
,

ψ±ε(e1+σe3),{1,3}(x) = 1√
2
e2πiε(x1+σx3)

(
e1 ∧ e3 ∓ ε i√

2
(e1 ∧ e2 + σ e2 ∧ e3)

)
,

ψ±ε(e2+σe3),{1,3}(x) = 1√
2
e2πεi(x2+σx3)

(
e2 ∧ e3 ∓ ε i√

2
(e1 ∧ e2 + σ e1 ∧ e3)

)
.

A basis of H±√
2
is given by{

φ±ε(ei+σej),∅(x), ψ±ε(ei+σej),{1,3}(x) : ε, σ ∈ {±1}, 1 ≤ i < j ≤ 3
}

and hence d±√
2,D(Λ) = 2|Λ√2| = 24.

• Eigenvalue µ =
√

3. We have, Λµ =
{
ε1e1 + ε2e2 + ε3e3 : ε1, ε2, ε3 ∈ {±1}

}
. For

u = e1 + e2 + e3, we can take the orthonormal basis of R3 and the matrix

Be1+e2+e3 = { e1+e2−2e3√
6

, e1−e2√
2
, e1+e2+e3√

3
}, Ce1+e2+e3 =

 1√
6

1√
2

1√
3

1√
6
−1√

2
1√
3

−1√
6

0
1√
3

 .
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Then, we compute

φ±e1+e2+e3,∅(x) = 1√
2
e2πi(x1+x2+e3)

(
1∓ i√

3
(e1 ∧ e2 − e1 ∧ e3 + e2 ∧ e3)

)
ψ±e1+e2+e3,{1,3}(x) = 1√

2
e2πi(x1+x2+x3)

((
e1∧e3√

2
+ e2∧e3√

2

)
∓ i√

3

(
2e1∧e2√

2
+ e1∧e3√

2
− e2∧e3√

2

))
In general, we have the bases Bε1e1+ε2e2+ε3e3 = { ε1e1+ε2e2−ε32e3√

6
, ε1e1−ε2e2√

2
, ε1e1+ε2e2+ε3e3√

3
}

and, by (??), {
φ±ε1e1+ε2e2+ε3e3,∅(x), ψ±ε1e1+ε2e2+ε3e3,{1,3}(x) : ε1, ε2, ε3 ∈ {±1}

}
is a basis of H±√

2
and hence d±√

3,D(Λ) = 2|Λ√2| = 16. ♦

3. Spectral theory of D for compact flat manifolds

We now shift our attention to the spectrum of D acting on an arbitrary compact flat
manifold M of dimension n = 2m + 1 = 4h − 1 (i.e. m = 2h − 1 = n−1

2 ) covered by a flat
torus TΛ (see Theorems ?? and ??).

3.1. Multiplicity formulas. We will use similar methods as in [?]. We begin by proving
two useful lemmas. For µ ≥ 0, recall that Λ∗µ = {u ∈ Λ∗ : ‖u‖ = µ} and set (Λ∗µ)B = {u ∈
Λ∗µ : Bu = u}.

Lemma 3.1. Let u ∈ (Λ∗µ)B, J ⊂ {1, . . . , n} with |J | = 2p and eJ = eu,J as defined in
(??). Then we have

〈B∗e±J (u), e±J (u)〉 = 1
2 〈BeJ , eJ〉, 0 ≤ p < h,

〈B∗ẽ±J (u), ẽ±J (u)〉 = 1
2 〈BeJ , eJ〉 ±

δp,h
4 i 〈(B −B−1)eJ , û ∧ ∗eJ〉, 0 < p ≤ h,

where e±J (u) and ẽ±J (u) are defined in (??).

Proof. Using that n− 2p− 1 6= 2p and that B∗ = ∗B for B ∈ SO(n), we have

〈B∗e±J (u), e±J (u)〉 = 1
4 〈B

−1
(
eJ ∓ (−1)h+pi ∗ (û ∧ eJ)

)
, eJ ∓ (−1)h+pi ∗ (û ∧ eJ)〉

= 1
4

(
〈B−1eJ , eJ〉+ 〈B−1(û ∧ eJ), (û ∧ eJ)〉

)
= 1

4

(
〈BeJ , eJ〉+ 〈û ∧B−1eJ , û ∧ eJ〉

)
= 1

2 〈BeJ , eJ〉.

In the case of ẽ±J (u), for 1 ≤ p ≤ h − 1, we proceed in the same way. If p = h, we have
that n− 2p+ 1 = 2p, and hence

〈B∗ẽ±J (u), ẽ±J (u)〉 = 1
4

{
(〈B−1eJ , eJ〉+ 〈û ∧B−1 ∗ eJ , û ∧ ∗eJ〉)
± i (〈B−1(û ∧ ∗eJ), eJ〉 − 〈B−1eJ , û ∧ ∗eJ〉)

}
= 1

4

(
2〈BeJ , eJ〉 ± i 〈(B −B−1)eJ , û ∧ ∗eJ〉

)
,

and the second identity follows. �

Let V be an oriented real vector space of dimension n − 1 = 2m. Since n = 4h − 1,
m = 2h − 1. Consider the complex irreducible exterior representations (τp,Λp(V)C), 0 ≤
p ≤ m− 1, and (τ±m,Λ

m
± (V))C of SO(2m), where Λm(V)C = Λm+ (V)C⊕Λm− (V)C and Λm± (V)C

are the ±i-eigenspaces of ∗ on Λm(V)C. We denote by τm the sum τ+
m ⊕ τ−m. Alternatively,

Λm± (V)C can be seen as the ±1-eigenspaces of the involution

? = (−i)m ∗ = (−1)h i ∗
on Λm(V)C. In fact, ?2 = −∗2 = (−1)m+1Id = Id. We denote by χp and χ±m respectively,
the characters of the representations τp and τ±m.
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Now, put Vu := (Ru)⊥ for u ∈ Rn. Let τp,u and τ±m,u be the exterior representations of
SO(2m) on Λp(Vu)C, 0 ≤ p ≤ m− 1, and Λm± (Vu)C, respectively, denoting their characters
by χp,u and χ±m,u. Also, we put

SO(n− 1, u) := {B ∈ SO(n) : Bu = u} ' SO(n− 1).

If B ∈ SO(n) with Bu = u, the matrix of B in the basis Bu given in (??) is Bu = (B
′
u

1
)

with B′u ∈ SO(n− 1). From now on we will identify Bu with B′u, for simplicity.

Lemma 3.2. Let u ∈ Rn, let Bu = {eu,1, . . . , eu,n−1, eu,n = û = u
‖u‖} be an ordered

orthonormal basis of Rn and suppose that B ∈ SO(n− 1, u). Then, we have

(3.1)
∑

n 6∈J⊂In
|J|=2p

〈BeJ , eJ〉 = χ2p,u(B),
∑

n∈J⊂In
|J|=2p

〈BeJ , eJ〉 = χ2p−1,u(B),

and

(3.2)
∑

1,n∈J
|J|=2h

〈B(eJ ± i en ∧ ∗eJ), eJ ± i en ∧ ∗eJ〉 = 2χ±(−1)h

m,u (B),

where n = 4h− 1.

Proof. For simplicity, we will set eJ = eu,J . We first check the identities in (??). The
set {eJ : |J | = q} is an orthonormal basis of Λq(Rn)C for each q, 0 ≤ q ≤ m − 1.
Hence {eJ′}, with J ′ = J r {n}, is an orthonormal basis of Λq(Vu)C. Since 〈BeJ , eJ〉 =
〈BeJ′ , eJ′〉〈Ben, en〉 = 〈BeJ′ , eJ′〉, we have that∑

n 6∈J⊂In
|J|=2p

〈BeJ , eJ〉 =
∑

J⊂In−1
|J|=2p

〈BeJ , eJ〉 = χ2p,u(B).

One can proceed similarly to show that the second sum in (??) equals χ2p−1,u(B).
We now verify (??). If J ⊂ In with n ∈ J , |J | even, then

(3.3) en ∧ ∗neJ = (∗n−1eJ′) ∧ en,
where, for each d, ∗d now denotes the star operator on Λ∗(Rd).

Indeed, if J = {j1, . . . , j`−1, n} and Jc = {i1, . . . , in−`} ⊂ In−1, then ∗neJ = sgn(σ) eJc
and ∗n−1eJ = sgn(σ′) eJc where

σ =
(

1 2 ··· `−1 ` `+1 ··· n
j1 j2 ··· j`−1 n i1 ··· in−`

)
, σ′ =

(
1 2 ··· `−1 ` `+1 ··· n−1
j1 j2 ··· j`−1 i1 i2 ··· in−`

)
.

Now, ej1 ∧ · · · ∧ ej`−1 ∧ en ∧ ei1 ∧ · · · ∧ ein−` = sgn(σ) e1 ∧ · · · ∧ en, and since n − ` is odd,
ej1 ∧ · · · ∧ ej`−1 ∧ ei1 ∧ · · · ∧ ein−l = −sgn(σ) e1 ∧ · · · ∧ en−1, hence −sgn(σ) = sgn(σ′). In this
way, en ∧ ∗neJ = sgn(σ) en ∧ eJc = −sgn(σ) eJc ∧ en = sgn(σ′) eJc ∧ en = (∗n−1eJ′) ∧ en,
hence (??) follows.

Thus, if |J | = m+ 1 = 2h, by (??) and using that ∗n−1 = (−1)h+1 i ?, we have

eJ ± i en ∧ ∗neJ = eJ′ ∧ en ± (−1)h ? eJ′ ∧ en =
(
eJ′ ± (−1)h ? eJ′

)
∧ en.

Thus, since Bu = u, the left hand side of (??) equals∑
1∈J⊂In−1
|J|=2h−1

〈
B
(
eJ ± (−1)h ? eJ

)
, eJ ± (−1)h ? eJ

〉
.

It is easy to check that the eJ ± (−1)h ? eJ are eigenforms of ? with eigenvalues ±(−1)h

and that ‖eJ ± (−1)h ? eJ‖2 = 2. One can also check that eJ ± (−1)h ? eJ is orthogonal to
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eK ± (−1)h ? eK for K 6= J and hence, { 1√
2
(eJ ± (−1)h ? eJ) : 1 ∈ J ⊂ In−1, |J | = m} is an

orthonormal basis of the ±(−1)h-eigenspaces Λm± (R2m) of ?. Thus, the previous expression

equals 2 Tr τ±(−1)h

m,u (B), and hence (??) follows. �

Compact flat manifolds. We now recall some well-known facts on compact flat manifolds. A
flat manifold is a Riemannian manifold with zero constant curvature. It is known that any
such manifold is isometric to a quotientMΓ := Γ\Rn, where Γ is a Bieberbach group, that is,
a discrete cocompact torsion-free subgroup of I(Rn), the isometry group of Rn. Any element
γ ∈ I(Rn) = O(n) o Rn decomposes uniquely as γ = BLb, where B ∈ O(n) and Lb denotes
translation by b ∈ Rn. The translations in Γ form a normal, maximal abelian subgroup of
finite index, LΛ, Λ a lattice in Rn that is B-stable, for each BLb ∈ Γ. The restriction to Γ
of the canonical projection r : I(Rn) → O(n) given by BLb 7→ B is a homomorphism with
kernel LΛ and F := r(Γ) is a finite subgroup of O(n) called the point group. The group
Λ\Γ ' F is called the holonomy group of Γ and gives the linear holonomy group of the
Riemannian manifold MΓ. We shall assume throughout this paper that MΓ is orientable,
i.e. F ⊂ SO(n). The action by conjugation of Λ\Γ on Λ defines an integral representation
of F , called the integral holonomy representation. A flat manifold with holonomy group F
will be called an F -manifold.

We are now in a position to state one of the main results in this section that gives the
spectrum of D for an arbitrary compact flat manifold.

Theorem 3.3. Let MΓ = Γ\Rn be an orientable compact flat manifold of odd dimension
n = 2m+ 1 = 4h− 1 with holonomy group F = Λ\Γ. Then, the non-zero eigenvalues of D
are of the form ±2πµ, µ = ‖u‖ where u ∈ (Λ∗)B, BLb ∈ F , with multiplicities given by

(3.4) d±µ,D(Γ) = 1
|F |

∑
BLb∈F

∑
u∈(Λ∗µ)B

e2πiu·b
(m−1∑
p=0

χp,u(B) + χ∓(−1)h

m,u (B)
)
.

Furthermore, we have

(3.5) d0,D(Γ) = 1
|F |

∑
BLb∈F

2m∑
p=0

χp,u(B) .

Proof. Suppose first that µ > 0. Let p±µ : H±µ (Λ)→ H±µ (Γ) = (H±µ (Λ))Γ be the orthogonal
projection given by p±µ = 1

|F |
∑
γ∈F

γ∗|H±µ , with H
±
µ (Γ) as in (??). As a result,

(3.6) d±µ,D(Γ) = dim (H±µ (Λ))Γ = Tr p±µ = 1
|F |

∑
γ∈F

Tr γ∗|H±µ .

If for each u ∈ (Λ∗µ)B we fix a basis Bu as in (??), by Theorem ?? we get the following
expression for the traces of γ∗|H±µ

Tr γ∗|H±µ =
∑
u∈Λ∗µ

(∑
J∈S

〈
γ∗φ±u,J(x), φ±u,J(x)

〉
+
∑
J∈S̃

〈
γ∗ψ±u,J(x), ψ±u,J(x)

〉)
where

S = {J ⊂ I, n 6∈ J : |J | = 2p, 0 ≤ p ≤ h− 1},

S̃ = {J ⊂ I, n ∈ J : |J | = 2p, 1 ≤ p ≤ h− 1 or 1 ∈ J, p = h}.
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Now, the action of γ = BLb ∈ Γ on fu(x) eJ ∈ Ω(Rn) –see (??), (??)– is given by

γ∗(fu(x) eJ) = fu(γx)B∗eJ = e2πiu·(Bx+Bb)B∗eJ = e2πiB−1u·bfB−1u(x)B∗eJ .

Therefore,

〈γ∗φ±u,J(x), φ±u,J(x)〉 = 2
vΛ

〈
e2πiB−1u·bfB−1u(x)B∗e±J (u), fu(x) e±J (u)

〉
= 2 δBu,u e2πiB−1u·b 〈B∗e±J (u), e±J (u)〉

and similarly for ψ±u,J(x). Thus, if Bu 6= u we get 0 in the expression above. On the other
hand, for u ∈ Λ∗µ with Bu = u, we obtain

〈γ∗φ±u,J(x), φ±u,J(x)〉 = 2 e2πiu·b 〈B∗e±J (u), e±J (u)〉,

and similarly 〈γ∗ψ±u,J(x), ψ±u,J(x)〉 = 2 e2πiu·b 〈B∗ẽ±J (u), ẽ±J (u)〉. In this way, we arrive at the
following expression

(3.7) Tr γ∗|H±µ = 2
∑

u∈(Λ∗µ)B

e2πiu·b
(∑
J∈S
〈B∗e±J (u), e±J (u)〉+

∑
J∈S̃

〈B∗ẽ±J (u), ẽ±J (u)〉
)

where (Λ∗µ)B = {u ∈ Λ∗µ : Bu = u}.
By splitting the contributions of the terms involving ẽ±J (u) with |J | = 2h in (??), and

applying Lemma ?? conveniently, we obtain

Tr γ∗|H±µ =
∑

u∈(Λ∗µ)B

e2πiu·b
{ ∑

n6∈J
|J|=2p

0≤p≤h−1

〈Beu,J , eu,J〉+
∑
n∈J
|J|=2p

1≤p≤h−1

〈Beu,J , eu,J〉

+ 1
2

∑
1,n∈J
|J|=2h

〈
B−1(eu,J ± i eu,n ∧ ∗eu,J), eu,J ± i eu,n ∧ ∗eu,J

〉}
.

Now, applying Lemma ?? we get

Tr γ∗|H±µ =
∑

u∈(Λ∗µ)B

e2πiu·b
( h−1∑
p=0

χ2p,u(B) +
h−1∑
p=1

χ2p−1,u(B) + χ±(−1)h

m,u (B−1)
)
.

Since χ±(−1)h

m,u (B−1) = χ
∓(−1)h

m,u (B), the result clearly follows from (??).

Now consider µ = 0. By repeating the previous argument, using the orthonormal basis
{eJ : |J | = 2p, 0 ≤ p ≤ m} of H0(Λ), we have

d0,D(Γ) = 1
|F |

∑
γ∈F

Tr γ∗|H0
= 1
|F |

∑
BLb∈F

∑
J⊂In,|J|=2p

0≤p≤m

〈B∗eJ , eJ〉.

Thus, by way of Lemma ??, we get that the inner sum equals
m∑
p=0

( ∑
n∈J
|J|=2p

〈B∗eJ , eJ〉+
∑
n 6∈J
|J|=2p

〈B∗eJ , eJ〉
)

=
m∑
p=1

χ2p,u(B) + χ2p−1,u(B) =
n−1∑
p=0

χp,u(B),

and hence the first identity in (??) follows. �

3.2. Character expressions. Our next goal will be to give an alternative expression for
the multiplicities d±µ,D(Γ) in Theorem ??, so that the traces occurring can be more explicitly
computed. To this end, we will need some facts on the conjugacy classes of SO(n − 1) in
SO(n).
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Conjugacy classes. Let e1, . . . , en be an orthonormal basis of Rn with en = (0, . . . , 0, 1). For
each u ∈ Rn, there exists C = Cu ∈ SO(n) such that Cû = en. Now, if B ∈ SO(n) and
Bu = u then CBC−1 fixes en, i.e. CBC−1 ∈ SO(n − 1). Furthermore, if Dû = en, then
DBD−1 and CBC−1 are conjugate in SO(n− 1).

If u ∈ Λ∗µ, let Bu be as in (??). For each 0 ≤ p ≤ m, if {eu,J : J ⊂ In−1, |J | = p} is a
basis of Λp(Vu), then {Ceu,J : J ⊂ In−1, |J | = p} is a basis of Λp(Rn−1). Furthermore

(3.8) χp,u(B) = χp(CBC−1).

where χp denotes the character of the p-exterior representation of SO(n− 1).

To get explicit expressions for the traces, we will work in the maximal torus Tn−1 of
SO(n− 1). There exists g ∈ SO(n− 1) such that

g Bu g
−1 = x(t1, . . . , tm) := diag

( [
cos t1 − sin t1
sin t1 cos t1

]
, . . . ,

[
cos tm − sin tm
sin tm cos tm

] )
∈ Tn−1 ,

with t1, . . . , tm ∈ R.
Consider the matrix Ũ =

(
U
−1

)
∈ SO(n), where

(3.9) U =

( −1
1

. . .
1

)
∈ O(n− 1).

Note that, if x(t1, . . . , tm) ∈ Tn−1, then U x(t1, . . . , tm)U−1 = x(−t1, t2, . . . , tm). Thus,
x(t1, . . . , tm) and x(−t1, . . . , tm) are conjugate in SO(n), but not in SO(n − 1), generically.
In this way, gBug−1 = xu,B := x(±t1(B), t2(B), . . . , tm(B)), and we have the identities

(3.10) χp(Bu) = χp(gBug−1) = χp(xu,B).

Given B ∈ SO(n) with Bu = u, choose xB ∈ Tn−1 conjugate to B in SO(n). By the
previous comments, B is conjugate either to xB or to UxBU−1 in SO(n−1). In this manner,
for each u ∈ (Rn)B we define the sign

(3.11) σu,B =

{
1 if CBC−1 ∼ xB ,
−1 if CBC−1 ∼ UxBU−1,

where ∼ denotes conjugation in SO(n− 1) and Cû = en. Note that,

(3.12) σ−u,B = −σu,B and σtu,B = σu,B , t > 0.

We now see how the change of conjugacy class affects the traces in SO(n− 1).

Lemma 3.4. If B ∈ SO(n − 1) with n = 2m + 1 we have χp(UxBU−1) = χp(xB) for
0 ≤ p ≤ m− 1 and χ±m(UxBU−1) = χ∓m(xB), where U is defined in (??).

Proof. We use that UeJ = −eJ , if 1 ∈ J , and UeJ = eJ , if 1 6∈ J . Since {eJ : J ⊂ I2m, |J | =
p} is a basis of Λp(R2m) and 〈UxBU−1eJ , eJ〉 = 〈xBeJ , eJ〉, the first identity in the lemma
follows.

For the second one, we know that { 1√
2
(eJ ± (−1)h ? eJ) : 1 ∈ J ⊂ I2m, |J | = m} is an

orthonormal basis of Λm± (R2m). Since V ? = − ? V for any V ∈ O(n− 1) r SO(n− 1) then
U(eJ ± (−1)h ? eJ) = −(eJ ∓ (−1)h ? eJ). Then, we have

χ±m(UxBU−1) =
∑

1∈J,|J|=m

〈
xB U(eJ ± (−1)h ? eJ), U(eJ ± (−1)h ? eJ)

〉
=

∑
1∈J,|J|=m

〈
xB(eJ ± (−1)h ? eJ), eJ ± (−1)h ? eJ

〉
= χ∓m(xB),
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and the lemma follows. �

We can now give an alternative expression for the multiplicities d±µ,D(Γ) in (??) that is
better suited for explicit calculations.

Theorem 3.5. Let MΓ = Γ\Rn be an orientable compact flat manifold of odd dimension
n = 2m+ 1 = 4h− 1 with holonomy group F = Λ\Γ. Then, we have

(3.13) d±µ,D(Γ) = 1
|F |

∑
BLb∈Λ\Γ
u∈(Λ∗µ)B

e2πiu·b
(m−1∑
p=0

χp(xB) + χ
±σ′u,B
m (xB)

)

where σ′u,B = (−1)h+1σu,B and xB is a fixed element in Tn−1 conjugate in SO(n) to B. In
particular, if F ⊂ Tn−1 then we may take xB = B for every BLb ∈ Γ.

Furthermore,

(3.14) d0,D(Γ) = 1
|F |

∑
BLb∈F

2m∑
p=0

χp(xB).

Both d±µ,D(Γ) and d0,D(Γ) can be computed explicitly using (??) and (??) below.

Proof. We have that σB(u) = 1 or −1 depending on whether xu,B ∼ xB , or xu,B ∼ UxBU−1.
Then, by (??), (??) and Lemma ??, we have that χp,u(B) = χp(xu,B) = χp(xB) for 0 ≤
p ≤ m−1, and χ±m,u(B) = χ±m(xu,B) = χ

±σu,B
m (xB). By substituting these identities in (??)

and (??) we get the desired expression. The remaining assertion is clear. �

Remark 3.6. The multiplicities given in Theorem ?? are expressed in terms of the original
data BLb ∈ F . However, the traces χp,u(B) and χ±m,u(B) show a dependence on u ∈ Λ∗µ. As
we shall see, the characters χp(xB), χ±m(xB) in expression (??) can be explicitly computed
in terms of the rotation angles tj(xB), using (??) and (??) below.

Character formulas on the maximal torus. Here we give explicit formulas for the characters
χp, 0 ≤ p ≤ n− 1, and χ±m on elements of the maximal torus T2m of SO(2m).

Proposition 3.7. Let n = 2m + 1. The characters of the irreducible representations
Λp(R2m)C , 0 ≤ p ≤ 2m, and Λm± (R2m)C of SO(2m), on x = x(t1, . . . , tm) ∈ T2m, are
respectively given by

(3.15) χp(x) =
p∑
`=0

(−1)`+p=1

2`
(m−`
p−`

2

) ∑
{j1,...,j`}⊂Im

( ∏̀
h=1

cos tjh
)

(0 ≤ p ≤ m),

and by duality χn−p(x) = χp(x) for m+ 1 ≤ p ≤ 2m. Also

(3.16) χ±m(x) =

(
m∑
`=1
` odd

2`−1
(m−`
m−`

2

) ∑
{j1,...,j`}⊂Im

( ∏̀
h=1

cos tjh
))
± 2m−1im

( m∏
j=1

sin tj
)
,

where Ip = {1, . . . , p}.

Proof. The weight vectors of SO(2m) on Λ1(R2m)C ∼= Λ1(C2m) have the form e2j−1 ± ie2j

with corresponding weights ± εj(x(t1, . . . , tm)) = e±itj , for 1 ≤ j ≤ m. Thus, the character
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of this representation is given by:

χ1(x(t1, . . . , tm)) =
m∑
j=1

eitj + e−itj = 2
m∑
j=1

cos tj .

More generally, if 1 ≤ p ≤ m, the weight vectors for the exterior representation of
SO(2m) on Λp(C2m), have the form (e2j1−1± ie2j1)∧ (e2j2−1± ie2j2)∧ . . .∧ (e2jp−1± ie2jp)
with corresponding weights

∑p
i=1± εji , where {j1, . . . , jp} ⊂ Im = {1, 2, . . . ,m}. We note

that when, among the p chosen weight vectors, both of the vectors e2ji−1 ± ie2ji occur for
some i, then their two weights ±εi add up to 0. Thus, if we order the weight vectors by
putting at the end all those coming in pairs, say e2h1−1± ie2h1 , . . . , e2hr−1± ie2hr , then the
corresponding weights are of the form

∑
1≤i≤`

± εji , with ` = p − 2r, added over all possible

choices of signs, for each subset {j1, . . . , j`} ⊂ Ip = {1, 2, . . . , p}.
We now compute the multiplicity of each weight. We note that a weight of the form∑p
i=1± εji can be obtained in a unique way, corresponding to the wedge product of p

weight vectors (with a choice of a sign for each) associated to a p-set of angles tj (no two
of which come in pairs). Therefore their multiplicity is equal to 1. For ` = p− 2r < p, the
multiplicity is higher than 1 and equal to the number of choices of r pairs of weight vectors
with 1 ≤ r ≤ m−p

2 . That is, for a weight of the form
∑`
i=1± εji , with ` = p − 2r and

0 ≤ r ≤ m−p
2 , the multiplicity is

(m−`
p−`

2

)
.

We shall need the identities

(3.17) 2`−1
∏̀
h=1

(cos tjh ± i` sin tjh) =



∑
ev
e
i
∑̀
h=1
± tjh (+ sign)

∑
odd

e
i
∑̀
h=1
± tjh (− sign) ,

where
∑

ev (resp.
∑

odd) stands for the sum over all possible choices of an even (resp. odd)
number of − signs. To check (??), we note that

2`
∏̀
h=1

(
cos tjh ± i` sin tjh

)
=
∏̀
h=1

(eitjh + e−itjh ) ± i`i−`
∏̀
h=1

(e itjh − e itjh ) .

Now, in the + case, if we compute the products in both summands in the r.h.s. in all possible
ways, the products of ` factors e±itji having an odd number of − signs in the exponents
cancel, hence we get twice the sum of products having an even number of − signs and we
thus get the identity in (??) in the + case. The identity in the − case is obtained in the
same way.

If p < m, the representation Λp(C2m) is irreducible and the character χp(x(t1, . . . , tm))
is the sum of all of its weights, i.e. of all exponentials of type e

∑`
i=1± itji , with ` = p − 2r

for some r ≥ 0, each one counted with its multiplicity. As explained before, for each fixed
choice of {j1, . . . , j`} ⊂ {1, . . . ,m}, the contribution is

(m−`
p−l

2

)∑
e
∑`
h=1± itjh = 2`

(m−`
p−`

2

) ∏̀
h=1

cos tjh ,

obtained by adding both products in (??), since we have to consider all possible choices of
signs. Thus we get the expression in (??).
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In the case p = m, the representation splits as a sum of the two irreducible subrepre-
sentations Λm± (C2m) with highest weights

∑m−1
i=1 εi± εm. Thus, Λm+ (C2m) (resp. Λm− (C2m))

has weights with multiplicity one, of the form
∑m
i=1 ±εi over all sums having an even (resp.

odd) number of minus signs. The remaining weights of Λm± (C2m) have the form
∑`
i=1± εji ,

for each {i1, . . . , i`} ⊂ Im and all possible choices of signs, with multiplicities 1
2

(m−`
m−`

2

)
for

both Λm± (C2m). In this way we get the expression in (??). �

We now list some useful facts on the values of the characters χ±m.

Corollary 3.8. For x = x(t1, . . . , tm) ∈ T2m we have:

(i) χ0(x), . . . , χm−1(x) ∈ R and χ±m(x) = χ∓m(x).

(ii)
(
χ+
m − χ−m

)
(x) = (2i)m

( m∏
j=1

sin tj
)
.

(iii) χ±m(x) ∈ R if and only if m is even or ti ∈ πZ for some 1 ≤ i ≤ m.

(iv) χ+
m(x) = χ−m(x) if and only if ti ∈ πZ for some 1 ≤ i ≤ m. In particular, this holds

for any x of order 2.

Proof. Items (i), (ii) and (iii) are clear from (??) and (??). Now (iv) follows from (ii)
since χ+

m(x) = χ−m(x) if the r.h.s. in (ii) equals 0, that is, if and only if ti ∈ πZ for some
i = 1, . . . ,m. If x is of order 2 then x = x(±t1, t2, . . . , tm) with ti ∈ πZ and ti = π for at
least one i. �

3.3. Symmetry and D-isospectrality. Suppose MΓ is a n-dimensional orientable com-
pact flat manifold with translation lattice Λ and holonomy group F ' Λ\Γ. If γ = BLb ∈ Γ
then B ∈ SO(n) and BΛ = Λ. Denote by o(B) the order of B. Set

(3.18) eµ,γ(Γ) =
∑

u∈(Λ∗µ)B

e2πiu·b.

We can now state a simple criterion for spectral symmetry.

Corollary 3.9. Let MΓ be an orientable compact flat manifold of odd dimension n with
holonomy group F ' Λ\Γ. If χ+

m(B) = χ−m(B) for every B with nB = 1, then MΓ has
symmetric spectrum for D and, in this case,

(3.19) d+
µ,D(Γ) = d−µ,D(Γ) = 1

2|F |

∑
γ=BLb∈Λ\Γ

eµ,γ(Γ) ·
2m∑
p=0

χp(B)

Proof. We use (??). It is clear that χ+
m(B) = χ−m(B) for every B ∈ F implies that d+

µ,D(Γ) =
d−µ,D(Γ). Actually, we need the condition χ+

m(B) = χ−m(B) only for B ∈ F1 with o(B) ≥ 3.
Indeed, nB ≥ 1 for every BLb ∈ Γ. If nB ≥ 2 then xB ∼ x(0, t2, . . . , tm), and hence by (iv)
of Corollary ?? we have χ+

m(xB) = χ−m(xB).
Now, χ+

m(xB) + χ−m(xB) = χm(xB) and by duality χp(xB) = χn−p(xB) (since MΓ is
orientable). Thus, we have that 2

∑m−1
p=0 χp(xB) =

∑m−1
p=0 χp(xB) +

∑2m
p=m+1 χp(xB). Hence

(??) follows from (??), with eµ,γ(Γ) as given in (??). �

Remark 3.10. Note that the corollary is consistent with the fact that d+
µ,D(Γ) +d−µ,D(Γ) =

dµ2,∆e
(Γ), as it should be.
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D-isospectrality of Zk2-manifolds. Here we will show that all Zk2-manifolds are D-isospectral
to each other. This is a large class. Indeed, it has been shown in [?] that, if k = n − 1,
there are at least 2

(n−1)(n−2)
2 manifolds of dimension n and holonomy group Zn−1

2 that are
pairwise non-homeomorphic to each other.

We will next show that Zk2-manifolds have symmetric D-spectrum and that expression
(??) for the multiplicities dramatically simplifies for the whole class of Zk2-manifolds.

Proposition 3.11. Let MΓ be an n-dimensional Zk2-manifold, 1 ≤ k ≤ n − 1, with lattice
of translations Λ. Then MΓ has symmetric D-spectrum and

(3.20) d±µ,D(Γ) = 2n−k−2|Λ∗µ| (µ > 0), d0,D(Γ) = 2n−k−1.

Furthermore, for any fixed k, all Zk2-manifolds with isospectral covering tori are mutually
D-isospectral. In particular, all Zk2-manifolds covered by the same torus are D-isospectral to
each other.

Proof. SinceMΓ is a Zk2-manifold, B = B−1 for any BLb ∈ Γ. Thus, by Lemma ??, we have
that 〈B∗ẽ±J (u), ẽ±J (u)〉 = 1

2 〈Beu,J , eu,J〉 with |J | = 2p for every 1 ≤ p ≤ h, and thus the
difference between d+

µ,D(Γ) and d−µ,D(Γ) disappear. Indeed, substituting this in (??), and
following the computations, one gets (??) with χ±m,u(B) replaced by 1

2χm,u(B) in this case.
The symmetry of the spectrum of D can also be easily deduced from Corollary ?? or from
the expressions of characters by using Theorem ?? and Corollary ?? (iv).

We now prove (??). Since D2 = ∆e, D-isospectral implies ∆e-isospectral. Now Zk2-
manifolds have symmetric D-spectrum, hence 2d+

µ,D(M) = 2d−µ,D(M) = dµ2,∆e
(M). By The-

orem 2.1 in [?], all Zk2-manifolds having isospectral covering tori are mutually ∆e-isospectral,
that is dµ,∆e

(M) = dµ,∆e
(M ′) for any pair M,M ′ of Zk2-manifolds. From these two facts

one obtains that d±µ,D(M) = d±µ,D(M ′) thus proving the assertion. �

Open question 3.12. Since D2 = ∆e, D-isospectral implies ∆e-isospectral. Proposition ??
shows the converse is trivially true for all Zk2-manifolds, but we do not know if it holds in
general for flat manifolds. We do not know a pair of ∆e-isospectral compact flat manifolds
(or even just compact Riemannian manifolds) that are not D-isospectral. We note that for
the spin Dirac operator D, by using different spin structures, it is not too difficult to give
examples of ∆spin-isospectral Zk2-manifolds that are not D-isospectral (see [?], Example 4.4).
Here, D2 = ∆spin.

4. Eta series and eta invariants

For a compact flat manifold MΓ, the eta series in (??) can be written in the form

(4.1) ηD(s,Γ) =
∑

µ∈ 1
2πA

+

d+
µ,D(Γ)− d−µ,D(Γ)

(2πµ)s

for Re(s) > 1, where A+ = A ∩ R+ and A = {λ ∈ SpecD : dλ 6= d−λ}, the asymmetric part
of the spectrum. The multiplicities d±µ,D(Γ) were computed in (??).

We know that any flat torus TΛ = Λ\Rn and any Zk2-manifold MΓ have symmetric D-
spectrum (see Theorem ?? and Proposition ??) hence they have eta series and η-invariant
equal to 0.

Our goal is to give an expression for the eta series for a general compact flat manifold.
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SupposeMΓ is an n-dimensional orientable compact flat manifold with translation lattice
Λ and holonomy group F ' Λ\Γ. If γ = BLb ∈ Γ then B ∈ SO(n) and BΛ = Λ. We will
need some notations. Put

(4.2) F1 = F1(Γ) := {B ∈ F : nB = 1} where nB := dim (Rn)B .

If xB = x(t1(B), . . . , tm(B)) ∈ Tn−1 is conjugate to B, we denote the rotation angles by
ti(xB) and put

(4.3) F ′1 = F ′1(Γ) := {B ∈ F1 : ti(xB) 6∈ πZ, 1 ≤ i ≤ m}

Note that F ′1 excludes the identity element and all elements of order 2.
For any B ∈ F1, we pick vB ∈ Λ∗ one of the two generators of the 1-dimensional lattice

fixed by B, that is

(4.4) (Λ∗)B := ZvB .

Note that vB depends on Λ, although we do not reflect this in the notation.

Lemma 4.1. Let Γ be a Bieberbach group of I(Rn). For any γ = BLb ∈ F1(Γ) we have
vB · b ∈ 1

o(B)Z, where o(B) is the order of B. That is, vB · b = `γ
o(B) with `γ ∈ Z.

Proof. Put b = b+ + b′ where b+ and b′ are the orthogonal projections of b onto (Rn)B and
((Rn)B)⊥, respectively. Now,

(BLb)o(B) = Bo(B)L∑o(B)−1
j=0 Bjb

= Lo(B)b+ ∈ LΛ ,

since
o(B)−1∑
j=0

Bjb′ ∈ ker(B−I)∩ker(B−I)⊥. Thus b+ ∈ 1
o(B)Λ, hence vB ·b = vB ·b+ ∈ 1

o(B)Z,

since vB ∈ Λ∗. So, we can write vB · b = vB · b+ = `γ
o(B) for some `γ ∈ Z, as asserted. �

In the previous notations, we can now state the following theorem.

Theorem 4.2. Let MΓ be an orientable compact flat manifold with translation lattice Λ,
holonomy group F ' Λ\Γ and dimension n = 2m+ 1 = 4h− 1. Then, the eta function on
MΓ associated to D is given by

(4.5) ηD(s) = − 2m+1

|F |

∑
BLb∈Λ\Γ
B∈F ′1

σ
vB,B

(2π ‖vB‖ o(B))s

( m∏
j=1

sin tj(xB)
)

·
[
o(B)−1

2 ]∑
j=1

sin( 2πj`γ
o(B) )

(
ζ(s, j

o(B) )− ζ(s, 1− j
o(B) )

)
,

where o(B) is the order of B, `γ is as defined in Lemma ?? and ζ(s, α) =
∞∑
t=0

1
(t+α)s is the

Hurwitz zeta function for α ∈ (0, 1].
Furthermore, the eta invariant is given by

(4.6) ηD(0) = − 2m

|F |

∑
γ=BLb∈Λ\Γ

B∈F ′1, `γ 6∈o(B)Z

σ
vB,B

( m∏
j=1

sin tj(xB)
)

cot( π`γo(B) ).
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Proof. We begin by looking at the difference d+
µ,D(Γ)− d−µ,D(Γ) in (??). By using (??) and

(ii) of Corollary ??, we get

d+
µ,D(Γ)− d−µ,D(Γ) = (−1)h+1

|F |

∑
BLb∈Λ\Γ
u∈(Λ∗µ)B

σ
u,B

e2πiu·b (χ+
m − χ−m

)
(xB)

= 2m i
|F |

∑
BLb∈Λ\Γ

( m∏
j=1

sin tj(xB)
) ∑
u∈(Λ∗µ)B

σ
u,B

e2πiu·b,

(4.7)

where we have used that m = 2h− 1.
Since

∏m
j=1 sin tj(xB) = 0 if and only if tj(xB) ∈ πZ for some 1 ≤ j ≤ m, we see that

only the elements γ = BLb with B ∈ F ′1 (see (??)) can have a non-trivial contribution to
the sum in (??). In fact, if nB > 1 then nB ≥ 3 (by orientability) and hence xB is conjugate
to x(0, t2, . . . , tm). In case nB = 1 and −1 is an eigenvalue of B, then xB is conjugate to
x(π, t2, . . . , tm).

For elements B ∈ F ′1, one has nB = 1, thus (Λ∗)B = ZvB with vB ∈ Λ∗ as in (??), hence
any u ∈ (Λ∗)B is of the form u = `vB , with ` ∈ Z. In this way, we have that

A+ = {2π` ‖vB‖ : ` ∈ N, B ∈ F1(Γ)}
and, by (??) and (??), we get

η(s) = 2m i
|F |(2π‖vB‖)s

∑
BLb∈Λ\Γ
B∈F ′1

( m∏
j=1

sin tj(xB)
) ∞∑

`=1

∑
u∈{±`‖vB‖}

σ
u,B

e2πiu·b

`s
.

Using (??) and putting together the contributions of u and −u we have

σ
`vB,B

e2πi`vB ·b + σ−`vB,B e
−2πi`vB ·b = 2i σ

vB,B
sin(2π` vB · b).

Thus, we arrive at the expression

(4.8) η(s) = − 2m+1

|F |

∑
BLb∈Λ\Γ
B∈F ′1

σ
vB,B

(2π‖vB‖)s

( m∏
j=1

sin tj(xB)
) ∞∑

`=1

sin(2π`vB · b)
`s

Now, by Lemma ??, for each γ = BLb ∈ Γ, we have vB · b = `γ
oB

with `γ ∈ Z. Thus,
writing ` = t o(B) + j with t ∈ Z and 0 ≤ j ≤ o(B)− 1 we have that

∞∑
`=1

sin(2π`vB · b)
`s

= 1
o(B)s

o(B)−1∑
j=1

sin( 2πj`γ
o(B) )

∞∑
t=0

1
(t+ j

o(B) )s
.(4.9)

By substituting (??) in (??) we get

(4.10) η(s) = − 2m+1

|F |

∑
γ=BLb∈Λ\Γ

B∈F ′1

σ
vB,B

(2π ‖vB‖ o(B))s

( m∏
j=1

sin tj(xB)
) o(B)−1∑

j=1

sin( 2πj`γ
o(B) ) ζ

(
s, j
o(B)

)
,

where ζ(s, α) =
∞∑
t=0

1
(t+α)s for 0 < α ≤ 1 and Re s > 1.

Note that, for any k ∈ Z, one has that

sin
( 2π(o(B)−j)k

o(B)

)
= − sin

(
2πjk
o(B)

)
.
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By using this fact in (??) we get (??). Note that if o(B) is even, there is a term coming alone
in the sum over j, corresponding to j = o(B)

2 . For this term we get sin( 2πj`γ
o(B) ) = sin(π`γ) = 0,

since `γ ∈ Z. From the final formula (??) we deduce that η(s) is an entire function, since
ζ(s, α) has a simple pole at s = 1. Note that only those γ ∈ Γ such that `γ 6∈ o(B)Z do
contribute to the sum.

We will now verify the expression for the eta invariant. We have

η(0) = − 2m+1

|F |

∑
γ=BLb∈Λ\Γ

B∈F ′1

σvB ,B

( m∏
j=1

sin tj(xB)
) o(B)−1∑

j=1

sin( 2πj`γ
o(B) ) ζ

(
0, j

o(B)

)
.

By using that ζ(0, α) = 1
2 − α ([?]) and since

∑p
j=1 sin

(
2πjk
p

)
= 0 for any k, p ∈ N, we

obtain, for γ such that `γ 6∈ o(B)Z,

o(B)−1∑
j=1

sin
( 2πj`γ
o(B)

) (
1
2 −

j
o(B)

)
= − 1

o(B)

o(B)−1∑
j=1

j sin
( 2πj`γ
o(B)

)
= − o(B)

2 cot
(
πk
o(B)

)
,

where we have used the identity
d−1∑
j=1

j sin
(

2πjk
d

)
= −d2 cot

(
πk
d

)
, valid for integers k, d with

d - k (see [?, (5.6)] for a proof). The desired formula for η(0) thus follows. �

Remark 4.3. Consider the operator D1 = d∗ : dΩ2k−1 ⊂ Ω2k → Ω2k. The eigenfunctions
of D1 are given by the ψ±u,J(x) as in (??) with the J ’s restricted to those with |J | = 2h.
Thus, by proceeding similarly as in the proof of Theorem ??, and using (??) we get

(4.11) d±µ,D1
(Γ) = 1

|F |

∑
BLb∈Λ\Γ
u∈(Λ∗µ)B

e2πiu·b χ±εu,Bm (xB).

where εu,B = ∓(−1)h+1σ
u,B

and

(4.12) d0,D1(Γ) = 1
|F |

∑
BLb∈Λ\Γ

χm(xB).

Thus, although d±µ,D(Γ) 6= d±µ,D1
(Γ), we have d+

µ,D(Γ) − d−µ,D(Γ) = d+
µ,D1

(Γ) − d−µ,D1
(Γ).

Therefore, the eta series, as well as the eta invariants, for D and D1 are the same, i.e.
η(s) = η1(s), η(0) = η1(0). These equalities are valid for general Riemannian manifolds,
as was observed in [?, Prop. 4.20]. However, it should be pointed out that the reduced eta
invariants, defined by η̄ = 1

2 (η+ dim kerD) mod Z, might be different, since one might have
d±0,D(Γ) 6= d±0,D1

(Γ).
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