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Fig. 1. Performance comparison of DC-VR-APA and VR-APA for various �.
NESA is absent and input signal is speech signal with silence periods. Adaptive
filter length is 512. Results were obtained in the context of a subband affine
projection algorithm [3] with two subbands and projection order equal to 4.

and �� ��� during pauses between words. The DC-VR-APA does not
diverge in these circumstances. When the far-end signal power tends to
zero, we have �������� ����� � �. If �� � ������

�� ����� , it
follows that ��� � ����� and the VR-APA can diverge. This happens at
time instant ����� in Fig. 1. To a lesser extent, it also happens between
time instants �� ��� and �� ��� where there are instances when the
far-end signal energy is low. Once the VR-APA diverges, it quickly re-
converges for a higher value of 	. This is because for a higher value of
	, there are lesser fluctuations5 of ��

�
around its true value ��������

and there are lesser instances when ��� is negative. Consequently, there
are fewer instances when the adaptive filter is frozen and reconvergence
happens quickly.

The divergence of the VR-APA during the silence periods can be
addressed by using a lower bound, ����, on the computed value of ���.
The value of ���� should be much larger than the low values of far-end
signal energy that is encountered during silence periods. The use of
���� prevents filter divergence due to near-end noise amplification [5].
A high value (low value) of ���� ensures more (less) stability against
divergence but results in slower (faster) convergence. The optimal value
of ���� needs further investigation. However, note that the use of ����

does not solve the problem of divergence of the VR-APA when NESA
is present. It is also to be noted that it is not necessary to use the lower
bound ���� in the computation of ��

���	
�

in DC-VR-APA.
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Author’s Reply to “Comments on ‘Variable Explicit
Regularization in Affine Projection Algorithm:

Robustness Issues and Optimal Choice’ ”

Hernán Rey, Leonardo Rey Vega, Student Member, IEEE,
Jacob Benesty, and Sara Tressens

In [1], Muralidhar et al. point out that when the VR-APA [2] is
applied in echo cancellation it will diverge during the presence of a
near-end signal or a silence period. The first thing we would like to
clarify is that what they probably meant is that in these situations the
mismatch will show an increasing transient period. This should not be
confused with the divergent behavior of adaptive algorithms, e.g., an
NLMS with step-size larger than 2.

Regarding the behavior of the VR-APA during silence periods,
Muralidhar et al. argue that fluctuations in ���

�
, the estimate of

������
��, may take the estimate of ��, i.e., ���, below half its optimal

value, causing instabilities. Besides the approximations made in their
analysis, it is impossible to know how small the optimal �� would be
at a certain time given that ������

�� is unknown. However, one might
think that if ��� is small, it is possibly small enough to be below the
optimal �� and, according to them, cause instability. One thing that
must be checked in this case is the condition number of the matrix
�� 	 
��

� �� � ������, to ensure that instabilities of the algorithm
are not caused by numerical errors due to poor regularization.

Consider now the effect of a long silence period in the dynamics of
the algorithm. It is well known that when dealing with stationary in-
puts, the lower the output signal-to-noise ratio (SNR), the higher the
steady-state mismatch. If we say we are in an echo cancellation sce-
nario with SNR = 20 dB, the idea is that the power of the background
additive noise at the output of the system is 20 dB below the power of
the output signal, computed over a certain time frame. During a silence
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Fig. 1. Mismatch (in dB). Speech is sampled at 8 kHz. SNR = 20 dB. � �

����. � � �. � � � � �. � � �. � � ����. The ratio between
the powers of the output signal and the NESA is �4.5 dB. � � ����. Top: No
DTD is used. Bottom: DTD is used.

period, if the input results in �� � �, the filter estimate will not be up-
dated. But in practice, during a “silence” period the system is actually
excited with some background noise at the input (at best 40 dB below
the input power). This lead to a drop in the output signal power so that
the output SNR can be seen as degraded. This analysis can be applied
in general to any adaptive filter. The only way to prevent the filter to
evolve towards the resulting new state of the mismatch would be to
freeze the adaptation soon after the beginning of the silence period. In
the VR-APA, this means that ��� should be very large. For computing
���, ������

�� and ��� in [2, eq. (23)] are replaced by ���
�

and ���� , which
are computed according to [2, eq. (36)] with parameters � and ������ re-
spectively. Therefore, during the silence period, numerator and denom-
inator of [2, eq. (36)] will be small. Fluctuations in ���

�
might turn the

denominator negative, leading to a large value ��� � ���	 [2, eq. (26)],
but they might also be large enough to lead to a relatively small ���. We
argue that when ��� � ���	, and no near-end speech activity (NESA) is
present, the mismatch will be almost unchanged. Nevertheless, a small
��� will allow large mismatch updates. Whether this update would lead
to an increase on the mismatch depends on the relation between the
current mismatch and the new mismatch state defined by the degraded
SNR.

In the top part of Fig. 1 we simulated two different scenarios. The
“silence ” period is simulated with a zero mean white noise with power
30 dB below ���, the input power computed over the nonsilent period.
When NESA is not present, the mismatch at the beginning of the silence
period is close to �35 dB. After a transient period ���� becomes small

enough so that ��� starts to fluctuate between small values and ���	 (not
shown). When ��� is small, the mismatch is increased, until it reaches
a steady-state around �5 dB. In the other scenario, NESA is present
a few seconds before the beginning of the silence period, causing the
mismatch at the beginning of the silence period to be larger than�5 dB.
Yet again, ��� starts to fluctuate between small values and ���	 in a
similar way to the previous scenario. However, in this case, the updates
lead to a decrease in the mismatch until it reaches the same steady-state
value of the previous scenario. In both scenarios, the small values of
��� are large enough to provide regularization to the algorithm as the
condition number of �� was close to 1 (not shown).

The other issue pointed out in [1] is related to the NESA. When
NESA is present it will have a strong impact on the filter update through
��. To prevent this, ��� must take a very large value in order to freeze
the adaptation. But how large? In the setup of Fig. 1, ��� should be
��� � ��
 during the period when NESA is present. If this value is
reduced by one order of magnitude, an increase in the mismatch will
be noticeable (not shown). This high sensitivity poses a problem when
implementing a variable regularization algorithm that should perform
well in double-talk situations. In any case, the regularization control
of the VR-APA would lead to a low value of ��� since the denominator
of [2, eq. (36)] will be large. The robustness of VR-APA discussed in
[2] means that small perturbations lead to small estimation errors. If an
algorithm showing slight sensitivity to large perturbations is preferred,
the approach used in [3] will be more appropriate.

We have seen that whether NESA is present or a silence period
occurs, adaptation should be frozen. Fortunately, this can be accom-
plished with the use of a double-talk detector (DTD). We implement a
simple DTD based on cross correlation [4]. The cross-correlation be-
tween the input and observed output, the observed output power and
the system output power are estimated by ��� �� , ���� and ����� , respec-
tively (computed as in [2, eq. (36)] with parameter ���). They are
used to evaluate the quantity

�� �
���
� ��� ��

� ���
� ��� �� �� ���� � �����

� (1)

If �� is below a threshold � the adaptation is frozen for 500 itera-
tions. The bottom part of Fig. 1 presents a period with NESA, a sudden
change in the system and a silence period in the input signal. It can be
seen that the DTD freezes the adaptation during NESA and silence pe-
riods, resulting in an overall good performance of the VR-APA in an
echo cancellation scenario.
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