
PHYSICAL REVIEW E 85, 056701 (2012)

Thin-film flows with moving contact lines: An approach to reducing computing time
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A numerical method to reduce the computing times of thin-film flows with moving contact lines is presented.
The flows of a film and a droplet are calculated in a frame that moves with a nonconstant velocity U (t). The
criterion employed to define this velocity is to reduce the maximum height change in the flow’s most critical zone.
The efficiency of the algorithm in reducing the CPU time is tested in gravity-driven flows, where the computing
time is reduced by up to a factor of 13 depending on the parameters of the problem.
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I. INTRODUCTION

Thin-film flows are ubiquitous in both technological ap-
plications and in nature, e.g., in coating processes, flows
in micrometric devices, thin films in mammalian lungs, etc.
[1–7]. In order to understand the film dynamics in different
scenarios and to improve the efficiency of technological
processes and microfluidic devices, the numerical study of
thin films has been expanding and a large number of papers
devoted to this issue have been published over the past two
decades (see [8,9] and the citations therein). Nevertheless, and
despite all the work done, the numerical simulation of thin-film
flows with moving contact lines is still very time-consuming.

The most popular approach to modeling thin-film flows
is the use of a lubrication framework. A semi-implicit time-
splitting technique and an alternating-direction implicit (ADI)
scheme are usually employed to solve the resulting fourth-
order partial differential equation [10,11]. This framework
combines some of the stability properties of implicit schemes
with the cost efficiency of explicit ones.

The computation of thin-film flows presents by far the most
important difficulties in the region close to the advancing
contact line. In this region, the thickness profile adopts an
oscillatory structure that penetrates into the precursor film [12].
Despite the fact that the size of this region is very small when
compared to the typical extension of the flow, the dynamics at
the contact line has an important effect on the bulk flow. For
example, the velocity in this region presents a step profile that
is responsible for the stability of the flow [13–15] and, thus,
the front requires a very dense mesh in order to solve the whole
flow with good accuracy. On the other hand, when the fluid
has moving contact lines, the domain must be large enough
to allow the description of the flow along all its evolution.
Therefore, the need to use extended domains and small cell
sizes, such as that required in the contact line region, greatly
increases the computational time needed to solve the flow.

Under pinned contact line conditions, it is possible to use
a nonuniform mesh in the critical region [16]. In problems
that involve moving contact lines, it is possible to employ an
adaptive grid, where the number and size of the elements of the
mesh is modified as the flow evolves. The most difficult issue
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with this method is to define a monitor function that efficiently
controls the size of the cells without losing precision [17,18].
Gaskell and his collaborators have done much to develop this
approach and to use it to understand fundamental aspects
of droplet spreading. They successfully implemented fully
implicit multigrids with an adaptive time-stepping lubrication
solver to study the flow of droplets on chemically and
topographically heterogeneous surfaces [19–21].

Here, an alternative technique to solve thin-film flows with
moving contact lines is presented. This algorithm solves the
thickness equation in a moving frame, allowing an easy use
of nonuniform meshes. The velocity of the frame is calculated
in each temporal step to reduce the maximum of the velocity
field u at the contact line region, so the most critical region is
solved in a quasisteady frame.

This text is organized as follows. In Sec. II, the lubri-
cation framework is presented. Section III is devoted to the
presentation of the numerical method and related issues. The
benchmark problem, the constant flow (CF) case, is analyzed in
Sec. IV. This case is particularly interesting because it admits
a traveling-wave solution that moves with a velocity that can
be analytically predicted. The thickness profiles obtained by
solving the flow in a moving frame on a nonuniform grid
are compared with the profiles obtained by simulating the
same case on a uniform grid in a laboratory frame. The
corresponding CPU times are also compared. In Sec. V, an
analog analysis is performed for the flow of a droplet, which is
an example of a constant volume (CV) flow. Contrary to the CF
case, the velocity of the droplet does not admit a traveling-wave
solution and there is no frame in which the thickness profile is
steady. Finally, the conclusions are presented in Sec. VI.

II. FORMULATION

Thin-film flows are usually studied within the lubrication
approximation, i.e., assuming small free surface slopes and
negligible Reynolds number. A major hindrance in the de-
velopment of the theory for film flows is the incomplete
knowledge of the physics at the contact line [9]. When the
nonslip boundary condition at the fluid-solid interface is
imposed, a multivalued fluid velocity appears at the moving
contact line and the shear stress diverges as the fluid thickness
goes to zero. Here, this singularity is overcome by including
a microscopic precursor film ahead of the apparent contact
line [14,22].
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FIG. 1. (Color online) Sketch of a droplet spreading down an
inclined plane.

Let us consider a two-dimensional flow that advances in the
x̃ direction with at least one moving contact line, as shown in
Fig. 1. The equation of continuity for a film with thickness h̃,
measured in the z̃ direction, is solved in a frame that moves in
the x̃ direction with a velocity Ũ (t) (Ũ = 0 corresponds to the
laboratory frame). The general form of this equation is [15]

∂h̃

∂t̃
+ ∂

∂x̃
[( ¯̃u − Ũ )h̃] = 0, (1)

where ¯̃u(x,t) is the mean velocity, given by

¯̃u = 1

h̃

∫ h̃

0
ũ dz̃, (2)

ũ(x,z,t) being the velocity in the x̃ direction.
The expression for ¯̃u depends on the problem at hand. Here,

the algorithm is tested on gravity-driven flows. In particular, we
consider a (constant or nonconstant) volume of fluid spreading
down an inclined plane, for which the velocity is given by

¯̃u = − h̃2

3μ

[
∂

∂x̃
(ρg cos αh̃ − γ∇2h̃) − ρg sin α

]
, (3)

where α is the inclination angle of the substrate, g is the
gravity, and μ, ρ, γ are the viscosity, density, and surface
tension, respectively.

It is convenient to solve the problem in dimensionless
variables, so we define x̃ = xc x, h̃ = hc h, t̃ = tc t (xc, hc, and
tc being the typical lengths and temporal scale of the problem,
respectively), and Ũ = tc/xc U . Thus, the dimensionless form
for Eq. (1) is

∂h

∂t
= −(h3hxxx)x − G‖(h3)x + G⊥(h3hx)x + Uhx. (4)

Here t , x, and h(x,t) are dimensionless and tc is

tc = 3μ

γ

x4
c

h3
c

. (5)

Equation (4) has two dimensionless parameters that depend
on the scales xc and hc in the following form:

G⊥ = x2
c

a2
cos α, G‖ = x3

c

hca2
sin α, (6)

a = √
γ /(ρg) being the capillary length. Up to this point, xc

and hc are not yet specified. The definition of both scales
depends strongly on the problem to be solved. For example,
when a constant flow (CF) is imposed at the beginning of the
domain, hc is chosen to be the resulting constant thickness

of the film at that point [15,23]. When, instead, a constant
volume (CV) of fluid is considered, the capillary length or
the initial maximum thickness are usually employed [5,24].
We will appropriately define the corresponding scales in the
following sections.

III. NUMERICAL ISSUES

Each term of Eq. (4) is discretized employing a centered
finite-difference scheme. Thus, the temporal derivative ∂hi/∂t

is coupled with the hi−j neighbor values, with j = −2, −1, 0,
1, and 2, which results in the following system of equations:

∂hi

∂t
= −fi, (7)

with fi given by

fi =
2∑

j=−2

ai,i−jhi−j . (8)

and i = 1, . . . ,N . Here, ai,i−j is a pentadiagonal matrix with
nonzero elements depending on the coefficients of Eq. (4) and
on the cell size �xi−j . In order to preserve the positivity of
the solution, we employ a positivity-preserving scheme (PPS)
[25–27] to discretize the diffusion D(h) = h3 of the capillary
term [16]:

D(hi) =
{

hi−hi−1

−2h2
i +2h2

i−1
for hi �= hi−1,

h3
i−1 for hi = hi−1.

The system of Eq. (7) evolves in time using a Crank-Nicholson
scheme, that is,

hn+1
i − hn

i

�tn
= −1/2

(
f n+1

i + f n
i

)
. (9)

Equation (9) is solved by using a Newton-Kantorovich method.
Briefly, we write hn+1

i as

hn+1
i = h∗

i + qn
i , (10)

h∗
i being a guess (usually h∗

i = hn
i ) and qn

i unknown. The
quantity f n+1

i is written as

f n+1
i = f ∗

i + F ∗
i,l qn

l , (11)

where

F ∗
i,l = ∂fi

∂ql

∣∣∣∣
∗

(12)

is the Jacobian matrix and the asterisk indicates evaluation
using the guess h∗

i . Thus, Eq. (9) is written in the following
form:

(δi,l + θ�tnF ∗
i,l)q

n
l =hn

i − h∗
i − (1 − θ )f n

i − θ�tnf ∗
i , (13)

where δi,l is the Kronecker delta. This system of equations for
the correction qn

i is solved by using the well known routines
BANDEC and BANBKS [28].

After each temporal step, the difference ū′
i = ūi − U is

solved, ū′
i being the flow velocity measured on the moving

frame. In order to solve Eq. (1) at tn, the velocity U (tn−1)
is employed. The velocity of the moving frame is calculated
for each temporal step by following this simple but effective
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algorithm:

U (tn) = U (tn−1) + max
1<i<N

[ū′
i(t

n)], (14)

with U (0) = 0. In general, the maximum velocity occurs in
the ridge region (or “bump”) that develops close to the contact
line, the most critical region of the flow. The key idea in this
definition is to solve this crucial zone in a quasisteady frame,
reducing the rate of change of the thickness and thus allowing
for an increase in the temporal step �t . In addition, numerical
calculations show that with this definition of U , the contact
line stays almost in the same region of the numerical domain,
allowing smaller values of �x in this region and larger in the
rest of the grid.

A. Meshing the domain

The length L of the numerical domain is divided into N cells
of width �xi , the size of each cell being a smooth function
of its position. The parameters of this function are chosen in
such a way that the highest number of nodes is generated in
the contact line region.

In the following sections, we compare the profiles obtained
in both the laboratory frame (LF) and the moving frame (MF)
by using a uniform grid (UG) or a nonuniform grid (NG). The
NG is defined as follows:

�xi =
{

s + d tanh
{
P (−x + x0 − w

2 )
}

(x < x0),

s + d tanh
{
P (x − x0 − w

2 )
}

(x � x0).
(15)

Here, x0 and w are the center and width of the region
with the largest grid density, respectively, and P controls the
steepness of the transition from the coarsest to the finest cell
size (see Fig. 2). The constants s and d are defined in terms of
the finest and coarsest cell size, �xmin and �xmax, respectively,
in the following way:

s = �xmax + �xmin

2 (16)
d = �xmax − �xmin

2
.

A scheme of a typical �xi function is presented in Fig. 2.
Three UG (UG1, UG2 and UG3) and three NG (NG1, NG2

and NG3) are employed for the analysis of the CF case. The
grids UG4 and NG4 have a larger domain with xend = 100 and

x
1

x
0

x
N

Δx
min

Δx
max

w

FIG. 2. Scheme of a NG generated by Eq. (15).

TABLE I. Parameters of the uniform grids (UG) and nonuniform
grids (NG). Notice that �xmin of each grid NGj is the �x employed
in UGj , with j = 1, 2, 3, and 4.

�xmin �xmax

(10−2) (10−2) x0 xend w P N

UG1 2.5 2.5 23 0 920
UG2 1.25 1.25 23 0 1840
UG3 0.3125 0.3125 23 0 7360
UG4 1.25 1.25 100 0 8000
NG1 2.5 5 20 23 20 1 713
NG2 1.25 5 20 23 20 1 1198
NG3 0.3125 5 20 23 15 1 3193
NG4 1.25 5 90 100 20 1 4765

they are used to simulate the CV case. The parameters of each
mesh are presented in Table I.

IV. CONSTANT FLOW CASE

For the CF configuration, the constant thickness at x = 0 is
chosen as the scale hc, thus h(0) = 1 (see Fig. 3). At the other
boundary, the thickness b of the precursor film is imposed,
that is, h(L) = b. The first and third derivatives are assumed
to be zero at x = 0,L. These boundary conditions result in
a constant rate inflow that monotonically increases the fluid
volume.

In the next subsection, we introduce a few details of how
to reduce the full partial differential equation (PDE), Eq. (4),
to an ordinary differential equation (ODE). The solution of
the ODE is useful to evaluate the accuracy of the solutions
obtained by solving the PDE. After that, we proceed with the
analysis of the problem by solving the PDE.

A. Reducing the governing PDE to an ODE

As mentioned before, the CF configuration allows a
traveling-wave solution. Briefly, to find such a stationary
solution in a moving reference frame, we consider ∂h/∂t = 0

0

0.5

1

1.5

h

0 5 10 15 20
x

0

0.5

1

1.5

h

(a)

(b)

FIG. 3. Evolution of the CF case solved in the (a) laboratory and
(b) moving frames. The initial condition (dashed line) is given by
Eq. (21), with c0 = 5 and c1 = 0.3. The profiles are for t = 2, 4, 6,
8, 10, 12, 14, and 16. The arrow points in the direction of increasing
time. Here G⊥ = 0 and b = 10−2.
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FIG. 4. Thickness profiles at t = 14 obtained by employing
UG1-LF (solid line) and NG1-MF (circles) for b = 10−1. (a) G⊥ = 0;
(b) G⊥ = 1; and (c) �x as a function of x for NG1 (see Table I).

in Eq. (4) with the scaling xc defined by

xc =
(

a2hc

sin α

)1/3

. (17)

Then, the first integral of this equation is

h3
0h0,xxx + h3

0 − G⊥h3
0h0,x − U0h0 = j, (18)

where h0(x) is the traveling-wave solution. Specular boundary
conditions result in

j = −b(b + 1), U0 = 1 + b + b2 (19)

(more details can be found in [15]). Interestingly, the expres-
sion for ū simplifies to become

ū(x) = U0 + j/h0(x). (20)

Notice that this form of ū says that when the full PDE is
solved, and as the profile adopts the asymptotic traveling-wave
shape, the maximum of ū′ employed in Eq. (14) corresponds

8
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20

x
f UG

1
-LF

NG
1
-MF

(1+b+b
2
) t + const.

0 2 4 6 8 10 12 14
t

8

12

16

20

x
f UG

1
-LF

NG
1
-MF

(1+b+b
2
) t + const.

G⊥=0  ;  b=10
-1

G⊥=1  ;  b=10
-1

FIG. 5. Front position for the cases presented in Fig. 4. The
dashed line represents the phase velocity of the wave, U = 1 + b +
b2, given in Eq. (19). Top: G⊥ = 0. Bottom: G⊥ = 1.
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FIG. 6. Thickness profiles obtained with UG2-LF (solid line) and
with NG2-MF (circles) for b = 10−2 at t = 16. (a) G⊥ = 0; (b) G⊥ =
1; and (c) �x as a function of x for NG2 (see Table I).

with the maximum of h0, i.e., the velocity at the bump close
to the contact line. The solution of Eq. (18) was employed to
measure the accuracy of the solutions computed by solving
Eq. (4) in the laboratory frame.

B. Solving the full PDE: Profiles and computing
times in laboratory and moving frames

In order to solve the full problem given by Eq. (4), we
calculate the evolution from the following initial condition:

hx,0 = 1 − b

2

(
1 − tanh

x − c0

c1

)
+ b, (21)

c0 and c1 being constants that control the position and width
of the transition from 1 to b. The boundary conditions are
h(0,t) = 1 and h(L,t) = b. A typical evolution from the initial
state is presented in Fig. 3. The convergence was analyzed to
obtain a �x for which quadratic convergence is assured. In
general, �x = 1.25 × 10−2 is enough to obtain a profile that
differs from the ODE solution by less than 1%.

0 5 10 15 20 25 30
t

0.95

1

1.05

1.1

1.15

1.2

U(t)

U
0
 = 1+b+b^2

U(t)

0 0.005 0.01
t

0

1

2

3

4

U(t)

FIG. 7. The velocity U (t) of the moving frame (solid line)
asymptotically approaches a value close to the velocity U0 of the
traveling wave (dashed line). The inset shows a zoom of the initial
times. Notice that at the first stages, U is set to zero to avoid spurious
oscillations. Here, b = 10−2.
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TABLE II. CPU times (CPUT) for uniform grids in a laboratory frame (UG-LF) and nonuniform grids in a moving frame (NG-MF). F is
the ratio of the CPU times for UG-LF and NU-MF.

Laboratory frame Moving frame

b G⊥ Grid N CPUT (h:m:s) Grid N CPUT (h:m:s) F

10−1 0 UG1 920 00:02:03 NG1 713 00:00:33 3.7
1 UG1 920 00:01:46 NG1 713 00:00:34 3.1
0 UG2 1840 00:32:32 NG2 1198 00:03:40 8.9

10−2 0 UG3 7360 73:32:09 NG3 3193 49:38:02 1.5
1 UG2 1840 00:34:28 NG2 1198 00:03:18 10.4
1 UG3 7360 77:10:50 NG3 3193 34:27:40 2.2

When solving in the LF, the advancing front at t = 0 is
positioned close to the origin, as shown in Fig. 3(a). On the
contrary, when a MF is employed, it is convenient to place
the advancing front close to the right side of the numerical
domain, here by setting c0 = 20. This is due to the fact that
the advancing front stays at almost the same position when the
problem is solved in a MF, moving only slightly at the initial
stages of the evolution as shown in Fig. 3(b). In the following
numerical experiments, the simulation in the LF is left to run
until the advancing front is close to the end of the domain.
Then, the thickness profiles h(x,t) and positions of the fronts
xf (t) are compared.

Figure 4 shows profiles for b = 10−1 obtained by using
UG1-LF and NG1-MF for G⊥ = 0 and 1 at t = 14. There is
an excellent agreement even in the most critical region (i.e.,
the contact line), as shown in the inset.

Figure 5 shows the front positions xf (t) obtained for the
LF and MF, for G⊥ = 0 and 1 with b = 10−1. For the LF, the
calculation of xf (t) is obtained directly from the simulation.
For the MF, the equivalent position in a LF is obtained by
adding the displacement of the frame at each temporal step.
Figure 5 shows a spurious discrepancy at the beginning that
came from the algorithm employed to detect the front as the
minimum of the profile.

0 20 40 60 80 100
x

0

0.2

0.4

0.6

0.8

1

h

FIG. 8. Thickness profile for UG4-LF with �x = 1.25 × 10−2

for t = 0,160,320, . . . ,1600. The arrow points in the direction of
increasing time.

Figure 6 compares the profiles obtained in both frames
for b = 10−2 and G⊥ = 0; 1. The grids employed were UG2

for LF and NG2 for MF. There is good agreement between the
profiles; the highest difference is less than 1% at the maximum
of the profile. This difference is reduced even more by using
the grid NG3 (not shown for brevity).

Figure 7 shows the evolution of U (t). The simple algorithm
defined by Eq. (14) causes U to rapidly approach to the
asymptotic value U0 defined in Eq. (19).

After showing the excellent agreement between the profiles
obtained in both frames, now we analyze the computing times
consumed in the simulations. The results are presented in
Table II.

The first two rows presented in Table II are spreadings with
b = 10−1. We employ the grids UG1 in the LF and NG1 in the
MF, for which the ratio of nodes N is f = 713/920 = 0.7.
When using the NG1, the simulation speeds up by a factor
F = 3.7 for G⊥ = 0 and F = 3.1 for G⊥ = 1.

For b = 10−2 we employ UG2 in the MF and NG2 for
the LF, with the corresponding ratio f = 0.65. In the MF,
the CPU time is reduced by a factor of F = 8.9 for G⊥ = 0
and F = 10.4 for G⊥ = 1. The use of lower values of �xmin

does not necessarily imply a higher F . For example, when we
compare the performance of the algorithm for b = 10−2 with

0
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1

h
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0.01
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(b)

FIG. 9. (a) Thickness profile for NG4-MF at t =
0,160,320, . . . ,1600 (solid lines). The initial condition is
represented by the dotted line. The inset shows the evolution of the
contact line region. (b) Cell size �x vs x for NG4.
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FIG. 10. (a) Comparison of the thickness profiles shown in Fig. 8
(UG4-LF, dotted line) and in Fig. 9 (NG4-LF, circles) at t = 1600.
The inset is a zoom of the advancing contact line. (b) Percentage
difference δhi = 100|hNG4

i − h
UG4
i |/h

UG4
i .

the grids UG3 and NUG3 (f = 0.43), the CPU time ratios for
the cases G⊥ = 0 and 1 are F = 1.5 and 2.2, respectively.

In the next section, we illustrate how both the use of a NG
and a MF separately reduce the CPU time by solving the same
case in a (i) UG-LF, (ii) NG-LF, and (iii) NG-MF.

V. THE CONSTANT VOLUME PROBLEM

With the aim of testing the proposed algorithm in more
general configurations that do not possess traveling-wave
solutions, in this section we solve the spreading of a constant
volume of fluid on a vertical plane. Here, the action of gravity,
capillary, and surface tension compete and the whole profile
advances with a nonconstant velocity. The initial profile is a
cylindrical cap given by [5]

h(x,0) = h0

[
1 −

(
2(x − xa)

w0

)2 ]
, (22)

h0 and w0 being the initial thickness and width, respectively,
and xa the position of the apex.
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t
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v

f
 (t)

0 5 10
t

-1

0

1

U(t)

FIG. 11. The velocity U (t) of the moving frame (solid line) for
the CV case. After an initial transient stage, shown in the inset, U

approaches the velocity of the front vf = dxf /dt (dashed line).

TABLE III. Computing times for UG4-LF, UG4-MF, and NG4-MF.

CPU time (h:m:s) N

UG4-LF 4:47:53 8000
UG4-MF 0:47:49 8000
NG4-MF 0:21:20 4765

The CV problem does not possess a thickness that remains
constant during the spreading, so the scales employed in the
CF are not appropriate here. For the CV problem, we define
the scales hc = xc = a and the time scale is tc = 3μa/γ . With
this scaling, Eq. (4) becomes

ht = −{h3[hxxx − sin α + cos α hx + U (t)h]}x. (23)

The initial state of this case is a cylindrical cap with
h0 = 1 and w0 = 10 on a vertical plane, that is, α = π/2.
The precursor film is b = 10−2. Figure 8 shows the evolution
for UG4-LF with �x = 1.25 × 10−2. The cell size for the
UG4 was chosen after a convergence analysis in order to
assure a solution with an accuracy better than 1%. Figure 9
shows the same case but using a NG4-MF. As in the CF case,
the advancing contact line is placed close to the end of the
numerical domain because it almost does not move in the
moving frame.

Figure 10(a) shows a good agreement between the thickness
profiles obtained by using UG4-LF and NG4-MF at t = 1600,
despite the fact that �xmax of the NG4 is four times greater than
the �x of the UG4. The positions x of the NG4-MF were also
calculated in the corresponding LF in order to compare the
profiles and the relatives movements (there are no artificial
shifts). Figure 10(b) shows that the percentage difference
between both profiles is lower than 4% (interpolated values
of h were employed for the UG4-LF).

Figure 11 shows the evolution of U (t) for the CV case.
The simple algorithm defined by Eq. (14) causes U to rapidly
approach the velocity of the front vf = dxf /dt . Thus, in the
moving frame, the advancing front almost stays in the same
place and the most critical zone stays in the densest region of
the mesh, as shown in the inset of Fig. 9.

In order to isolate the effects of using a moving mesh and
a nonuniform grid, here we compare the computing times of
solving the same problem in moving and laboratory frames
with the same UG. Table III shows that when solving in the
UG-MF, the computing time is six times lower than when
a UG-LF is employed. When a NG-LF is employed, the
computing time is reduced by a factor of 13.

VI. CONCLUSIONS

An algorithm that reduces the computing time of thin-film
flows with moving contact lines is presented. The success of the
method rests on two facts. The first is that the region that needs
the smaller values of �x, and smaller temporal step �t , stays
almost in the same place when solved in a moving frame with
a velocity U (t). Thus, this region is solved in a quasisteady
frame that allows for increasing the temporal step �t and,
consequently, reducing the computing time. The second reason
is that a nonuniform grid can be easily implemented, using
small cell sizes �x only in the most critical region.
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It is noticeable that in the examples presented, no special
effort was needed to design the grid. In fact, the grids employed
were not optimal grids, and it is possible to reduce even
more the computing time by reducing the number N of nodes
without losing precision.

The simplicity of the algorithm enables an easy imple-
mentation when other configurations or forces are considered,
because all that is needed is to change the expression for the
velocity ū given in Eq. (4). For example, thermocapillary-
driven flows on horizontal surfaces can be solved just replacing
G‖ by a constant that takes into account the Marangoni stress
and changing h3 by h2 in the same term [7,29].
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APPENDIX: CONVERGENCE

A comparison of the convergence rates for uniform and
nonuniform rates are presented in Fig. 12. The maximum of
the thickness profile, hmax, is shown as a function of �xmin (for
UGs, �xmin = �xmax = const). The use of a UG-LF (squares
in the figure) shows a faster approach to the asymptotic value
than the use of NG-MF (circles). Nevertheless, in all cases
the convergence for UG and NG is quadratic. At first glance,
this convergence may be unexpected for NGs. Nevertheless,
the NGs employed in this work can be considered as two UGs
connected by a NG placed in a noncritical region. Thus, due
to the convergence being controlled by the thickness profile
at the contact line region, where we have an almost UG, the
convergence with �x is quadratic for our NGs.

0.005 0.01
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1.635
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0 0.01 0.02 0.03 0.04 0.05
Δx

min

1.6

1.65

1.7
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h
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G⊥= 0  ;  b = 0.01

FIG. 12. Convergence rate for different methods: UG-LF (�x =
�xmin, squares), UG-MF (�x = �xmin, triangles), NG-MF (�xmax =
0.05, circles), and NG-MF (�xmax = 0.025, crosses). The dashed line
represents the value of hmax obtained by solving the ODE given by
Eq. (18). The inset is a zoom of the data closer to �xmin = 0.

The difference in the convergence rates does not come from
the use of UGs and NGs, but from solving the problem in
a moving frame. Effectively, this fact can be appreciated in
Fig. 12, where the cases solved in UG-LF (squares) with �x =
0.01 and 0.0075 are also solved in UG-MF (triangles). Notice
that the use of a MF causes the points to “jump” from the LF
curve to the MF curve.

Finally, the use of two different NGs does not introduce
a significant change in the convergence rate. For example,
the results obtained by using �xmax = 0.025 (crosses) do not
show a noticeable difference with the corresponding cases
solved with �xmax = 0.05 (circles). This reinforces the idea
that the convergence is controlled by the region of the grid
with smaller values of �x.

[1] H. Huppert, Nature (London) 300, 427 (1982).
[2] F. Brochard, Langmuir 5, 432 (1989).
[3] J. P. Valentino, A. A. Darhuber, S. M. Troian, and S.

Wagner, MRS Online Proceedings Library, Vol. 773 (2003),
http://journals.cambridge.org/article_S1946427400138059.

[4] H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid
Mech. 36, 381 (2004).

[5] J. Gomba, J. Diez, A. G. González, and R. Gratton, Phys. Rev.
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