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a b s t r a c t

We study H-theorems associated with the Brownian motion with constant drift on the
hyperbolic plane. Since this random process satisfies a linear Fokker–Planck equation, it is
easy to show that, up to a proper scaling, its Shannon entropy is increasing over time. As
a consequence, its distribution is converging to a maximum Shannon entropy distribution
which is also shown to be related to the non-extensive statistics. In a second part, relying
on a theorem by Shiino, we extend this result to the case of Tsallis entropies: we show
that under a variance-like constraint, the Tsallis entropy of the Brownian motion on the
hyperbolic plane is increasing provided that the non-extensivity parameter of this entropy
is properly chosen in terms of the drift of the Brownian motion.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The existence of an H-theorem for a statistical system subjected to some constraints ensures that the Shannon entropy
of its probability density function (p.d.f.) ft at time t,

h (ft) = −

∫
R
ft (x) log ft (x) dx,

is increasing with time. As a consequence, the asymptotic (stationary) p.d.f. f∞ (x) of the system is the maximum Shannon
entropy p.d.f. that satisfies the given constraints.

The Shannon entropy is a particular member of a family of information measures called Tsallis entropies that were
introduced [1] in 1988 by Tsallis in the context of statistical physics; they are defined as

hq (ft) =
1

1 − q

∫
R
f qt (x) dx − 1


,

where q > 0 is the non-extensivity parameter. It can be checked using the l’Hôpital rule that the Shannon entropy is the
limit case limq→1 hq (ft) = h (ft).

A natural question then arises: under what conditions does an H-theorem extend to an Hq-theorem, where the Shannon
entropy is replaced by a Tsallis entropy? Several studies have been devoted to this problem in recent years: for example,
Plastino and Plastino [2] study the conditions of existence of an Hq-theorem for the following non-linear Fokker–Planck
equation

∂ ft
∂t

= −
∂

∂x
(K (x) ft (x))+

1
2
Q
∂2

∂x2
f 2−q
t (x)
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for some parameter q, while Tsallis and Bukman [3] apply the same approach to the equation

∂ f µt (x)
∂t

= −
∂

∂x


F (x) f µt (x)


+ D

∂2

∂x2
f νt (x)

for some positive parameters µ and ν.
Our aim in this paper is to show the existence of both anH- and anHq-theorem for the Brownianmotion –more precisely

its x-component – with constant drift on the hyperbolic plane. This study is simplified by the fact that this component of the
Brownian motion satisfies a linear Fokker–Planck equation, for which the conditions of existence of H-theorems are well-
known, as we will see below. However, even in this simple case, this study reveals an interesting link between the constant
drift parameter of the Brownian motion and the non-extensivity parameter q associated with the entropy hq such that an
Hq-theorem exists.

2. The classical entropic approach to the linear Fokker–Planck equation

2.1. General approach

In the case of a system described by a univariate p.d.f. ft (x) that satisfies the linear Fokker–Planck equation

∂ ft(x)
∂t

= −
∂

∂x
(K(x)ft(x))+

∂2

∂x2
(Q (x)ft(x)), (2.1)

where K (x) is the drift function and Q (x) the diffusion function, it can be shown (see for example Ref. [4]) that the relative
entropy (or Kullback–Leibler divergence)

h(ft ‖ gt) =

∫
R
ft(x) log

ft(x)
gt(x)

dx (2.2)

between two any solutions of (2.1) decreases to 0 with time. More precisely, it holds that

∂

∂t
h (ft ‖ gt) = −

∫
R
Q (x) ft (x)


∂

∂x
log

ft (x)
gt (x)

2

dx ≤ 0 (2.3)

since the diffusion function is assumed positive. Thus the relative entropy is decreasing and bounded, so that the limit
distributions f∞ and g∞ satisfy∫

R
Q (x) f∞ (x)


∂

∂x
log

f∞ (x)
g∞ (x)

2

dx = 0,

which implies that f∞ and g∞ coincide. This proves the unicity of a stationary solution of the Fokker–Planck equation (2.1).
We note that the quantity

I (f ‖ g) =

∫
R
f (x)


∂

∂x
log

f (x)
g (x)

2

dx (2.4)

is nothing but the relative Fisher information [5, eq. (174)] between the p.d.f.s f and g; the integral in (2.3) is a weighted
version of this relative Fisher information, with the diffusion function Q (x) as the positive weighting function.

In order to deduce anH-theorem from this result, we denote as g∞ the stationary solution to (2.1), assuming that it exists.
We then remark that the relative entropy between any solution ft of (2.1) and the stationary solution g∞ is related to the
Shannon entropy of ft and to the cross-entropy between ft and g∞ as

h (ft ‖ g∞) = −h (ft)−

∫
R
ft (x) log g∞ (x) dx. (2.5)

Thus, provided that the cross-entropy between the solution ft and the asymptotic solution g∞∫
R
ft (x) log g∞ (x) dx (2.6)

is constant over time, we deduce from identity (2.5) that, since the relative entropy decreases to 0, the Shannon entropy of
the solution ft increases with time to its maximum value.1

1 We remark that, in statistical physics, the relative entropy h (ft ‖ g∞) coincides with the free energy.
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Let us denote by Xt a random process following the p.d.f. ft , solution of the Fokker–Planck equation (2.1): there is no
reason why its cross-entropy (2.6) should be constant in time. However, let us show that there exists a proper scaling factor
at > 0 such that the rescaled process X̃t = atXt satisfies an H-theorem. We use the following steps:

Step 1: Invariance of the relative entropy by invertible transformation
If f and g are the distributions of two random variables X and Y respectively, and if T is any invertible mapping from R

to R then the distributions f̃ and g̃ of the transformed random variables X̃ = T (X) and Ỹ = T (Y ) respectively satisfy

h

f̃ ‖ g̃


= h (f ‖ g) . (2.7)

This remarkable identity is in fact the case of equality of the data processing inequality (see for example Ref. [6])

h

f̃ ‖ g̃


≤ h (f ‖ g)

that holds for any – possibly non-invertible – transformation T : equality is reached if and only if the transformation T is
invertible.

Step 2: Computation of the scaling factor
By the scaling transformation,

f̃t (y) =
1

|at |
ft


y

|at |


, g̃∞ (y) =

1
|at |

g∞


y

|at |


so that the cross-entropy of the scaled variables can be computed as∫

f̃t (y) log g̃∞ (y) dy = − log |at | +

∫
ft (x) log g∞ (x) dx.

Thus this cross-entropy can be fixed to a constant value, say log K with K > 0, by choosing

at = Ke

R ft (x) log g∞(x)dx. (2.8)

Step 3: An H-theorem for the scaled random process
From step 1, we deduce that the relative entropy of the scaled processes is decreasing with time. From step 2, we deduce

that choice (2.8) ensures a constant cross-entropy. We conclude as follows.

Theorem 1. If the relative entropy h (ft ‖ g∞) is decreasing with time and if the condition


R ft (x) log g∞ (x) dx > −∞ holds
∀t > 0 then the entropy of the scaled process X̃t = atXt is increasing in time provided that the scaling factor at is chosen as
in (2.8).

We note that the result of Theorem 1 can be extended to the multivariate context: assuming that we start from a
multivariate Fokker–Planck equation in Rn with a stationary solution g∞ (x), the relative entropy

h (ft ‖ g∞)

is decreasing over time. Then we can consider a matrix scaling

X̃t = AtXt

of the process with distribution ft . Interestingly, the scaling of the cross-entropy reads∫
Rn

f̃t (y) log g̃∞ (y) dy = − log | det At | +

∫
Rn

ft (x) log g∞ (x) dx

so that the cross-entropy can be fixed to a constant value assuming a condition on the determinant only of the matrix At ,
namely

det At = Ke

Rn ft (x) log g∞(x)dx.

This means that the matrix At can be chosen as

At = Ke

Rn ft (x) log g∞(x)dxIn

where In is the identity matrix in Rn, so that only a scalar scaling is required.
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2.2. The x-component of the Brownian motion in the Poincaré half-upper plane

In Ref. [7], Comtet andMonthus derived the differential equation satisfied by the x-component Xt of the Brownianmotion
with constant drift µ and constant diffusion constant D in the Poincaré half-upper plane representation of the hyperbolic
plane,

∂

∂t
ft (x) = D

∂

∂x

[
1 + x2

 ∂
∂x

ft (x)+ (2µ+ 1) xft (x)
]
.

This is a linear Fokker–Planck equation; in the notations of (2.1), the diffusion function is quadratic and positive, Q (x) =

D

1 + x2


and the drift function is linear, K (x) = D (1 − 2µ) x. Moreover, for a positive drift µ, the asymptotic solution

reads

g∞ (x) = Aµ

1 + x2

−µ−
1
2 (2.9)

with normalization constant Aµ =
Γ


µ+

1
2


Γ (µ)Γ


1
2

 .
In order to deduce an H-theorem for this random process, we simply need to check the condition


ft (x) log g∞ (x) dx >

−∞ i.e.

ft (x) log


1 + x2


dx > −∞, which is an immediate consequence of the fact that


ft (x) log


1 + x2


dx ≥ 0. We

deduce the following result.

Theorem 2. The Shannon entropy of the x-component, scaled according to (2.8), of the Brownian motion on the Poincaré half-
upper plane increases over time.

3. A generalization to the Tsallis entropies

3.1. General approach

The monotone behavior of the relative Shannon entropy between any two solutions ft and gt of the linear Fokker–Planck
equation (2.1) has been extended by Shiino [8] and simultaneously by Borland et al. [9,10] to the case of the relative Tsallis
entropy, defined as

hq (ft ‖ gt) =
1

q − 1

∫
R
f qt (x) g

1−q
t (x) dx − 1


.

More precisely, the derivative with respect to time of this relative entropy satisfies2

∂

∂t
hq (ft ‖ gt) = −q

∫
R
Q (x) ft (x)


ft (x)
gt (x)

q−1 
∂

∂x
log

ft (x)
gt (x)

2

dx ≤ 0, ∀q > 0. (3.1)

We note that this inequality holds for any positive value of q and simplifies to (2.3) as q → 1. Moreover, the right-hand side
integral in (3.1) can be considered as a q-version of the relative Fisher information that appears in (2.3).

In the non-extensive context, an identity such as (2.5), that relates linearly the relative entropy to the entropy, does not
hold in general; as a consequence, a generalization of Theorem 1 can not be derived. However, in the particular case where
the asymptotic distribution g∞ is a q-Gaussian distribution – which is exactly the case for the Brownian motion on the
hyperbolic plane – an extension of Theorem 1 to the Tsallis entropy can be provided.

3.2. The x-component of the Brownian motion in the Poincaré half-upper plane

In the special case of the x-component Xt of the Brownianmotion in the Poincaré half-upper plane, the stationary solution
(2.9) is the q-Gaussian

g∞ (x) = Cq∗


1 + x2

 1
1−q∗

for some specific value q = q∗ of the non-extensivity parameter such that 1
1−q∗

= −µ−
1
2 or

q∗ =
2µ+ 3
2µ+ 1

, 1 < q∗ < 3. (3.2)

2 The proof of this result is omitted in Ref. [8]; we provide it in the annex for the interested reader.
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The normalization constant Cq∗
is equal to

Cq∗
=

Γ


1

q∗−1


Γ


1

q∗−1 −
1
2


Γ

 1
2

 .
It can be easily shown that the identity analogous to (2.5) reads

hq∗
(ft ‖ g∞) = −C1−q∗

q∗
hq∗
(ft)−

C1−q∗
q∗

1 − q∗

∫
x2f q∗

t (x) dx + βq∗


Cq∗


(3.3)

with

βq∗
(C) =

C1−q∗ − 1
q∗ − 1

.

It is important to note that identity (3.3) holds only for the choice q = q∗.
As in Part II, we show now that an Hq theorem holds for a properly scaled version of the process Xt . We follow the three

steps as above:

• Step 1: It can be checked that the q-relative entropy is also invariant by any invertible transformation of both processes
• Step 2: The scaling factor at is computed by remarking that the integral in (3.3) scales as∫

y2 f̃ q∗

t (y) dy = a3−q∗

t

∫
x2 f̃ q∗

t (x) dx

so that it can be assigned a fixed value K > 0 over time by choosing the scaling factor according to

a3−q∗

t =
K

x2 f̃ q∗

t (x) dx
(3.4)

which defines uniquely the scaling constant at for 1 < q∗ < 3.
• Step 3: As in step 3 of Part II, we conclude as follows.

Theorem 3. With q = q∗ as in (3.2), the q-entropy of the scaled Brownian motion, normalized according to (3.4), with constant
drift µ in the Poincaré half-upper plane is increasing with time.

4. Numerical illustration

The following figures depict ten realizations of a discretized version of this Brownianmotion, with parameters D = 0.01,
m = 0 and µ = 1 in Fig. 1 while D = 0.01,m = 3 and µ = 7 in Fig. 2. In both cases, the process starts from the point
x = 0, y = 1 and the superimposed thick curve is the asymptotic probability density of its x-component. Without external
drift (Fig. 1), the random process wanders for a long time far away from the real axis before ‘‘falling’’ on it as t → +∞.
The distribution of the asymptotic ‘‘landing points’’ on the real axis is thus very wide, in fact a Lorentz distribution with
infinite variance. With an external drift (Fig. 2), the process is forced to walk in the direction of the real axis, so that the
landing points are more concentrated around 0, which is reflected by their narrow distribution, a q-Gaussian distribution
with variance σ 2

= 0.2.

5. The Brownian motion in the unit disk

Another representation of the hyperbolic space is the unit disk D with the metric in polar coordinates

ds2 =
4

1 − r2
2 

dr2 + r2dθ2

.

There is a conformal mapping between the Poincaré upper half-plane H = {z = x + iy, y > 0} and the unit disk
D = {w ∈ C, |w| = 1} defined as

w =
iz + 1
z + i

.

Comtet and Monthus show in Ref. [7] that the density of the radial component of the Brownian motion in the unit disk
representation of the hyperbolic space converges to δ (r − 1) as t → +∞. Having no explicit Fokker–Planck for the radial
part θt of this process, we were unable to prove a corresponding H-theorem. However, we show here that we can use the
maximum entropy approach to derive the asymptotic distribution of the angular part θt , using the following result:
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Fig. 1. Ten realizations of a discretized version of the Brownian motion on the hyperbolic plane, with parameters D = 0.01,m = 0 and µ = 1.

Fig. 2. Ten realizations of a discretized version of the Brownian motion on the hyperbolic plane, with parameters D = 0.01,m = 3 and µ = 7.

Theorem. If the randomvariable X hasmaximumentropy under the logarithmic constraint E log

1 + X2


= γ , then the random

variable

X̃ =
X

√
1 + X2

has maximum entropy under the constraint E log

1 − X̃2


= −γ .

More precisely, if the p.d.f. of X reads

fX (x) =
Γ


µ+

1
2


Γ

 1
2


Γ (µ)


1 + x2

−µ−
1
2 , x ∈ R

then E log

1 + X2


= ψ


µ+

1
2


− ψ (µ) and the p.d.f. of X̃ reads

fX̃

x̃


=


Γ


µ+

1
2


Γ

 1
2


Γ (µ)


1 − x̃2

µ−1
−1 ≤ x̃ ≤ +1

0 else

with E log

1 − X̃2


= −E log


1 + X2


= ψ (µ)− ψ


µ+

1
2


and where Ψ is the digamma function.
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Since in the asymptotic regime, fr (r) = δ (r − 1) , the conformal mapping becomes

cos θ =
2X

1 + X2
, sin θ =

X2
− 1

X2 + 1
,

it can be easily verified that

cos

θ

2
−
π

4


=

X
√
1 + X2

= X̃

so that a simple change of variable yields the probability density of θ

1

2µ+
1
2

Γ

µ+

1
2


Γ

 1
2


Γ (µ)

(1 − sin θ)µ−
1
2

as obtained in Ref. [7].
The asymptotic distribution of the angular part has thus maximum Tsallis entropy with parameter q̃ such that

q̃ =
2µ− 3
2µ− 1

< 1.

6. Conclusion

We have shown how to use themonotonicity of the Shannon or Tsallis relative entropies to deduce anH-theorem for the
Shannon and Tsallis entropy, first in the general case and then in the case of the Brownian motion on the hyperbolic plane.
Three remarkable results have been observed in this study: first, the natural drift induced by the negative constant curvature
of the hyperbolic plane transforms the asymptotically Gaussian distribution of the usual Brownian motion on the plane to
the Cauchy distribution, which belongs to the extended family of Tsallis distributions. Secondly, the addition of a constant
positive external drift transforms this Cauchy behavior to a q-Gaussian behavior with non-extensivity parameter directly
related to the value of this drift. This appearance of non-extensive distributions in the context of an underlying curved space
remains to be linked to physically relevant experiments and data. Finally, the Tsallis distributionswith q > 1 on the Poincaré
half upper-plane realization of the hyperbolic plane transform, via the conformal mapping, into Tsallis distributions with
q < 1 on the unit disk realization of the hyperbolic plane.

7. Annex: proof of Shiino’s result

Following Shiino’s notations, we consider

Dq (ft ‖ gt) =

∫
R
ft(x)qgt(x)1−qdx

and omit the time and space variables for readability. The time derivative reads

∂

∂t
Dq (f ‖ g) = q

∫
f q−1


∂

∂t
f

g1−q

+ (1 − q)
∫

f qg−q

∂

∂t
g

.

Since f and g are both solutions of the Fokker–Planck equation (2.1), we deduce

∂

∂t
Dq (f ‖ g) = q

∫ 
f
g

q−1 
−
∂

∂x
(Kf )+

∂2

∂x2
(Qf )


+ (1 − q)

∫ 
f
g

q 
−
∂

∂x
(Kg)+

∂2

∂x2
(Qg)


.

The integrals with the drift function K (x) can be integrated by parts, yielding respectively

−q
∫ 

f
g

q−1
∂

∂x
(Kf ) = +q (q − 1)

∫ 
f
g

q−2
∂

∂x


f
g


Kf

and

− (1 − q)
∫ 

f
g

q
∂

∂x
(Kg) = q (1 − q)

∫ 
f
g

q−1
∂

∂x


f
g


Kg

= q (1 − q)
∫ 

f
g

q−2
∂

∂x


f
g


Kf

so that their sum vanishes.
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The integrals with the diffusion function Q (x) are also integrated by parts according respectively to

q
∫ 

f
g

q−1
∂2

∂x2
(Qf ) = −q

∫
∂

∂x


f
g

q−1
∂

∂x
(Qf )

= −q (q − 1)
∫ 

f
g

q−2
∂

∂x


f
g


∂

∂x
(Qf ) = −q (q − 1)

∫ 
f
g

q−1
∂

∂x


log

f
g


∂

∂x
(Qf )

= −q (q − 1)
∫

f

f
g

q−1
∂

∂x


log

f
g


∂Q
∂x

− q (q − 1)
∫

Q

f
g

q−1
∂

∂x


log

f
g


∂ f
∂x

and

(1 − q)
∫ 

f
g

q
∂2

∂x2
(Qg) = − (1 − q)

∫
∂

∂x


f
g

q
∂

∂x
(Qg)

= − (1 − q) q
∫ 

f
g

q−1
∂

∂x


f
g


∂

∂x
(Qg)

= − (1 − q) q
∫

g

f
g

q−1
∂

∂x


f
g


∂Q
∂x

− (1 − q) q
∫

Q

f
g

q−1
∂

∂x


f
g


∂g
∂x
.

Their sum consists in an integral with the diffusion function Q

(q − 1) q
∫

Q

f
g

q−1 
∂

∂x


f
g


∂g
∂x

−
∂

∂x


log

f
g


∂ f
∂x


and an integral with its derivative

q (1 − q)
∫ 

f
g

q−1 
f
∂

∂x


log

f
g


− g

∂

∂x


f
g


∂Q
∂x
.

The second integral is easily seen to vanish, while the first one can be simplified to

(q − 1) q
∫

Q

f
g

q−1 
∂

∂x


f
g


∂g
∂x

−
∂

∂x


log

f
g


∂ f
∂x


= −q (q − 1)

∫
Qf


f
g

q−1 
∂

∂x
log

f
g

2

.

Thus the Tsallis divergence hq (f ‖ g) =
1

q−1Dq (f ‖ g) verifies the stated equality.
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