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a b s t r a c t

In this paper we obtain symmetry reductions of the K(m,n) equation with generalized evo-
lution term. The reduction to ordinary differential equations comes from an optimal sys-
tem of subalgebras. Some of these equations admit symmetries which lead to further
reductions, and one of them comes out suitable for qualitative analysis. Its dynamical
behavior is fully described and conservative quantities are stated.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The K(m,n) equation with generalized evolution term, was introduced by Biswas in [1] and it is given by

ðulÞt þ aumux þ bðunÞxxx ¼ 0; ð1:1Þ

where a; b 2 R� and l;m;n 2 Zþ. The first term is the generalized evolution term, the second and the third terms represent the
convection one and the dispersion one, respectively.

In [2], Bruzón and Gandarias presented a procedure to look for exact solutions of nonlinear ordinary differential equations
(ODE’s), which leads to solutions (not obtained in [1]) in terms of Jacobi elliptic functions for specific values of the param-
eters l;m; n; a and b of Eq. (1.1). This equation is a generalized form of the K(m,n) equation, usually introduced as

ut þ aðumÞx þ bðunÞxxx ¼ 0 ð1:2Þ

and, in turn, of the Korteweg–de Vries (KdV) equation, where l ¼ m ¼ n ¼ 1. On the other hand, Eq. (1.1) is equivalent to

v t þ
a
l
vmþ1�l

l vx þ bðvn
l Þxxx ¼ 0;

after using the transformation u ¼ v1
l , so it is sufficient to consider the case l ¼ 1 if just mþ1�l

l ; 1
l 2 Zþ.

Different variants or particular cases of the K(m,n) equation are found in the literature [2–12]. Recently Chen and Li [3]
have studied the simple peak solitary wave solutions of the osmosis Kð2;2Þ equation under the inhomogeneous boundary
conditions and they have obtained all smooth, peaked and cusped solitary wave solutions of it. The modified KdV (mKdV)
equations (Eq. (1.1) with l ¼ 1; m ¼ 2 and n ¼ 1) and their solutions have also been studied intensively. Liu and Li ([4]
and its references) considered an extended form of the mKdV equation of the form
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ut þ a1uxxx þ a2ux þ a3uux þ a4u2ux ¼ 0;

the all exact solutions based on the Lie group method were given, and the bifurcations and traveling wave solutions were
obtained. Rosenau and Hyman [5] studied the role of nonlinear dispersion in the formation of patterns in liquid drops of
the nonlinear dispersive equations.

ut þ umux þ ðunÞxxx ¼ 0

for m > 0; 1 < n 6 3. They also introduced a class of solitary wave solutions with compact support, i.e. solutions with ab-
sence of infinite wings or absence of infinite tails, called compactons. In addition to compactons, Rosenau [6] proved that
the nonlinear dispersive equations Kðm;nÞ

ut þ aðumÞx þ ðunÞxxx ¼ 0;

which exhibit a number of remarkable dispersive effects, can support both: kinks and solitons with an infinite slope(s), peri-
odic waves and dark solitons with cusp(s), all being manifestations of nonlinear dispersion in action. For n < 0 the enhanced
dispersion at the tail may generate algebraically decaying patterns. Other solitary-wave solutions of K(m,n) equations were
also found by Rosenau in [7,8].

It is known that many integrable equations arise naturally from motions of plane or space curves. In [9,10] the authors
investigated the possibility that the Kðmþ 1;mÞ and Kðmþ 2;mÞmodels can be obtained from plane curves in certain geom-
etries, which provides the geometric interpretations to K(m,n) equations.

Existing techniques for solving nonlinear partial differential equations (PDE’s) include: Inverse scattering transform, Wadati
trace method, pseudo–spectral method, tanh–sech method, sine–cosine method, Riccati equation expansion method, expo-
nential function method, etc. ([1] and references within it). In spite of the key role of these particular techniques used for solving
the equations, one of their limitations is that they do not lay down the conserved quantities. This drawback is, for example,
partially overcome in [1], where a 1-soliton solution of Eq. (1.1) is obtained by using the solitary wave ansatz, and a conserved
quantity is calculated. Among the techniques, the methods of point transformations are a powerful tool. By means of the Theory
of Symmetry Reductions [13,14] a single group reduction may transform a PDE with two independent variables into ODE’s.
Local symmetries admitted by a PDE are useful for finding invariant solutions. These solutions are obtained by using group
invariants to reduce the number of independent variables. The basic idea of the technique is that, a reduction transformation
exists when a differential equation is invariant under a Lie group of transformations. The machinery of the Lie group theory pro-
vides a systematic method to search for these special group invariant solutions. Although symmetry constraints are powerful in
determining integrability of PDE’s, not all of them yield exact solutions of the equations, as pointed out in [15].

It is an interesting and important problem how to generally explore integrability of nonlinear PDE’s by integrable ODE’s.
There is a pretty general scheme to reduce PDE’s into integrable ODE’s. The separation of the time and space variables with-
out using any structure associated with evolution equations is analyzed in [16], and an extension by means of the Frobenius
integrable decompositions (FID) is introduced for partial differential equations in [17]. The resulting theory provides tech-
niques which are applied in particular to the celebrated KdV and MKdV equations. The resulting integrable decompositions
have exhibited many interesting solution relations with integrable ODE’s, including those relations of traveling wave solu-
tions with scalar differential equations and one-dimensional Hamiltonian systems. It also generalizes the Theory of Symme-
try constraints in soliton theory, since it does not require any structure associated with the equations under investigation,
such as Lax pairs for soliton equations and the symmetry property in symmetry constraints.

The dynamical systems theory [18–20] provides fundamental tools for dealing with ODE’s, by qualitative analysis and
conservative quantities. Previous works have used them to deal with ODE’s coming from PDE’s problems. In [21], solutions
that present behaviors like sources, asymptotic plane waves, and blow up process at finite time have been characterized. In
[22], singular perturbation theory has been applied for analyzing the solutions. In several works, Tang et al. have studied the
traveling wave solutions of a given PDE according to different parametric conditions. In [11,12,23,24], bifurcations of phase
portraits are discussed in detail, and although the conservative aspects of the system are not dealt with, a first integral
(conserved quantity) is deduced. In particular, this study is applied to a generalized KdV equation in [12] and to
Kðn;�n;2nÞ equations in [11].

In this work we consider the K(m,n) equation with generalized evolution term (1.1). The paper is organized as follows: first,
a complete calculus of the different reductions admitted by this equation is developed (Sections 2 and 3). Second, among the
reduced equations, the most general case comes out suitable for qualitative analysis. Indeed, the reduced equation yields to a
conservative system, and this allows us to make a complete characterization of its possible dynamical behaviors (Section 4).

2. Classical symmetries

To apply the classical method to Eq. (1.1) with a; b – 0 we consider the one-parameter Lie group of infinitesimal trans-
formations in ðx; t;uÞ given by

x� ¼ xþ �nðx; t;uÞ þ Oð�2Þ;
t� ¼ t þ �sðx; t;uÞ þ Oð�2Þ;
u� ¼ uþ �gðx; t;uÞ þ Oð�2Þ;
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where � is the group parameter. We require that this transformation leaves invariant the set of solutions of Eq. (1.1). This
yields to an overdetermined, linear system of equations for the infinitesimals nðx; t;uÞ; sðx; t;uÞ and gðx; t;uÞ. The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v ¼ nðx; t;uÞ @
@x
þ sðx; t;uÞ @

@t
þ gðx; t;uÞ @

@u
: ð2:1Þ

Invariance of Eq. (1.1) under a Lie group of point transformations with infinitesimal generator (2.1), leads to a set of nineteen
determining equations. Solving them, we obtain g ¼ a

u
n�1 þ b

u, for n ¼ nðx; tÞ; s ¼ sðtÞ; a ¼ aðx; tÞ and b ¼ bðx; tÞ related by the
following conditions:

db
dx

n� d2n

dx2 ¼ 0;

ðn� 1Þ db
dx

n� d2n

dx2

 !
¼ 0;

db
dt

lulþn þ da
dt

lul þ a
db
dx

unþmþ1 þ b
d3b

dx3 nu2n þ b
d3a
dx3 nun þ a

da
dx

umþ1 ¼ 0;

dn
dt

lulþn þ abnunþmþ1 � abmunþmþ1 � abunþmþ1 � 2a
dn
dx

unþmþ1 � 3b
d2b

dx2 n2u2n þ b
d3n

dx3 nu2n þ aanumþ1 � aamumþ1 � aaumþ1 ¼ 0;

blun � bnun � ds
dt

un þ 3
dn
dx

un þ al� an ¼ 0:

The solutions of this system depend on the parameters of Eq. (1.1). If a; b;n; l and m are arbitrary constants with a; b 2 R� and
n; l;m 2 Zþ, the only symmetries admitted by Eq. (1.1) are defined by the infinitesimal generators

v1 ¼ @x; v2 ¼ @t ; v3 ¼
n�m� 1

2

� �
x@x þ

2lþ n� 3ðmþ 1Þ
2

� �
t@t þ u@u:

The cases for which Eq. (1.1) has extra symmetries are given in the Table 1.
For the sake of completeness, we next provide the generators of the nontrivial one-dimensional optimal system, similarity

variables and similarity solutions (Table 2), the corresponding reduced equations (Table 3), where k;l;2 R� are arbitrary, and
k1 is an integration constant. In Table 3 equation ODE0 has been derived by integrating once respect to z. The reduced ODE5

and ODE6 appear in Appendix A.

3. Symmetry reduction of the ODE’s

In several cases, the reduced ODE’s admit symmetries which lead to further order reductions by using again the techniques
of Lie group theory. In Table 4 we list the symmetries corresponding to ODEi; i ¼ 0;1;2. The corresponding reductions

Table 1
Each row shows the infinitesimals where f satisfies 2bfxxx þ afx þ 2f t ¼ 0.

k Values vk
4

v1

1 l ¼ n ¼ 2; m ¼ 1 1
3 xþ atð Þ@x þ t@t fu�1

@u

2 l ¼ n; m ¼ 2n� 1 t@x þ 1
a u1�n@u

Table 2
Each row shows the infinitesimal generators Ui of the optimal systems, as well as their similarity variables zi and similarity solutions ui , where
m1 ¼ m�nþ1

3ðmþ1Þ�n�2l ; m2 ¼ 2
3ðmþ1Þ�n�2l.

i Values Ui zi ui

0 l;n;m 2 Zþ kv1 þ lv2 lx� kt h(z)
1 3ðmþ 1Þ � n� 2l – 0 v3 xt�m1 t�m2 hðzÞ
2 l ¼ n ¼ 2; m ¼ 1 v3 þ v1

4 xt�
1
3 � a

2 t
2
3 thðzÞ

3 l ¼ n ¼ 2; m ¼ 2n� 1 kv2 þ v2
4 kx� t2

2
nt
akþ hðzÞ
� �1

n

4 l ¼ n ¼ 2; m ¼ 2n� 1 kv2
4 þ lv3 xt�

1
3 � 3k

2l t
2
3

e�
2h
3n 3e

2h
3 nt

2
3k�1

� �1
n

a
1
nl1

n 2
1
n t

2
3n

5 3ðmþ 1Þ � n� 2l ¼ 0 v2 þ v3 eðl�m�1Þtx het

6 n�m� 1 ¼ 0; l – n v1 þ v3 x� 1
l�m�1 cosðtÞ hex
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(labeled with j) will be obtained from them; in some cases, we will also arrive to exact solutions. In relation to the reductions
of ODE0, it is useful to call a1 ¼ a

bl2nðmþ1Þ ; a2 ¼ k
bl3n and a3 ¼ k1

bl3n.
Reduction 1. From Table 4, for ODE0 and j ¼ 1, we can see that ODE0 admits one group corresponding to the operator

W1 ¼ @z. We have that for the new variables y ¼ h and u ¼ h0 (invariants of the first prolongation of W1) ODE0 takes the
form

a1

yn�m�2 �
a2

yn�l�1 þ
a3

yn�1 þ
ðn� 1Þu2

y
þu

du
dy
þ k1 ¼ 0:

Reduction 2. For ODE0 and j ¼ 2, we can see that ODE0 admits for n ¼ 1; l ¼ mþ 1; l – 1 two groups corresponding to the
operators W1 ¼ @z; W2 ¼ z@z þ 2h

1�l @h. It is easily checked that ½W1;W2� ¼W1, consequently, we can perform two order
reductions. First, we use W1, and we have that for the new variables y ¼ h and u ¼ h0 (invariants of the first prolongation
of W1) ODE0 takes the form

u
du
dy
þ ða1 � a2Þyl ¼ 0:

In terms of these variables the operator W2 is given by cW 2, where

cW 2 ¼
2

1� l
y@y þ

2
1� l

� 1
� �

u@u:

Second, using as new variables the invariants of the first prolongation of cW 2, i.e. w ¼ uy�
1þl

2 ; w ¼ u0y1�l
2 , we obtain

w ¼ a2 � a1

w
:

In terms of the previous variables

u2

2
¼ ða2 � a1Þ

ylþ1

lþ 1
þ c;

ðh0Þ2

2
¼ ða2 � a1Þ

hlþ1

lþ 1
þ c:

For some values of l this equation can be solved in terms of the Jacobi elliptic functions.
In what follows, u0 ¼ du

dy and u00 ¼ d2u
dy2 .

Reduction 3. For ODE1 and j ¼ 3, we can see that ODE1 admits one group corresponding to the operator W1 ¼ zþ a
mþ1

� �
@z

þ 3
n�m�1 h@h. We have that for the new variables (invariants of the first prolongation of W1) y ¼ zþ a

mþ1

� ��c
h and

u ¼ zþ a
mþ1

� �1�c
h0;ODE1 takes the form

Table 3
Each row shows the ODE’s, i ¼ 1;2;3;4. ODE5 and ODE6 appear in Appendix A.

i ODEi

0 h00 þ n�1
h ðh

0Þ2 þ a
bl2 nðmþ1Þh

m�nþ2 � k
bl3n hl�nþ1 þ k1

bl3n h1�n þ k1 ¼ 0

1 bnhnþ2h000 � l m�nþ1
3ðmþ1Þ�n�2l zhlþ2h0 � 2l

3ðmþ1Þ�n�2l h
lþ3 þ bðn� 2Þðn� 1Þnhnðh0Þ3 þ 3ðn� 1Þnhnþ1h0h00 � ahmþ3h0 ¼ 0

2 3bhh000 � zhh0 þ 9bh0h00 þ 3h2 ¼ 0
3 abnk4h000 þ a2k2hh0 þ n2 ¼ 0
4 bh000 � 1

3 zh0 � 2bh0h00 þ 4
9 bðh0Þ3 � 1

2ln e�
2h
3 h0 þ 1 ¼ 0

Table 4
Each row shows the infinitesimals ODEi ; k2 and k3 are arbitrary constants.

ODEi j Values n u

i = 0 1 n;m; l 2 Zþ k2 0
i = 0 2 n ¼ 1; l ¼ mþ 1; k1 ¼ 0; a3 ¼ 0; k3 � k2ðl� 1Þx 2k2u
i = 1 3 l ¼ mþ 1; n – mþ 1; k2 – � 1 k2 xþ a

mþ1

� �
3k2

n�m�1 u

i = 1 4 l ¼ 2n; m ¼ 2n� 1 � 7k2
a8 ð2nxþ aÞ 42k2

a8 u
i = 1 5 l ¼ 2n; m ¼ n� 1 k2 0
i = 1 6 n ¼ mþ 1; l ¼ 2ðmþ 1Þ k2 0
i = 2 7 0 k2uþ bðxÞ

M.S. Bruzón et al. / Applied Mathematics and Computation 218 (2012) 10094–10105 10097
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bn2u00y2ð3nyþ puÞ2 þ bn2ðpþ 3nÞð2pþ 3nÞuy2 � 3bn2u0yð3nyþ puÞðpyþ ny� npuþ puÞ

þ bn2pðu0Þ2y2ð3nyþ puÞ � pðpþ n2Þy
p
nþ2ð2nyþ puÞ � 3bðn� 1Þn2pðpþ 3nÞu2yþ bðn� 2Þðn� 1Þn2p2u3 ¼ 0;

where

p ¼ ðk1 þ 1� nÞn:

Reduction 4. For ODE1 and j ¼ 4, we can see that ODE1 admits one group corresponding to the operator
W1 ¼ � 7

a8 ð2nzþ aÞ@z þ 42
a8 h@h. We have that for the new variables (invariants of the first prolongation of W1) y ¼ ð2nzþ aÞ

3
nh

and u ¼ ð2nzþ aÞ
3
nþ1h0;ODE1 takes the form

� bnu00y2ð6yþuÞ2 þ 3bnu0yð6yþuÞð2nyþ 2y� nuþuÞ þuy2ðyn � 8bn3 � 36bn2 � 36bnÞ

þ 6bðn� 1Þnðnþ 3Þu2y� bðn� 2Þðn� 1Þnu3 þ 4ynþ3 � bnðu0Þ2y2ð6yþuÞ ¼ 0:

Reduction 5. For ODE1 and j ¼ 5, we can see that ODE1 admits for l ¼ 2n; m ¼ n� 1; n – 1, one group corresponding to the
operator W1 ¼ @z. We have that for the new variables (invariants of the first prolongation of W1) y ¼ h and u ¼ h0;ODE1

takes the form

bnðu2u00 þu3ðu0Þ2Þynþ2 � auynþ2 þ 3bðn� 1Þnu2u0ynþ1 þ bðn� 2Þðn� 1Þnu3yn þ 2y2nþ3 ¼ 0:

Reduction 6. For ODE1 and j ¼ 6, we can see that ODE1 admits one group corresponding to the operator W1 ¼ @z. We have
that for the new variables (invariants of the first prolongation of W1) y ¼ h and u ¼ h0;ODE1 takes the form

bk1u2u00yk1þ3 þ bu2u00yk1þ3 þ bk1u3ðu0Þ2yk1þ3 þ bu3ðu0Þ2yk1þ3 þ 2y2k1þ5 � auyk1þ3 þ 3bk2
1u

2u0yk1þ2

þ 3bk1u2u0yk1þ2 þ bk3
1u

3yk1þ1 � bk1u3yk1þ1 ¼ 0:

Remark. For ODE2 and j ¼ 7; n ¼ 0 and there do not exist possible reductions.

4. Qualitative study of ODE0

Traveling wave solutions have been derived in [2] by means of ODE0 (Section 2)

h00 þ n� 1
h
ðh0Þ2 þ a1hm�nþ2 � a2hl�nþ1 þ a3h1�n þ k1 ¼ 0: ð4:1Þ

This ODE also admits a qualitative study for the different values of n;m; l 2 Zþ. By means of suitable changes of variables, we
state sufficient and/or necessary conditions on the parameters to identify different dynamical behaviors.

4.1. Case n ¼ 1

For n ¼ 1 Eq. (4.1) is

h00 þ a1hmþ1 � a2hl þ a3 þ k1 ¼ 0: ð4:2Þ

Making the change of variables x ¼ h; _x ¼ h0, Eq. (4.2) becomes an analytical Hamiltonian system of the form

_x ¼ y;
_y ¼ f ðxÞ;

�
ð4:3Þ

with f ðxÞ ¼ �a1xmþ1 þ a2xl � ða3 þ k1Þ. The Hamiltonian of the system (4.3) is

Hðx; yÞ ¼ y2

2
þ UðxÞ;

where

UðxÞ ¼ �
Z x

0
f ðsÞds ¼ a1

mþ 2
xmþ2 � a2

lþ 1
xlþ1 þ ða3 þ k1Þx

is the potential energy function. The trajectories of the system (4.3) lie on the c–level curves of Hðx; yÞ

y2

2
þ a1

mþ 2
xmþ2 � a2

lþ 1
xlþ1 þ ða3 þ k1Þx ¼ c

and they are symmetric with respect to the x–axis.
In order to describe qualitatively the phase portrait of the system (4.3) for the different possible situations, we first con-

sider the case f ðxÞ– 0 for all x. Fig. 1 shows the schematic phase portrait for the cases f ðxÞ > 0 and f ðxÞ < 0. In both, it is
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needed the degree r of polynomial function f ðxÞ to be even, r ¼maxfmþ 1; lg. We find that the parameter conditions are as
follows:

(1) When mþ 1 ¼ l, the necessary and sufficient conditions for f ðxÞ > 0 are:
(i) if a1 ¼ a2 ) a3 þ k1 < 0,
(ii) if a1 – a2 ) a3 þ k1 < 0 ^ a2 � a1 > 0

and, for f ðxÞ < 0 are:
(i) if a1 ¼ a2 ) a3 þ k1 > 0,
(ii) if a1 – a2 ) a3 þ k1 > 0 ^ a2 � a1 < 0.

(2) When mþ 1 – l, the necessary conditions for f ðxÞ > 0 are:
(i) if mþ 1 < l) a2 > 0 ^ a3 þ k1 < 0,
(ii) if mþ 1 > l) a1 < 0 ^ a3 þ k1 > 0

and, for f ðxÞ < 0 are:
(i) if mþ 1 < l) a2 < 0 ^ a3 þ k1 > 0,
(ii) if mþ 1 > l) a1 > 0 ^ a3 þ k1 > 0.

Second, we consider that f has real roots. Note that the fixed points of the system (4.3) all lie on the x-axis. P ¼ ðx�;0Þ is a
fixed point of (4.3) if and only if x� is a critical point of UðxÞ, i.e. a zero of the polynomial function f ðxÞ:

U0ðx�Þ ¼ �f ðx�Þ ¼ a1xmþ1
� � a2xl

� þ ða3 þ k1Þ ¼ 0: ð4:4Þ

It can be pointed out the following [18]:

(i) If x� is a strict local maximum of UðxÞ; P is a saddle for (4.3)

U00ðx�Þ ¼ �f 0ðx�Þ ¼ a1ðmþ 1Þxm
� � a2lxl�1

� < 0: ð4:5Þ

(ii) If x� is a strict local minimum of UðxÞ; P is a center for (4.3)

U00ðx�Þ ¼ �f 0ðx�Þ ¼ a1ðmþ 1Þxm
� � a2lxl�1

� > 0: ð4:6Þ

(iii) If x� is a horizontal inflection point of UðxÞ; P is a cusp for the system (4.3)

U00ðx�Þ ¼ �f 0ðx�Þ ¼ a1ðmþ 1Þxm
� � a2lxl�1

� ¼ 0: ð4:7Þ

4.1.1. mþ 1 ¼ l
The system (4.3) becomes

_x ¼ y;
_y ¼ ð�a1 þ a2Þxl � ða3 þ k1Þ:

�
ð4:8Þ

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) (b)

Fig. 1. (a) f ðxÞ ¼ � 3
8 x2 � 1. (b) f ðxÞ ¼ 3

10 x2 þ 1
10.
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If a1 ¼ a2, then (4.8) can be easily solved by yðtÞ ¼ �ða3 þ k1Þt þ c1; xðtÞ ¼ �ða3 þ k1Þ t2

2 þ c1t þ c2; c1; c2 2 R.
If a1 – a2 and a3 þ k1 – 0, then Eq. (4.4) implies that x� must verify xl

� ¼
a3þk1
a2�a1

, and so U00ðx�Þ ¼ �x�1
� lða3 þ k1Þ. We see from

Eq. (4.8) that for the equilibrium points of this system, the following conclusions hold.

(1) When l is odd,
(i) if a3 þ k1 < 0 ^ a2 � a1 > 0 or a3 þ k1 > 0 ^ a2 � a1 > 0, then

x� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðx�Þ < 0; so P is saddle:

(ii) if a3 þ k1 < 0 ^ a2 � a1 < 0 or a3 þ k1 > 0 ^ a2 � a1 < 0, then
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Fig. 2. (a) f ðxÞ ¼ x3 � 1; P ¼ ð1;0Þ is saddle. (b) f ðxÞ ¼ �x3 þ 1; P ¼ ð1;0Þ is a center. (c) f ðxÞ ¼ �x2 þ 1; P� ¼ ð�1;0Þ is saddle and Pþ ¼ ð1;0Þ is a center.
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x� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðx�Þ > 0; so P is a center:

(2) When l is even,
(i) if a3 þ k1 > 0 ^ a2 � a1 > 0, then

xþ� ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðxþ� Þ < 0; so Pþ is saddle;

x�� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðx�� Þ > 0; so P� is a center:

(ii) if a3 þ k1 < 0 ^ a2 � a1 < 0, then

xþ� ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðxþ� Þ > 0; so Pþ is a center;

x�� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ k1

a2 � a1

l

s
and U00ðx�� Þ < 0; so P� is saddle:

(iii) if a3 þ k1 > 0 ^ a2 � a1 < 0 or a3 þ k1 < 0 ^ a2 � a1 > 0, then there are no fixed points.
Some representative situations are sketched in Fig. 2, where the presence of periodic and homoclinic orbits is appreciated.

In this case, we can see also that ea ¼ a3 þ k1 is a parameter of the system (4.8), and when ea ¼ 0, it undergoes a local bifur-
cation of saddle-node type [19] at ðx�; y�Þ ¼ ð0;0Þ, which results a degenerate critical point of (4.8).

4.1.2. mþ 1 – l
In this case f is a polynomial function of r degree, where r ¼maxfmþ 1; lg, so f has at most r real roots.
From Eq. (4.4), if a3 þ k1 – 0 then x� – 0, and so

a1xm
� ¼ a2xl�1

� �
a3 þ k1

x�
:

Replacing into the expression of U00ðx�Þ, we have

U00ðx�Þ ¼ x�1
� a2ðmþ 1� lÞxl

� � ðmþ 1Þða3 þ k1Þ

 �

;

so, if xl
� ¼

ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ , then U00ðx�Þ ¼ 0 and P ¼ ðx�;0Þ is a cusp for the system (4.3). The parameter conditions for the change of

sign of U00ðxÞ are as follows:

(1) When a2ðmþ 1� lÞ > 0,
(i) if x� > 0 ^ xl

� >
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ or x� < 0 ^ xl

� <
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ , then P is a center;

(ii) if x� > 0 ^ xl
� <

ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ or x� < 0 ^ xl

� >
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ , then P is saddle.

(2) When a2ðmþ 1� lÞ < 0,
(i) if x� > 0 ^ xl

� <
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ or x� < 0 ^ xl

� >
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ , then P is a center;

(ii) if x� > 0 ^ xl
� >

ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ or x� < 0 ^ xl

� >
ðmþ1Þða3þk1Þ
a2ðmþ1�lÞ , then P is saddle.

In Fig. 3 we illustrate some of the possible phase portraits, where the presence of periodic and heteroclinic orbits is
appreciated.

If a3 þ k1 ¼ 0 then x� ¼ 0 is a critical point in any case (that coexists with one or two other equilibrium which are center
or saddle according to the different system parameters values).

4.2. Case n > 1

Let us go back to Eq. (4.1), consider separately the solutions h > 0 and h < 0. In both cases, x ¼ h; y ¼ h0hn�1 comes out a
change of variables that convert Eq. (4.1) into the system

_x ¼ x1�ny;
_y ¼ gðxÞ;

(
ð4:9Þ

with gðxÞ ¼ �a1xmþ1 þ a2xl � a3 � k1xn�1. As a consequence, the phase portrait is split into two invariant half planes x > 0
and x < 0. Note that for n ¼ 1 the system (4.3) becomes a particular case of the system (4.9) -which is not analytical at
x ¼ 0. The system (4.9) is not of Hamiltonian type either, however it is conservative, since the quantity defined by the dif-
ferentiable function E,
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Eðx; yÞ ¼ y2

2
þ a1

mþ nþ 1
xmþnþ1 � a2

lþ n
xlþn þ a3

n
xn þ k1

2n� 1
x2n�1 ð4:10Þ

is constant on trajectories, i.e. dE=dt ¼ Ex _xþ Ey _y ¼ 0. Hence, the trajectories lie on the curves Eðx; yÞ ¼ constant, and they are
symmetric with respect to the x-axis.

Note that

Eðx; yÞ ¼ y2

2
þ eUðxÞ;

where

eUðxÞ ¼ � Z x

0
sngðsÞds:
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Fig. 3. (a) f ðxÞ ¼ x3 � x; C1 ¼ ð�1;0Þ and C2 ¼ ð1;0Þ are centers, and S ¼ ð0;0Þ is saddle. (b) f ðxÞ ¼ �x3 þ x; S1 ¼ ð�1;0Þ and S2 ¼ ð1; 0Þ are saddle, and
C ¼ ð0;0Þ is a center. (c) f ðxÞ ¼ x4 � 2x3 � x2 þ 2x; C1 ¼ ð�1;0Þ and C2 ¼ ð1;0Þ are centers, S1 ¼ ð0;0Þ and S2 ¼ ð2;0Þ are saddle.
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The equilibrium points of (4.9) – if any – all lie on the x-axis and correspond to the critical point of Eðx; yÞ, since

@E
@x
¼ eU 0ðxÞ ¼ �xngðxÞ ¼ 0() _y ¼ 0 and

@E
@y
¼ y ¼ 0() _x ¼ 0:

P ¼ ðx�;0Þ is a fixed point of (4.9) if x� is a critical point of eUðxÞ, i.e. a zero of the polynomial function gðxÞ. We can set down
the analogous of properties (4.5), (4.6) and (4.7).

Theorem 4.1. If x� is a strict local maximum of the analytic function eUðxÞ, then P is a saddle for (4.9) if x� > 0, and a center for
(4.9) if x� < 0. If x� is a strict local minimum of the analytic function eUðxÞ, then P is a center for (4.9) if x� > 0, and a saddle for (4.9)
if x� < 0. If x� is a horizontal inflection point of eUðxÞ, then P is a cusp for the system (4.9).

Proof. In fact, the Jacobian matrix of the linearized system (4.9) at P ¼ ðx�;0Þ is

JðPÞ ¼
0 x1�n

�

g0ðx�Þ 0

24 35:
Let D ¼ detðJðPÞÞ ¼ �x1�n

� g0ðx�Þ be its determinant value. Since trðJÞ ¼ 0 the eigenvalues of the characteristic polynomial, pðdÞ,
of J are of the form

d ¼ �
ffiffiffiffiffiffiffi
�D
p

: ð4:11Þ

On the other hand, the second derivative of eU iseU 00ðxÞ ¼ �nxn�1gðxÞ � xng0ðxÞ

so, eU 00ðx�Þ ¼ �xn
�g
0ðx�Þ. Note that, since the signs of the values xn

�g
0ðx�Þ and x�n

� g0ðx�Þ are the same, then the difference between
the sign of eU 00ðx�Þ and D depends on the sign of x�. According to this, if x� is a local maximum of eUðxÞ, i.e. eU 00ðx�Þ < 0, then
D < 0 if x� > 0, and by Eq. (4.11), P is a saddle for the system (4.9). If x� < 0, then D > 0, and by Eq. (4.11), P is a center
for the linearized system of (4.9).

_x

_y

" #
¼ J

x

y

" #
: ð4:12Þ

So P is either a center or a focus for (4.9). But since both, attractive fixed points and repellers, can not occur in a conservative
systems [19], P results a nonlinear center for the system (4.9).

Analogously, if x� is a local minimum of eUðxÞ, i.e. eU 00ðx�Þ > 0, then D < 0 if x� < 0, and by Eq. (4.11), P is a saddle for the
system (4.9). If x� > 0, then D > 0, and by Eq. (4.11), P is a center for the system (4.12), and so, a nonlinear center for the
system (4.9). Finally, if x� is a horizontal inflection point of eUðxÞ, i.e. eU 00ðx�Þ ¼ 0, then D ¼ 0, and by Eq. (4.11), P is a cusp for
the system (4.9). h

With these tools at hand, the analysis of the case n > 1 keeps the essential features of the case n ¼ 1. As gðxÞ is a poly-
nomial function, the condition for gðxÞ – 0 for all x may be stated as for f in the subsection 4.1. Four different types of phase
portraits are possible according to the g-sign and the n-parity. If g has real roots, the phase portraits of the system (4.9) will
look in each half plane, x > 0; x < 0, as the phase portraits of the system (4.3), according to: (i) how much positive real roots
and negative ones does the function g have, (ii) which of them are centers or saddles, and (iii) the n-parity.

5. Conclusions

We have studied the one-dimensional K(m,n) equation with generalized evolution term (1.1), by applying the Theory of
Symmetry Reductions to differential equations. Using the characteristic equation, we have stated a complete classification
(depending on the values of the parameters a; b;m;n and l) of the Lie symmetries admitted by (1.1) and we have found
the similarity variables. Then, reduced forms of the original nonlinear ODE have been obtained as nonlinear differential
equations. By applying the classical Lie method we have reduced the order of these ODE’s.

Among the reduced equations obtained in Table 3, the ODE0 has distinct features. The applied reduction is valid for arbi-
trary n;m; l 2 Zþ and yields to a second order autonomous differential equation. Under a suitable change of variables
(depending on if n ¼ 1 or n > 1), this equation is transformed into an autonomous two-dimensional system which is able
to be studied by means of Hamiltonian and conservative systems properties. Let us note that there is no restriction on
the parameters values for computing the conserved quantity. Therefore, a rather complete scenario of the qualitative behav-
iors in terms of its parameter values has been obtained, with the typical presence of periodic, homoclinic and heteroclinic
orbits which correspond [12] respectively to solitary wave solutions, kinks (or anti-kinks) and periodically traveling wave
solutions of Eq. (1.1).
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Interestingly, from the qualitative analysis a new reduced equation has arisen. In fact, writing the conservative quantities
Hðx; yÞ or Eðx; yÞ in the original variables h and h0, from Eq. (4.10), we have

1
2

h0h2n�2 þ a1

mþ nþ 1
hmþnþ1 � a2

lþ 1
hlþn þ a3

n
hn þ k1

2n� 1
h2n�1 ¼ c;

which may be interpreted as a reduced first order equation of ODE0. Note that, different from Reduction 1 and 2, this one is
valid for arbitrary n;m; l 2 Zþ, and the reduced equation comes out autonomous. However, when n ¼ 1; l ¼ mþ 1 and
k1 ¼ 0, it coincides with the last reduction of Reduction 2 obtained in Section 3.

In ODE0, the order is reduced by integrating once respect to z yielding to a two-dimensional dynamical system. This is not
the case in any other ODEi with i > 1. These ODE’s and even their worked reductions (Section 3), derive into higher dimen-
sional dynamical systems; so, the qualitative study developed for ODE0 may not be straightfully extended to those cases, and
requires further research.
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Appendix A. EDO5 and EDO6

The reduced equations that fullfil Table 3 in Section 2 are:

for i = 5

h3ph0pzðp�m� 1Þ � 8bh3mþ1ðh0Þ3p3 þ 36bh3mþ1ðh0Þ3mp2 þ 12bh3mþ2h0h00p2 þ 24bh3mþ1ðh0Þ3p2

� 54bh3mþ1ðh0Þ3m2p� 36bh3mþ2h0h00mp� 72bh3mþ1ðh0Þ3mpþ h3pþ1p� 2bh3mþ3h000p� 30bh3mþ2h0h00p

� 22bh3mþ1ðh0Þ3pþ 27bh3mþ1ðh0Þ3m3 þ 27bh3mþ2h0h00m2 þ 54bh3mþ1ðh0Þ3m2 þ 3bh3mþ3h000mþ 45bh3mþ2h0h00m

þ 33bh3mþ1ðh0Þ3mþ 3bh3mþ3h000 þ 18bh3mþ2h0h00 þ 6bh3mþ1ðh0Þ3 þ ah2pþmþ1h0 ¼ 0

and, for i ¼ 6

hpþ1h0pe
ðp2þm2þ2mþ1Þz

p�m�1 þ hmð�bðh0Þ3�3bhðh0Þ2�3bh2h0�bh3Þm3þhm ð�3bhh0�3bh2Þh00�6bhðh0Þ2�9bh2h0�3bh3
� �

m2 þ hm
hn

� �bh2h000 þ ð�3bhh0 � 6bh2Þh00 þ bðh0Þ3 � 3bhðh0Þ2 � 9bh2h0 � 3bh3
� �

m

þ hm �bh2h000 � 3bh2h00 þ ð�3b� aÞh2h0 þ ð�b� aÞh3
� �i

p

þ hm bðh0Þ3 þ 3bhðh0Þ2 þ 3bh2h0 þ bh3
� �

m4 þ hm 3bhh0 þ 3bh2
� �

h00
�

þ bðh0Þ3 þ 9bhðh0Þ2 þ 12bh2h0 þ 4bh3
�

m3 þ hm bh2h000 þ ð6bhh0 þ 9bh2Þh00
�

� bðh0Þ3 þ 9bhðh0Þ2 þ 18bh2h0 þ 6bh3
�

m2 þ hm 2bh2h000 þ ð3bhh0 þ 9bh2Þh00 � bðh0Þ3
�

þ 3bhðh0Þ2 þ ð12bþ aÞh2h0 þ ð4bþ aÞh3
�

mþ hm bh2h000 þ 3bh2h00 þ ð3bþ aÞh2h0 þ ðbþ aÞh3
� �o

e
ð2mþ2Þpz

p�m�1 ¼ 0:
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