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Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the
quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices
associated with the baker map and the symmetry-reflected baker map �the latter happens to be unitary but the
former is not�. In both cases simple quantum-circuit representations are obtained, which exhibit the typical
structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a
one-qubit operator �close to a Hadamard gate for some parameter values�. In a suitable continuum limit we
recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the
calculation of long-time traces in regimes where the direct summation of Gutzwiller’s formula is impossible.
Some aspects of the long-time divergence of the semiclassical traces are also discussed.
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I. INTRODUCTION

The quantum baker’s map �1� is a very useful test bench
for investigating quantum-classical correspondence issues in
a variety of settings. Conceived as a model for studying the
semiclassical limit of closed chaotic systems, it was first ap-
plied to analyze the random-matrix conjecture, the scarring
phenomenon, Gutwiller’s trace formula, and the long-time
validity of semiclassical approximations �see, e.g., �2–7��. In
the last years “open” quantum bakers were constructed and
employed for studying semiclassical aspects of the scattering
problem �8�, e.g., the fractal Weyl law for the distribution of
resonances �9�.

The quantum baker also appeared in a variety of problems
of quantum information, quantum computation, and quantum
open systems. It was noted that the quantum baker could be
efficiently realized in terms of quantum gates �10�. A three-
qubit nuclear magnetic resonance experiment was proposed
�11� and then implemented �with some simplifications� �12�.

On the theoretical side, Schack and Caves �13� showed
that the Balazs-Voros-Saraceno quantum baker �2,3� can be
seen as a shift on a string of quantum bits �in full analogy
with the classical case�, thus taking an important step toward
generalizing the method of symbolic dynamics to the quan-
tum case. At the same time, their circuit representation led
naturally to a family of alternative quantizations. This family
of bakers was the subject of several studies �14–16�. The
ability of the baker family to generate entanglement was first
studied by Scott and Caves �16� �see also �17��. Decoherent
variants of the baker map were constructed by including
mechanisms of dissipation and/or diffusion �18–20�.

From the point of view of the structure of the quantum
baker map, important results were recently obtained by Er-

mann and Saraceno �21� who, building upon previous work
by Lakshminarayan and Meenakshisundaram �22�, general-
ized the Schack-Caves family and showed that all quantum
bakers are perturbations of a common kernel �the “essential”
baker�.

The present paper focuses on an almost unexplored aspect
of the semiclassical theory of the quantum baker map.
Gutzwiller’s approximate formula for the traces of the baker
map is formally equivalent to the partition function of a finite
Ising chain �with exponentially decaying interactions and
imaginary temperature�. Thus, it can be evaluated with the
standard transfer-matrix method. We have studied exten-
sively the transfer matrices associated with the semiclassical
traces of the baker map and the symmetry-reflected baker
map. Our most remarkable finding is the existence of a qubit
structure hidden in the semiclassical traces: the transfer ma-
trices admit a quantum-circuit representation that is very
similar to that found by Schack-Caves for the quantum
baker.

We know two studies of the baker map which applied the
transfer-matrix method �to the semiclassical long-time propa-
gation of wave packets �7� and to the analysis of periodic-
orbit action correlations �23��. Different in spirit, the present
work aims at analyzing the transfer-matrix method in itself.

The paper is organized as follows. First we discuss the
general structure of the transfer matrices for the baker map,
exhibiting their quantum-circuit representation. Although the
transfer matrices are not unitary, nonunitarity is restricted to
a one-qubit “gate.” Except for this fact, the transfer matrices
resemble qubit quantum bakers �Sec. II�.

Section III is devoted to spectral properties. We show that
all eigenvalues lie inside the unit circle in the complex plane,
or very close to it. The number of eigenvalues close to the
unit circle coincides approximately with the quantum dimen-
sion �for a suitable parameter range�. This situation is very
similar to that found in the infinite-dimensional transfer-
operator method �6,24�. Indeed we show that the transfer
operator arises as a suitable continuum limit of the transfer
matrix.
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In Sec. IV we exhibit truncation schemes which permit
the calculation of long-time traces. Some aspects of the long-
time divergence of the semiclassical traces are assessed in
Sec. V.

The baker map possesses a spatial symmetry. If one is
interested in separating the spectrum or traces into symmetry
classes, then one must consider also the symmetry-related
transfer matrices. Although similar to the matrices of Sec. II
in many respects, these matrices happen to be exactly uni-
tary. They are studied in Sec. VI. Concluding remarks are
presented in Sec. VII.

II. BAKER MAP: TRANSFER MATRIX

In order to make the paper self-contained we start by sum-
marizing some basic information about the baker map. The
dynamics of the classical baker map is schematically de-
picted in Fig. 1. It acts on the unit square piecewise linearly.
Points with q�0.5 are governed by the hyperbolic point at
the origin. If q�0.5 the fixed point at �1,1� rules. In any case
the coordinates p /q relative to the fixed point are com-
pressed or stretched by a factor of 2:

p� = 1
2 �p + �� , �1�

q� = 2q − � , �2�

where �= �2q�, the integer part of 2q.
The quantum analog of the classical mapping is a unitary

operator acting on an even-dimensional Hilbert space �1,2�.
In the q representation its matrix reads �3�

B = GN
−1�GN/2 0

0 GN/2
� , �3�

where GN is the N-dimensional antiperiodic Fourier matrix:

�GN�mn =
1

�N
e−2�i�n+1/2��m+1/2�/N, �4�

with 0�m ,n�N−1. For this abstract system the Planck
constant coincides with the inverse of the dimension, i.e.,
�=1 / �2�N�.

Our main concern are the traces of the quantum baker,
tr BL, for L=1,2 , . . .. In the semiclassical regime of N large
enough �for a given L� the traces can be approximated by the
Gutzwiller formula �5�

tr BL �
2L/2

2L − 1	
�

e2�iNS���, �5�

where the sum runs over all periodic trajectories of length L
of the classical map, indexed by the binary column vectors
�= ��0 ,�1 , . . . ,�L−1�t, with �i=0,1. The corresponding actions
S��� are quadratic functions of the binary symbols,

S��� = �tA� . �6�

The “coupling” matrix A is suitably expressed in terms of the
matrix S of a cyclic shift, S · �a0 ,a1 , . . . ,aL−1�t

= �a1 , . . . ,aL−1 ,a0�t �25�:

A =
2L−1

2L − 1 	
i=0

L−1
Si

2i . �7�

The trace formula for the baker map �5� can be derived as
follows. Write tr BL as a sum of products of Fourier matrix
elements using Eq. �3�. Approximate sums by integrals. Ex-
tend the limits of integration �which in principle are finite� to
��. The remaining integrals, being Gaussian, can be done
exactly, giving the Gutzwiller sum �5�.

Equation �5� is a particular case of the general Gutzwiller
trace formula for systems with a chaotic classical limit. For
such systems the trace formula lays a bridge between the
quantum spectrum and the set of classical periodic orbits. It
constitutes the core of all semiclassical schemes for relating
energy levels to classical information, from the pioneer at-
tempts �26,27�, to the most recent highly sophisticated devel-
opments �28�.

The baker is very special in that all its periodic orbits, and
properties thereof, are known analytically. So, in principle,
the periodic-orbit sum �5� can be calculated for any L. How-
ever, because of the exponential growth of the number of
periodic orbits with period, the brute-force summation is re-
stricted to, say, L�30. Remarkably, the method developed
by Dittes et al. �6� does not suffer from such a limitation.
These authors defined an infinite-dimensional integral opera-
tor,

W�q�,q� =
1
�2

	�q −

q�

2
� + 	�q −

q� + 1

2
�e2�iNq� , �8�

where 0�q , q��1, whose traces give exactly the periodic-
orbit sum of Eq. �5�. They showed that tr WL can be effi-
ciently calculated from the eigenvalues of the matrix of W in
the Fourier basis, after suitable truncation �6,24�.

An alternative to the infinite-dimensional operator method
relies on the formal identification of the periodic-orbit sum

FIG. 1. The classical baker map. The dynamics is controlled by
the fixed points �0,0� �for q�0.5� and �1,1� �q
0.5�. The action of
the map is to compress or stretch the coordinates p /q relative to the
fixed points by a factor of 2. Some examples are depicted.
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�5� with the partition function of an Ising chain, for a purely
imaginary temperature. The cyclical nature of the coupling
matrix A says that this is a circular chain, consisting of L
spins. All spins interact among themselves; but, as interac-
tions decay exponentially with distance, one may expect
some computational benefit �without much loss of accuracy�
by truncating the interaction to some given number r of clos-
est neighbors, i.e.,

A �
2L−1

2L − 1	
i=0

r
Si

2i . �9�

The exact periodic-orbit sum corresponds to setting r=L−1
�no truncation at all�; but, in principle, one can consider any
truncation, even to first neighbors �r=1�.

Once one has established the equivalence between the
baker periodic-orbit sum and the Ising partition function, the
transfer-matrix method can be invoked. The first-neighbor
case is explained in textbooks �29�. It seems that the many-
neighbor case has not been explicitly worked out in the lit-
erature, but some discussions exist �27,30�. Anyway, even if
not trivial, the generalization can be carried out following the
spirit of the one-neighbor case and, in the case of the baker
Ising, leads to

2L/2

2L − 1	
�

e2�iNS��� �
2L

2L − 1
tr ML, �10�

with the explicit expression for M being �23�

M =
1
�2�

1 1 0 0 ¯ ¯ 0 0

0 0 1 1 0 ¯ 0 0

] ] ] ] ] � ] ]

0 0 0 0 ¯ ¯ 1 1

a0 a1 0 0 ¯ ¯ 0 0

0 0 a2 a3 ¯ ¯ 0 0

] ] 0 0 ¯ � ] ]

0 ¯ 0 0 ¯ ¯ a2r−2 a2r−1

 .

�11�

The elements ak are given by

ak = exp
i��1 +
k

2r�� , �12�

with 0�k�2r−1, and

� =
�N2L

2L − 1
. �13�

Note that M is a complex matrix depending on the three
parameters �N ,L ,r�. Its dimension is 2r�2r, with r�L−1.
When r=L−1 one recovers the exact semiclassical traces,
i.e., Eq. �10� becomes an equality.

A prefactor 1 /�2 has been absorbed into the definition of
M because in this way most of the spectrum of M lies close
to the unit circle or inside it �see Sec. III below�. So, the

transfer matrix M becomes qualitatively similar to the semi-
classical transfer operator of Refs. �6,24� �we go back to this
point later�.

The transfer-matrix approach transforms the calculation
of the Gutzwiller sum into the problem of obtaining the trace
of the Lth power of the finite matrix M. From a numerical
point of view this is advantageous only if truncation of M is
admissible. We defer the analysis of this question until Sec.
V. Now we concentrate on the transfer matrices themselves
which, as we shall show, possess very interesting properties.

The transfer matrix �11� exhibits the structure of a tensor
product, which is conveniently displayed by switching to a
qubit representation. This consists of identifying the “spatial”
degree of freedom q with the tensor product of r two-level
systems:

�k� � ��0� � ��1� � ¯ � ��r−1� . �14�

Here, k indexes the states of the q basis and �i=0,1 is a label
for the qubit basis states; they are related through the binary
expansion

k = �0 + 2�1 + ¯ + 2r−1�r−1. �15�

In the qubit picture the matrix M can be broken up into the
elementary gates shown in the quantum circuit of Fig. 2. The
circuit acts on r qubits, starting with a downward cyclic shift
of all qubits, i.e.,

S↓��0� � ��1� � ¯ � ��r−1� = ��r−1� � ��0� � ��1� � ¯

� ��r−2� . �16�

A nonunitary gate acting on the first qubit follows, which
bears some resemblance with a Hadamard gate,

H̃ =
1
�2

�1 1

1 x
� , �17�

with

FIG. 2. Quantum circuit associated with the semiclassical trace
of the Lth power of the baker map. The parameter r�L−1 controls
the level of truncation �r=L−1 corresponds to no truncation at all�.
From left to right, the circuit is composed of a downward shift of all

qubits �S↓�, a nonunitary one-qubit gate H̃, and a sequence of sym-
metric phase gates.
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x = exp� 2�iN

2L − 1
� . �18�

It must be noted that, as the dimension N is an even number,

we always have x�−1, and H̃ is never unitary. After the H̃
gate one finds a single-qubit phase gate,

P00��� = �1 0

0 ei� � . �19�

Finally, one has a sequence of two-qubit phase gates, acting
symmetrically between the first and the kth qubits,

P0k�� =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei
 , �20�

with exponentially decreasing phases, 
=� /2,� /4, . . . ,� /2r.

Writing M as a circuit has helped us in identifying its
basic constituents. In particular we recognize the one-qubit

gate H̃ as responsible for the deviation from unitarity. If we

substitute H̃ by a Hadamard gate, i.e., setting x=−1 in Eq.
�17�, then the circuit in Fig. 2 acquires the typical structure
of the baker family �21�: an “essential-baker” block �formed
by a shift S↓ and a single-qubit Fourier transform� followed
by a “diffraction kernel” �phase gates�.

III. SPECTRAL PROPERTIES

Figure 3 displays a typical transfer-matrix spectrum in the
case that the dimension of the transfer matrix is much larger
than the quantum dimension, i.e., 2L−1�N. The spectrum can
be coarsely divided into three parts. Approximately N eigen-
values are localized close to the unit circle. Most of the re-
maining ones are concentrated in a disk of smaller radius,
and there are some transitional eigenvalues spiraling out
from the inner disk to the unit circle. The eigenvalues lying

close to the unit circle can be put in almost one-to-one cor-
respondence with the exact eigenvalues of the quantum
baker �3�.

Increasing L while keeping N fixed does not significantly
change the almost unitary part of spectrum, but populates the
region of small moduli �see Fig. 4�. This fact, when com-
bined with the existence of eigenvalues with moduli larger
than 1, leads to the conclusion that Gutzwiller’s traces for the
baker are divergent in the limit L→� �fixed N�. This result
has been confirmed previously using the transfer-operator
method �6,24,31�.

Indeed, the overall features of the transfer-matrix spec-
trum described above can also be found in the transfer-
operator spectra discussed in Refs. �6,24�. Looking for an
explanation for this similarity, we recall that the transfer op-
erator is infinite dimensional and independent of L. Thus,
one may be tempted to compare Eq. �8� with the infinite-L
limit of the transfer matrix �11�. In this limit, the transfer
matrix becomes an integral kernel, with indices becoming
continuous variables:

k

2r − 1
→ q, 0 � q � 1. �21�

A careful calculation verifies that the transfer matrix tends to
the transfer operator, i.e.,

lim
L→�

Mkk� = W�q,q�� , �22�

with W�q ,q�� precisely that given in Eq. �8�. So, the transfer
operator is formally recovered as the continuum limit of the
transfer matrix.

IV. TRUNCATION SCHEMES

Here, we discuss the numerical calculation of long-time
Gutzwiller traces using the transfer-matrix formula �10�. The
most natural procedure for calculating tr ML requires the di-
agonalization of M to obtain its eigenvalues. This scheme is
limited to very small values of L, e.g., to L�15 in a personal
computer. So, truncation becomes essential.

The error introduced in truncating the interactions to r
neighbors can be roughly estimated from Eq. �9� and the

FIG. 3. Comparison of spectra. Open circles correspond to the
quantum baker map �N=46� and dots correspond to the semiclassi-
cal transfer matrix for L=11.

FIG. 4. �Color online� Semiclassical eigenvalues �moduli�
versus scaled eigenvalue index k /N �decreasing order�. Note
the clear transition around k /N=1. Parameters are N=82
and L=9,10,11,12 �black/solid, red/dashed, green/dotted,
magenta/dashed-dotted lines, respectively�.
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basic definitions �5�–�7�. Such a truncation produces an error
in actions �6� approximately given by

	S �
1

2
�tS

r

2r� . �23�

For typical vectors �, containing randomly distributed 0/1
bits, we have

�tSr� �
L

4
. �24�

This implies that the corresponding error in the Gutzwiller
phases amounts to

	� � 	�2�NS� �
NL

2r . �25�

Finally, if we assume that this is the error committed in most
phases in the Gutzwiller sum �5�, then 	� amounts to the
relative error in the semiclassical traces, for

	 	 ei�k = 	 ei�k	�k � 	� 	 ei�k. �26�

Thus, we arrive at the following condition for the validity of
the truncation to r neighbors:

2r

NL
� f � 1. �27�

However, even after truncating the transfer matrix, we may
need to use values of r which make diagonalization prohibi-
tive, e.g., for N=50 and L=1000. Remarkably there is an
alternative to diagonalization which arises from the sparsity
of M. Even if the special type of sparsity M exhibited is not
helpful in speeding up its diagonalization, it permits us to
implement an alternative and much more efficient method
for calculating the traces of M.

Consider the following identity:

tr Mr
L = 2r���Mr

L��� , �28�

where overbar means average over random complex vectors
��� uniformly distributed over the corresponding unit sphere
�32�. �The notation Mr has been used to indicate the trunca-
tion of M to r qubits.� The idea behind Eq. �28� is to calcu-
late ���Mr

L��� by applying iteratively the matrix Mr to ���,
and then averaging over ���. This method allows one, in
principle, to consider r as large as 20.

Table I displays some examples. The first rows a–e illus-
trate the improvement of the results as the truncation level r
is increased, for fixed �N ,L�. Agreement with the exact re-
sults is met, within the specified statistical errors, for r�12,
corresponding to f �4. In rows f–i we consider �N ,r� fixed
and large values of L, which can in no way be reached by
direct computation of the periodic-orbit summation, so that
exact results are not known for such L. In these cases we
compare with the approximate results obtained using the
transfer-operator method �6,24�.

We see good agreement for L�80, i.e., we find the con-
dition f �4 again. So, we have checked that the transfer-
matrix method works satisfactorily in the parameter regime
specified by Eq. �27�.

V. DIVERGENCE OF LONG-TIME TRACES

For chaotic systems, the Gutzwiller trace formula is only
the first term of an expansion in powers of �. Because of
this, the semiclassical eigenvalues obtained from the
Gutwiller traces deviate in general from the unit circle in the
complex plane. For typical chaotic systems it is expected that
the distance of the largest semiclassical eigenvalue to the
unit circle scales like �, i.e., 1 /N for quantum maps �33�. In
the case of the baker map, an anomalous behavior N−1/2 is
observed which is due to diffraction effects originating in the
discontinuities of the mapping �6,24�. In any case, this lack
of unitarity makes Gutzwiller’s traces exponentially growing
with L, a behavior that may be guessed from Table I.

The following question arises naturally: can the N−1/2 law
be associated with the particular structure of the baker trans-
fer matrix? In the circuit representation �Fig. 2� nonunitarity

arises from the single-qubit gate H̃. So, one may ask: what is
typically the largest eigenvalue �in modulus� of a map ob-

tained by tensoring H̃ with a generic N-dimensional unitary
gate U?

On the other side, the q representation �11� offers a dif-
ferent point of view of the nonunitarity: the transfer matrix
can be split as M = �U1+U2� /�2, with Ui unitary matrices of
dimension N �see Eq. �31��. How does the leading eigenvalue
of such a matrix M scale with N?

In order to answer the questions above we resorted to
numerical calculations. First we analyzed the matrices
H� � U with U as a random matrix belonging to the circular
unitary ensemble �CUE�. The matrix H� acts on the least
significant qubit and is defined by Eq. �17� with x=1, i.e., H�

is chosen to be the large-L limit of H̃. Then we considered
the ensemble �U1+U2� /�2 with Ui independent random ma-
trices belonging to CUE �34�. In order to check any possible
ensemble dependence we also calculated the case H� � U

TABLE I. Gutzwiller’s traces �absolute value�. We compare the
transfer-matrix method �TMM� with the transfer-operator method
�TOM� and exact results. In all cases the quantum dimension is N
=24. The square brackets contain the estimated error in the least
significant figure �e.g., the notation 1.30�2�102 stands for
�1.30�0.02��102�. The values in the TMM column are the result
of averaging over more than 105 random states; the errors are sta-
tistical. In the TOM case the errors correspond to the variation of
the results when the size of the Fourier basis is varied from 149 to
201 �6,24�.

L r TMM TOM Exact

a 20 10 3.73�5� 3.87�6� 3.85

b 20 11 3.90�7� 3.87�6� 3.85

c 20 12 3.85�3� 3.87�6� 3.85

d 20 13 3.84�5� 3.87�6� 3.85

e 20 14 3.89�5� 3.87�6� 3.85

f 40 13 2.04�2�101 1.99�1�101 ?

g 60 13 1.00�5�101 1.05�5�101 ?

h 80 13 1.30�2�102 1.24�1�102 ?

i 160 13 1.00�1�104 9.0�3�103 ?
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with U in the circular orthogonal ensemble �COE�.
Our results are exhibited in Fig. 5. In the three considered

cases we observe very similar decay laws. These decays are
much closer to the diffractive scaling N−1/2 than to the uni-
versal semiclassical behavior N−1, meaning that the random-
matrix modeling has partially captured the essence of the
semiclassical baker. However, there is still some noticeable
departure from the N−1/2 decay �rather, our numerical results
seem to follow a N−1/3 law�. Thus, we conclude that the
minimum-information models we have constructed still have
to be complemented with some ingredient to properly de-
scribe the N−1/2 baker scaling. Further research is necessary
to discover what such an additional information should be
�e.g., some particular correlation between U1 and U2�.

VI. REFLECTED BAKER MAP

The quantum baker map B is invariant under the parity
symmetry R, with its action on the q basis being just
R�k�= �N−k�. This is the quantum counterpart of the classical
reflection symmetry R: �q , p�→ �1−q ,1− p�. When analyz-
ing spectral properties it is convenient to separate eigenstates
and eigenvalues of B according to their parity. Thus, one is
led to consider the parity-projected bakers B�= �B�BR� /2.
In the semiclassical domain the traces of B� can be approxi-
mated by �5�

tr B�
L �

1

2� 2L/2

2L − 1	
�

e2�iNS��� �
2L/2

2L + 1	
�

e2�iNS����� .

�29�

The first summation above corresponds to the baker traces
�5�. In the second sum S���� stands for half the action �Eq.
�6�� of a periodic orbit of length 2L with symbolic code
�= ��0 ,�1 , . . . ,�L−1 ,�0 ,�1 , . . . ,�L−1�t, where �i=1−�i.
These are precisely the orbits invariant under the parity
transformation.

We shall exhibit the transfer matrix associated with the
reflected traces, pointing out the most important features.

Following the same procedure as in Sec. II we constructed a
transfer matrix M� such that

	
�

e2�iNS���� = tr M�2L. �30�

After eliminating the null subspace that appears as a conse-
quence of considering just the parity-invariant trajectories of
length 2L, the matrix M� is reduced to dimension 2L�2L:

M� =�
0 1 0 0 ¯ ¯ 0 0

0 0 0 1 0 ¯ 0 0

] ] ] ] ] � ] ]

0 0 0 0 ¯ ¯ 0 1

a0 0 0 0 ¯ ¯ 0 0

0 0 a1 0 ¯ ¯ 0 0

] ] 0 0 ¯ � ] ]

0 ¯ 0 0 ¯ ¯ a2L−1−1 0

 , �31�

where the matrix elements ak are given by

ak = exp
i���1 +
k̃

22L−1�� , �32�

with

�� =
�N22L−1

22L − 1
. �33�

The last undefined ingredient is the integer k̃. It is best ex-
pressed in terms of the binary digits of the integer k �see Eq.
�15��. If k=�2L−1−1¯�1�0, then

k̃ = �2L−1−1 ¯ �1�00�2L−1−1 ¯ �1�0. �34�

The main difference between the baker’s transfer matrix �11�
and the matrix above is that M� is exactly unitary �thus, its
spectrum lies on the unit circle�. Except for this fact, both M
and M� are structurally very similar. Perhaps this can be
better appreciated by looking at the quantum circuit for M�
in Fig. 6. The circuit acts on L qubits �without truncation�. It
starts like the baker’s, with a downward shift of all qubits.
Then we have a NOT gate acting on the first qubit given by

FIG. 5. Average distance of the largest eigenvalue to the unit
circle versus dimension for three ensembles of nonunitary random
matrices. Triangles, squares, and circles correspond to H� � COE,
�CUE+CUE� /�2 �normalized sum of two independent CUE
matrices�, and H� � CUE, respectively. See text for the definition of
the single-qubit nonunitary gate H�. Error bars correspond to statis-
tical errors. Straight lines representing decay laws N−1/3, N−1/2, and
N−1 have been drawn for reference.

FIG. 6. Quantum circuit associated with the semiclassical traces
of the parity-reflected baker map. From left to right, the circuit is
composed of a downward shift of all qubits �S↓�, a NOT gate �N�, a
one-qubit gate, and a sequence of L−1 two qubit phase gates. All
gates are unitary.
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N = �0 1

1 0
� . �35�

A phase gate P00��� follows that acts on the first qubit, with

� = ���1 +
2L−1 − 1

22L−1 � . �36�

Finally, there is a sequence of L−1 symmetrical two-qubit
phase gates P0k�� acting between the first and the kth
qubits with exponentially decreasing phases, 
= �̃ /2, �̃ /4, . . . , �̃ /2L, where �̃=���2L−1� /2L.

A complete study of the spectral properties of the re-
flected baker transfer matrix, truncation schemes, etc. is de-
ferred to a future publication because, as M� is unitary, such
analyses would take us in directions very different from
those followed in the case of the baker map. However, we
would like to anticipate one result which gives a hint about
the nature of the spectrum of M�.

Consider the 2Lth power of the transfer matrix M�, i.e.,
the 2Lth iteration of the circuit above. We verified that the
shifts and NOT gates cancel out and only phase gates remain.
This means that M�2L is a diagonal matrix �given that the
phase gates are diagonal�. It turns out that the diagonal ele-
ments are exactly the Gutwiller phases exp�iS� /�� in Eq.
�29� �we tested this numerically for some cases�. Thus, the
spectrum of M� is formed by roots of the Gutzwiller phases.

VII. CONCLUSIONS

We presented a study of the transfer-matrix approach to
the semiclassical traces of the baker map and its reflected
version. We found that the transfer matrices admit a tensor

product decomposition leading to simple circuit representa-
tions, similar to those obtained by Schack and Caves for the
quantum baker. Remarkably, in the case of the baker, the
corresponding circuit clearly isolates the source of nonuni-
tarity of the semiclassical traces in the form of a one-qubit
Hadamard-like gate. Given that both exact and semiclassical
bakers can now be written as circuits, this representation
appears as a promising tool for studying the corrections to
the Gutzwiller trace formula.

In the case of the baker, spectral properties were analyzed,
showing that there exists a close similitude with the transfer
operator of Ref. �6�. In fact, we proved that the transfer op-
erator arises as a suitable asymptotic limit of the transfer-
matrix formalism. Truncation schemes were discussed which
permit the numerical calculation of long-time traces well in-
side a domain where direct summation of the Gutzwiller for-
mula is impossible.

We would like to conclude by mentioning a very exciting
�although rather speculative� possibility. It is tempting to
think of the transfer matrices as maps for which the
Gutzwiller formula is exact. Admittedly this point of view
has some limitations because there is a map for each value of
L. Even so, our results suggest that we may be not far from
finding a close relative to the baker map having an exact
periodic-orbit trace formula. The search for such a map con-
stitutes a very attractive and challenging project which, how-
ever, exceeds the scope of the present paper.
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