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S-Estimators for Functional Principal
Component Analysis

Graciela BOENTE and Matı́as SALIBIAN-BARRERA

Principal component analysis is a widely used technique that provides an optimal lower-dimensional approximation to multivariate or
functional datasets. These approximations can be very useful in identifying potential outliers among high-dimensional or functional
observations. In this article, we propose a new class of estimators for principal components based on robust scale estimators. For a fixed
dimension q, we robustly estimate the q-dimensional linear space that provides the best prediction for the data, in the sense of minimizing the
sum of robust scale estimators of the coordinates of the residuals. We also study an extension to the infinite-dimensional case. Our method
is consistent for elliptical random vectors, and is Fisher consistent for elliptically distributed random elements on arbitrary Hilbert spaces.
Numerical experiments show that our proposal is highly competitive when compared with other methods. We illustrate our approach on a
real dataset, where the robust estimator discovers atypical observations that would have been missed otherwise. Supplementary materials
for this article are available online.

KEY WORDS: Functional data analysis; Robust estimation; Sparse data.

1. INTRODUCTION

Principal component analysis (PCA) is a widely used method
to obtain a lower-dimensional approximation to multivariate
data. This approximation is optimal in the sense of minimizing
the mean squared loss between the original observations and the
resulting approximations. Estimated principal components can
be a valuable tool to explore the data visually, and are also useful
to describe some characteristics of the data (e.g., directions of
high variability). Thanks to the ever reducing cost of collecting
data, many datasets in current applications are both large and
complex, sometimes with a very high number of variables. The
chance of having outliers or other type of imperfections in the
data increases both with the number of observations and their
dimension. Thus, detecting these outlying observations is an
important step, even when robust estimates are used, either as a
preprocessing step or because there is some specific interest in
finding anomalous observations.

As a motivation, consider the problem of identifying days
with an atypical concentration of ground level ozone (O3) in the
air. Ground level ozone forms as a result of the reaction between
sunlight, nitrogen oxide (NOx), and volatile organic compounds
(VOC). We obtained hourly average concentration of ground
level ozone at a monitoring station in Richmond, BC (a few kilo-
meters south of the city Vancouver, BC). The data come from the
Ministry of Environment of the province of British Columbia,
and are available online at http://envistaweb.env.gov.bc.ca. We
focus on the month of August for the years 2004 to 2012.
Figure 1 displays the data.
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Each line corresponds to the evolution of the hourly average
concentration (in ppb) of ground level ozone for 1 day. A few
days exceed the maximum desired level threshold of 50 ppb set
by the Canadian National Ambient Air Quality Objectives, but
there may also be days exhibiting an hourly pattern different
from the majority of the curves.

In this article, we study robust low-dimensional approxima-
tions for high-(or infinite-) dimensional data that can be used
to identify poorly fitted observations as potential outliers. The
earliest and probably most immediate approach to obtain ro-
bust estimates for the principal components consists in using
the eigenvalues and eigenvectors of a robust scatter estimator
(Campbell 1980; Devlin, Gnanadesikan, and Kettenring 1981;
Boente 1987; Naga and Antille 1990; Croux and Haesbroeck
2000). A different approach was proposed by Locantore et al.
(1999) based on using the covariance matrix of the data projected
onto the unit sphere. Since principal component directions are
also those that provide projections with the largest variabil-
ity, robust PCA estimators can alternatively be obtained as the
directions that maximize a robust estimator of scale of the pro-
jected data. This approach is called “projection pursuit,” see Li
and Chen (1985), Croux and Ruiz-Gazen (1996, 2005), Hubert,
Rousseeuw, and Verboven (2002), and Hubert, Rousseeuw, and
Vanden Branden (2005).

It is well known that, for finite-dimensional observations with
finite second moments, when using mean squared errors, the best
lower-dimensional approximation is given by the projections
onto the linear space spanned by the eigenvectors of the covari-
ance matrix corresponding to its largest eigenvalues. Several
robust proposals exist in the literature exploiting this character-
ization of PCA. They amount to replacing the squared residuals
with a different loss function. Liu et al. (2003) used the absolute
value of the residuals, and McCoy and Tropp (2011) proposed a
randomized algorithm to find an approximate solution to this L1

minimization problem. Croux et al. (2003) proposed a weighted
version of this procedure that reduces the effect of high-leverage
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Figure 1. Hourly mean concentration (in ppb) of ground level ozone
in Richmond, BC, Canada, for August of 2004 to 2012. The darker
dashed horizontal line at 50 ppb is the current maximum desired level
set by the Canadian National Ambient Air Quality Objectives.

points. Verboon and Heiser (1994) and De la Torre and Black
(2001) used a bounded loss function applied to column-wise
standardized residuals. Later, Maronna and Yohai (2008) pro-
posed a similar loss function, but modified in such a way that the
method reduces to the classical PCA when one uses a squared
loss function. Maronna (2005) also considered best-estimating
lower-dimensional subspaces directly, but his approach cannot
be easily extended to infinite-dimensional settings because there
may be infinitely many minimum eigenvalues.

There has been recent attention paid to a similar problem
in the engineering and computer science literature. The main
assumption in that approach is that a proportion of the observa-
tions lies on a proper lower-dimensional subspace, and that there
may be a sparse amount of arbitrary additive and diffuse “noise”
present. The objective is to fully recover the low-rank part of
the data. Chandrasekaran et al. (2011), Candès et al. (2011),
McCoy and Tropp (2011), and Xu, Caramanis, and Sanghavi
(2012) studied different convex relaxations of the problem of
finding an exact representation of the data matrix as the sum
of a low-rank one and a sparse one. Lerman et al. (2014) and
Zhang and Lerman (2014) also considered convex relaxations of
this problem. The focus of these proposals is on obtaining fast
algorithms, and they derive sufficient conditions to guarantee
that the solution to the surrogate convex optimization problem
is the lower-dimensional subspace that properly contains the
“nonoutlying” points.

Our approach relies on a probabilistic model and assumes that
our observations follow an elliptical distribution. We are inter-
ested in studying best lower-dimensional approximations, in the
sense of minimizing the expected prediction error over the dis-
tribution of the random vector. These approximations need not
fit exactly any subset of the data. Moreover, our goal is to obtain
robust alternatives for estimating principal spaces in infinite-
dimensional settings. We use finite (or high-)dimensional esti-

mators as a step toward achieving that purpose. Nevertheless,
our proposal provides consistent estimators of the best lower-
dimensional subspace when applied to multivariate data that
follow an elliptical distribution, even if second moments do
not exist. Furthermore, our approach is Fisher consistent for
the case of infinite-dimensional observations. Few robust prin-
cipal components estimates for functional data (FPCA) have
been proposed in the literature. Gervini (2008) studied spher-
ical principal components, and Hyndman and Ullah (2007)
discussed a projection-pursuit approach using smoothed tra-
jectories, but without studying their properties in detail. More
recently, Sawant, Billor, and Shin (2012) adapted the BACON-
PCA method to detect outliers and to provide robust estimators
of the functional components, while Bali et al. (2011) proposed
robust projection-pursuit FPCA estimators and showed that they
are consistent to the eigenfunctions and eigenvalues of the un-
derlying process.

The rest of the article is organized as follows. Section 2 tackles
the problem of providing robust estimators for a q-dimensional
approximation for Euclidean data. Section 3 discusses extend-
ing this methodology to accommodate functional data, and its
use to detect outliers is described in Section 4. In Section 5 we
report the results of a simulation study conducted to study the
performance of the proposed procedure for functional data. The
Richmond Ozone dataset is analyzed in Section 6, where the
advantage of the proposed procedure to detect possible influen-
tial observations is illustrated. Finally, Section 7 provides some
further discussion and recommendations. Proofs are relegated
to the online supplementary materials where we also analyze
the French mortality data.

2. S-ESTIMATORS OF THE PRINCIPAL
COMPONENTS IN Rp

Consider the problem of finding a lower-dimensional ap-
proximation to a set of observations xi , 1 ≤ i ≤ n, in Rp.
Specifically, we search for q < p vectors b(l) ∈ Rp, 1 ≤ l ≤ q,
whose spanned linear subspace provides a good approxima-
tion to the data. From now on, B ∈ Rp×q stands for the ma-
trix B = (b(1), . . . , b(q)), bT

j denotes the jth row of B, and the
subspace spanned by its columns is LB. For a given μ ∈ Rp,
the corresponding “fitted values” are x̂i = μ + B ai , 1 ≤ i ≤ n,
where ai ∈ Rq . The principal components are defined as the
minimizers, over matrices A ∈ Rn×q , B ∈ Rp×q , and vectors
μ ∈ Rp, of

L2(A, B,μ) =
n∑

i=1

‖xi − x̂i‖2
Rp =

n∑
i=1

p∑
j=1

r2
ij , (1)

where the ith row of the matrix A ∈ Rn×q is ai , rij = xij − x̂ij

and ‖ · ‖Rp denotes the usual Euclidean norm in Rp. Further-
more, this optimization problem can be solved using alternat-
ing regression iterations. Note that if we restrict B to satisfy
BTB = Iq , then the vectors ai , 1 ≤ i ≤ n, correspond to the
scores of the sample on this basis.

Our approach is based on noting that L2(A, B,μ) in (1) is
proportional to

∑p

j=1 s2
j , where s2

j is the sample variance of the
residuals’ jth coordinate: r1j , r2j , . . . , rnj . To reduce the influ-
ence of atypical observations, we propose to use robust scale
estimates instead of sample variances. Our robustly estimated
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q-dimensional subspace best approximating the data are defined
as the linear space LB where (A, B,μ) minimizes

LS(A, B,μ) =
p∑

j=1

σ̂ 2
j , (2)

and σ̂j denotes a robust scale estimator of the residuals rij =
xij − x̂ij , 1 ≤ i ≤ n. Note that if we use the sample variance s2

j

instead of σ̂ 2
j , then the objective function in (2) reduces to the

classical one in (1).
Scale estimators measure the spread of a sample and are

invariant under translations and equivariant under scale trans-
formations (see, e.g., Maronna, Martin, and Yohai 2006). Al-
though any robust scale estimator can be used in (2), to fix ideas
we focus our presentation on M-estimators of scale (see Hu-
ber and Ronchetti 2009). As in Maronna, Martin, and Yohai
(2006), let ρ : R → R+ be a ρ-function, that is, an even
function, nondecreasing on |x|, increasing for x > 0 when
ρ(x) < limt→+∞ ρ(t) and such that ρ(0) = 0. Given residu-
als rij (A, B,μ) = xij − x̂ij (A, B,μ) with x̂ij (A, B,μ) = μj +
aT

i bj , the M-estimator of scale of the residuals σ̂j = σ̂j (A, B,μ)
satisfies

1

n

n∑
i=1

ρc

(
rij (A, B,μ)

σ̂j

)
= b , (3)

where ρc(u) = ρ(u/c), and c > 0 is a user-chosen tuning con-
stant. When ρ(y) = min(3y2 − 3y4 + y6, 1), (Tukey’s biweight
function) with c = 1.54764 and b = 1/2, the estimator is Fisher
consistent at the normal distribution and has breakdown point
50%. In general, if ‖ρ‖∞ = 1, then the breakdown point of the
M-scale estimator is min(b, 1 − b).

We can write our estimator in a slightly more gen-
eral way as follows. Let π (y,LB) denote the orthogo-
nal projection of y onto LB. To simplify the presen-
tation, assume that μ is known. For each observation
xi ∈ Rp, 1 ≤ i ≤ n, let ri(LB) = xi − μ − π (xi − μ,LB) =
(ri1(LB), . . . , rip(LB))T denote the corresponding vector of
residuals and σ̂j,LB = σ̂ (r1j (LB), . . . , rnj (LB)) the scale esti-
mator of the jth coordinate of the residuals. Let �̂n(LB) =∑p

j=1 σ̂ 2
j,LB

. The S-estimator of the q-dimensional principal sub-

space is the linear space L̂ = LB̂ that solves

LB̂ = argmin
dim(LB)=q

�̂n (LB) . (4)

To study the asymptotic properties of robust estimators, it is
convenient to think of them as functionals of the empirical dis-
tribution of the sample (Huber and Ronchetti 2009). For ex-
ample, M-scale estimators in (3) correspond to the functional
σR : D → R+ defined for each distribution function F ∈ D as
the solution σR(F ) to the equation

∫
ρc(t/σR(F )) dF (t) = b.

Here, D is a subset of all the univariate distributions, which
contains all the empirical ones.

In what follows we will assume that xi ∈ Rp, 1 ≤ i ≤ n are
independent and identically distributed random vectors with
distribution P. The independence condition may be relaxed, for
instance, requiring stationarity and a mixing condition or just
ergodicity, since we only need the strong law of large numbers
to hold to guarantee the consistency results given below. For a
random vector x with distribution P, denote Fj (LB) the distribu-

tion of the jth coordinate of r(LB) and let �(L) = ∑p

j=1 σ 2
j,L,

where σj,L = σR(Fj (LB)). The functional L(P ) corresponding
to the S-estimators defined in (4) is the linear space of dimension
q that satisfies

L(P ) = argmin
dim(L)=q

�(L) . (5)

Recall that a random vector is said to have a spherical distribu-
tion if its distribution is invariant under orthogonal transforma-
tions. In particular, the characteristic function of a spherically
distributed x ∈ Rp is of the form ϕx(t) = φ(tTt) for t ∈ Rp,
where φ : R → R is the generator of the characteristic function.
We write x ∼ Sp(φ). For a p × p matrix B and a vector μ ∈ Rp,
the distribution of x = Bz + μ when z ∼ Sp(φ) is called ellip-
tical, Ep(μ,�, φ), where � = BBT. The following proposition,
whose proof is relegated to the online supplementary materials,
shows that the solution to (5) is the desired linear space.

Proposition 2.1. Let x ∼ Ep(0,�, φ) be an ellipti-
cally distributed random vector with � = β�βT, � =
diag(λ1, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp, where β is an orthonor-
mal matrix with columns β (1), . . . ,β (p). Assume that λq >

λq+1. Then, the linear space Lq spanned by β(1), . . . ,β (q) is
the unique solution of (5).

As mentioned before, this approach can also be used
with any robust scale estimator. For example, we can de-
fine τ -estimators by considering the τ -best lower-dimensional
approximations, given by the minimizers of Lτ (A, B,μ) =∑p

j=1 σ̂ 2
j

∑n
i=1 ρ1(rij (A, B,μ)/σ̂j ), where σ̂j = σ̂j (A, B,μ) is

an M-scale estimator computed as in (3) with a ρ-function ρ

such that ρ ≤ ρ1. Note that if an iterative procedure is used to
solve (4), the scale estimators σ̂j need to be updated at each step
of the algorithm.

Consistency of projection-pursuit principal component esti-
mators for random vectors was derived in Cui, He, and Ng
(2003) requiring uniform convergence over the unit ball of the
projected data scale estimators to the scale functional. This con-
dition was generalized in Bali et al. (2011) to the functional
case. A natural extension for q > 1 is

sup
dim(L)=q

|�̂n(L) − �(L)| a.s.−→ 0 . (6)

Note that this condition is easily verified when using a robust
scale functional with finite-dimensional random vectors since
the Stiefel manifold Vp×q = {B ∈ Rp×q : BTB = Iq} is a com-
pact set. Furthermore, the following proposition shows that this
condition is sufficient to obtain consistency of the S-estimators
in (4).

Proposition 2.2. Assume that L(P ) is unique and that (6)
holds. Then, the estimators L̂ = LB̂ obtained minimizing �̂n(L)
in (4) over linear spaces L of dimension q, are consistent to the
linear spaceL(P ) defined in (5). In other words, with probability
one, π (x, L̂) converges to π (x,L(P )), for almost all x.

2.1 Algorithm for S-Estimators

The optimization problem defining our estimator is generally
nonconvex, and typically difficult to solve. In this section, we
show that first-order conditions for a critical point of the ob-
jective function in (4) naturally suggest an iterative reweighted
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least-square algorithm. Once such iterations are available, a
standard strategy used in the statistical literature to compute
this type of estimators (e.g., Rousseeuw and van Driessen 1999;
Maronna 2005; Salibian-Barrera and Yohai 2006) is to use a
large number of random initial points, and select the best visited
local minimum as the estimator.

Note that although S-scale estimators are only defined im-
plicitly, explicit first-order conditions can be obtained dif-
ferentiating both sides of (3). More specifically, let σ̂j ,
j = 1, . . . , p be an M-estimator of scale of the resid-
uals xij − x̂ij , i = 1, . . . , n. In other words, σ̂j satisfies
(1/n)

∑n
i=1 ρ((xij − μj − aT

i bj )/σ̂j ) = b , where we have
absorbed the constant c into the loss function ρ. The derivatives
with respect to ai , i = 1, . . . , n are given by

∂

∂ai

⎛⎝ p∑
j=1

σ̂ 2
j

⎞⎠ =
p∑

j=1

2 σ̂j

∂ σ̂j

∂ai

= −2
p∑

j=1

σ̂j h−1
j ρ ′

(
rij

σ̂j

)
bj ,

i = 1, . . . , n ,

where hj = ∑n
i=1 ρ ′(rij /σ̂j ) rij /σ̂j . Similarly, the other first-

order conditions are

∂

∂bs

⎛⎝ p∑
j=1

σ̂ 2
j

⎞⎠ =
p∑

j=1

2 σ̂j

∂ σ̂j

∂bs

= −2 σ̂s h−1
s

n∑
i=1

ρ ′
(

ris

σ̂s

)
ai ,

s = 1, . . . , p

∂

∂μ�

⎛⎝ p∑
j=1

σ̂ 2
j

⎞⎠ =
p∑

j=1

2 σ̂j

∂ σ̂j

∂μ�

= −2 σ̂� h−1
�

n∑
i=1

ρ ′
(

ri�

σ̂�

)
,

� = 1, . . . , p .

Setting these to zero, we obtain a system of equations that can
be reexpressed as reweighted least-square problems as follows:
let wij = σ̂j h−1

j r−1
ij ρ ′(rij /σ̂j ), then we need to solve

p∑
j=1

wij (xij − μj )bj =
⎛⎝ p∑

j=1

wij bj bT
j

⎞⎠ ai , 1 ≤ i ≤ n ,

n∑
i=1

wij (xij − μj )ai =
(

n∑
i=1

wij aiaT
i

)
bj , 1 ≤ j ≤ p ,

n∑
i=1

wij

(
xij − aT

i bj

) =
n∑

i=1

wij μj , 1 ≤ j ≤ p .

This formulation suggests the usual iterative reweighted
least-square (IRWLS) algorithm. Given initial estimates b(0)

j ,

1 ≤ j ≤ p, and μ(0) compute the scores a(0)
i , i = 1, . . . , n, the

weights w
(0)
ij and obtain updated values for a(1)

i , b(1)
j , 1 ≤ i ≤ n,

1 ≤ j ≤ p, and μ(1). We repeat these steps until the objec-
tive function changes less than a chosen tolerance value. The
best q-dimensional linear space approximation is spanned by

{̂b(1), . . . , b̂(q)}, the final values obtained above. For interpre-
tation purposes, we orthogonalize the set {̂b(1), . . . , b̂(q)} and
compute the scores âi as the corresponding orthogonal projec-
tions.

For the initial location vector μ(0), we use the L1-median,
and adapt the strategy of Rousseeuw and van Driessen (1999) to
select initial values for B and A. More specifically, we generate
N1 random starts for the matrix B, which are orthogonalized,
each of them leading to an initial matrix B(0). The columns of the
matrix A are the scores of each observation on the basis given by
the q columns of B(0). For each of these initial values, we run N2

IRWLS iterations, or until a tolerance level is achieved. The ini-
tial values giving the best objective function after N2 iterations
are then iterated until convergence. This algorithm depends on
the number of random starts N1, the desired tolerance for se-
quential change in the objective function, and the number of
iterations N2 that is applied to each random candidate. In our
experiments, we used a tolerance of 10−6 and found that using
N1 = 50 random starts and N2 = 50 partial IRWLS iterations
for each of them was typically sufficient to find a good solution
to (4), which is in line with the results of Maronna (2005).

An implementation of this algorithm in R is publicly avail-
able online from http://www.stat.ubc.ca/∼matias/soft.html. Al-
though a formal computational complexity analysis of this al-
gorithm is beyond the scope of this article, our numerical exper-
iments reported in Section 5 show that the algorithm works very
well. We tested the speed of our R code using these settings on an
Intel i7 CPU (3.5GHz) machine running Windows 7. In Table 1,
we report the average time in CPU minutes over 10 random sam-
ples for different combinations of the sample size (n), number of
variables (p), and dimension of the subspace (q). Note that these
times could be improved notably if the algorithm was imple-
mented in C or a language with faster linear algebra operations.

2.2 Choosing the Dimension of the Approximating
Subspace

In some cases, the desired dimension of the linear subspace
providing an approximation to the data is either known or chosen
in advance (e.g., for visualization purposes). In many applica-
tions, however, this dimension is selected based on the resulting
“proportion of unexplained variability.”

Proposition 2.1 shows that for x ∼ Ep(0,�,Œ), the func-
tional �(L) is minimized, when L = Lq the subspace spanned
by the first q eigenvectors of the scatter matrix and �(Lq) =∑p

j=q+1 λj . Note that for q = 0, we have �(L0) = ∑p

j=1 λj =
tr(�) = ∑p

j=1 σ 2
j,0, where σj,0 = σR(Fj,0) with Fj,0 the distri-

bution of rj (μ) = xj − μj . Thus, the proportion of unexplained
variability can be defined as uq = �(Lq)/�(L0) and an estima-
tor of uq is given by ûq = �̂n(L̂q)/�̂n(L̂0), where L̂q is defined
in (4) and L̂0 corresponds to minimizing �̂n(L0) = ∑p

j=1 σ̂ 2
j,L0

with σ̂j,L0 = σ̂ (r1j (μ), . . . , rnj (μ)) the scale estimator of the jth
coordinate of the residuals ri(μ) = xi − μ. Proposition 2.2 can
be used to show the consistency of ûq to uq .

To avoid the high computational cost of solving (4) for dif-
ferent values of q, we adapt the strategy of Maronna (2005).
Let umax be the maximum allowed proportion of unexplained
variability, and a maximum dimension qmax of the approximat-
ing subspace. We look for the smallest q0 such that q0 ≤ qmax
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Table 1. Average timing of the IRWLS algorithm (in CPU minutes)

p = 50 p = 100 p = 200 p = 500

n q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

50 4.2 4.3 3.9 8.7 8.9 8.1 17.8 17.9 16.8 53.5 53.8 53.3
100 5.0 4.9 4.8 9.9 10.0 8.9 20.5 22.6 23.6 69.0 67.2 70.8
200 5.6 6.0 5.8 11.5 12.2 10.8 25.8 28.1 25.0 97.6 108.5 116.3

and ûq0 ≤ umax. We first verify that ûqmax ≤ umax otherwise the
problem cannot be solved and we need to modify our goals.
The procedure starts with q1 = 1. If û1 ≤ umax we are done.
Otherwise, assume that after j steps, we have ûqj

≥ umax, where
qj = j dimension used in step j. Let μ̂(qj ) be the estimated
center and B̂qj

∈ Rp×qj the orthonormal basis of the best qj -

dimensional subspace, with columns b̂(1)
qj

, . . . , b̂
(qj )
qj

. As before,

let Âqj
∈ Rn×qj be the matrix of scores. Let qj+1 = qj + 1

and define the matrices B = (B̂qj
,β) ∈ Rp×qj+1 , with β ∈ Rp,

and A = (Âqj
,α) ∈ Rn×qj+1 with α ∈ Rn. Let b1, . . . , bqj +1 and

a1, . . . , an denote the columns of B and the rows of A, respec-
tively. We construct our predictions as x̂

(qj+1)
i� = μ̂

(qj )
� + aT

i b�,

and note that the residuals satisfy r
(qj+1)
i� = r

(qj )
i� − αiβ�. Our

problem is now to minimize LS(A, B, μ̂(qj )) over β, α such that
B̂T

qj
β = 0, with LS(A, B,μ) given in (2). A system of equations

analogous to that described in Section 2.1 can be derived to
formulate an iterative reweighted least-square algorithm. Once
the optimal β and α are found, we optimize LS(A, B,μ) over μ

to obtain μ̂(qj+1). This approach is much faster than solving (4)
for q = qj+1. Note that ũqj+1 = �̂n(L̃qj+1 )/�̂n(L̂0) is typically
larger than ûqj+1 , so that if ũqj+1 ≤ umax, we select q = qj+1,
and otherwise increase j and continue.

3. S-ESTIMATORS IN THE FUNCTIONAL SETTING

In this section, we discuss extensions of the estimators defined
in Section 2 to accommodate functional data. The most common
situation corresponds to the case when the observations corre-
spond to realizations of a stochastic process X ∈ L2(I) withI an
interval of the real line, which can be assumed to be I = [0, 1].
A more general setup that can accommodate applications where
observations are images, for example, is to consider realizations
of a random element on a separable Hilbert space H with inner
product 〈·, ·〉H and norm ‖ · ‖H. Note that principal components
for functional data (defined via the Karhunen–Loève decompo-
sition of the covariance function of the process X) also have the
property of providing best lower-dimensional approximations,

in the L2 sense. Recently, a stochastic best lower-dimensional
approximation for elliptically distributed random elements on
separable Hilbert spaces, such as those considered when deal-
ing with multivariate data, was obtained by Boente, Salibian-
Barrera, and Tyler (2014). This optimality property does not
require second moment conditions.

However, even in the simplest situation when X ∈ L2([0, 1]),
one rarely observes entire curves. The functional datum for
replication i usually corresponds to a finite set of discrete values
xi 1, . . . , xi mi

with xij = Xi(tij ), 1 ≤ j ≤ mi . Depending on the
characteristics of the grid of points tij where observations were
obtained, one can employ different strategies to analyze these
data.

The easiest situation is when observations were made at
common design points. In this case, we have p = m1 = mi

and tij = τj , for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Defining xi =
(xi 1, . . . , xi p)T, a purely multivariate approach can be used as
in Section 2 to obtain a q-dimensional linear space L̂ spanned
by orthonormal vectors b̂(1), . . . , b̂(q). An associated basis in
L2([0, 1]) can be defined as φ̂�(τj ) = a�b̂� j , for 1 ≤ � ≤ q,
1 ≤ j ≤ p, where a� is a constant to ensure that ‖φ̂�‖L2 = 1
and b̂(�) = (b� 1, . . . , b� p)T. Smoothing over the observed data
points, one can recover the complete trajectory. This approach
provides a consistent estimator for the best approximating lin-
ear space and the corresponding “fitted trajectories” π (Xi, L̂),
1 ≤ i ≤ n.

In many cases, however, trajectories are observed at different
design points tij , 1 ≤ j ≤ mi , 1 ≤ i ≤ n. In what follows, we
will assume that as the sample size n increases, so does the
number of points where each trajectory is observed and that, in
the limit, these points cover the interval [0, 1]. Our approach
consists of using a sequence of finite-dimensional functional
spaces, which increases with the sample size. The basic idea is
to identify each observed point in H with the vector formed by
its coordinates on a finite-dimensional basis that increases with
the sample size. The procedure of Section 2 can be applied to
these vectors to obtain a q-dimensional approximating subspace,
which can then be mapped back onto H.

Table 2. Mean prediction errors over 500 replications for Model 1

ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 1.266 26.930 1.138 269.316 1.264 53.780 1.013 269.685 1.265
LS 1.246 18.961 5.065 193.372 5.679 37.429 5.682 187.461 7.104
S (3) 1.253 26.922 1.126 269.245 1.252 53.425 1.081 268.453 1.361
S (1.5) 1.308 26.872 1.270 268.937 1.417 53.241 1.464 267.400 1.850
PP 1.335 26.536 1.335 265.791 1.486 51.845 1.559 260.972 1.972
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Table 3. Mean prediction errors over 500 replications for Model 2

ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 1.359 10.063 1.222 100.589 1.358 20.054 1.087 100.598 1.358
LS 1.339 1.597 4.032 19.528 4.512 1.840 4.482 9.505 5.610
S (3) 1.346 9.839 1.380 99.230 1.541 12.427 2.357 69.919 3.035
S (1.5) 1.401 9.638 2.047 97.207 2.296 17.916 2.891 90.648 3.645
PP 1.428 8.922 1.427 90.696 1.589 14.865 1.618 76.535 2.039

More specifically, let {δi}i≥1 be an orthonormal basis of H
and, for each n ≥ 1, let Hpn

be the linear space spanned by
δ1, . . . , δpn

. To simplify the notation, we write p = pn. Let
xij = 〈Xi, δj 〉H be the coefficient of the ith trajectory on the jth
element of the basis, 1 ≤ j ≤ p, and form the p-dimensional
vector xi = (xi1, . . . , xip)T. When, H = L2([0, 1]), the inner
products 〈Xi, δj 〉H can be numerically computed using a Rie-
mann sum over the design points for the ith trajectory {tij }1≤j≤mi

.
We apply the procedure described in Section 2 to the multivariate
observations x1, . . . , xn ∈ Rp to obtain a q-dimensional linear
space L̂ spanned by orthonormal vectors b̂(1), . . . , b̂(q) and the
corresponding “predicted values” x̂i = μ̂ +∑q

�=1 âi�b̂(�), with
μ̂ = (μ̂1, . . . , μ̂p)T. It is now easy to find the corresponding
approximation in the original space H. The location parame-
ter is μ̂H = ∑p

j=1 μ̂j δj , and the associated q-dimensional basis

in H is φ̂� = ∑p

j=1 b̂� j δj /‖
∑p

j=1 b̂� j δj‖H, for 1 ≤ � ≤ q. Fur-

thermore, the “fitted values” in H are X̂i = μ̂H +∑q

�=1 âi�φ̂�.
Moreover, since ‖xi − x̂i‖Rp � ‖Xi − X̂i‖H, we can also use
squared residual norms to detect atypical observations.

For a proof of the Fisher consistency of this approach, we refer
the reader to Section S.1 of the online supplementary materials.

3.1 Algorithm for Functional Data

In this section, we give details on how to compute our S-
estimators for functional principal components. The basic idea
consists of applying the algorithm of Section 2.1 to the coor-
dinates of the observed data on a sufficiently rich orthonormal
basis of the Hilbert space, and then transforming back the result
to the original variables.

To fix ideas, consider the case where the data consist of func-
tions Xi , 1 ≤ i ≤ n, observed at points t1, . . . , tm. We approx-
imate the L2 inner product with a Riemann sum over the grid
of points: 〈α , β〉H = ∫

α(t)β(t) dt ≈ ∑m
�=2 α(t�)β(t�)(t� −

t�−1). Let ν1, . . . , νp be a B-spline basis. We orthonormalize
ν1, . . . , νp using the approximated inner product to obtain or-

thonormal elements δ1, . . . , δp. Let � ∈ Rm×p be the matrix of
the functions δj evaluated at the points ti : � = (δ1, δ2 . . . δp),
where δj = (δj (t1), δj (t2), . . . , δj (tm))T. Then, if X ∈ Rn×m is
the matrix of observed trajectories (one in each row), the co-
ordinates of each Xi on each element δj of the spline basis
is denoted as x̃i,j = ∑m

�=2 Xi(t�)δj (t�)(t� − t�−1) ≈ 〈Xi , δj 〉H,
1 ≤ i ≤ n, 1 ≤ j ≤ p. We now apply the algorithm given in
Section 2.1 to the “data” matrix X̃ ∈ Rn×p of the coordinates
of our observations on the B-spline basis. We obtain the cen-
ter vector μ̃ ∈ Rp, an orthonormal basis B̃ ∈ Rp×q of the best
q-dimensional subspace, and the matrix of scores Ã ∈ Rn×q .
The matrix ̂̃X = In μ̃T + ÃB̃T provides the q-dimensional ap-
proximation to our functional data written in the B-splines
basis. Finally, we express our solution in the original vari-
ables X̂ = ̂̃X �T. Note that X̂ = In (�μ̃)T + Ã(� B̃)T. In other
words, � μ̃ ∈ Rm is the vector of the center function μ̂H eval-
uated at the points t1, . . . , tm, and � B̃ ∈ Rm×q is the matrix of
q orthonormal functions φ̂� spanning the best lower approxima-
tion space in H, evaluated on the same points.

4. OUTLIER DETECTION

An important use of robust estimators for multivariate data is
the detection of potential outliers; see, for example, Rousseeuw
and Van Zomeren (1990), Becker and Gather (2001), Pison and
van Aelst (2004), and Hardin and Rocke (2005). Unfortunately,
these approaches do not extend naturally to the functional case.

Alternatively, one can consider the PCA residuals as in-
dicators of outlyingness. Given a sample x1, . . . , xn in Rp

and the estimated subspace L̂ = LB̂ in (4), one can construct
the corresponding “best q-dimensional” approximations x̂i =
μ̂ + π (xi − μ̂,LB̂) = μ̂ + B̂B̂T(xi − μ̂), 1 ≤ i ≤ n. We expect
outlying or otherwise atypical observations to be poorly fitted
and thus to have a relatively large residual Ri = ‖ri(LB̂)‖Rp =
‖(I − B̂B̂T)(xi − μ̂)‖Rp , 1 ≤ i ≤ n. Exploring the norm of
these residuals sometimes provides sufficient information to

Table 4. Mean prediction errors over 500 replications for Model 3

ε = 0.00 ε = 0.10 ε = 0.20

Method Clean Out Clean Out
1

Clean Out Clean Out
1

Clean

True 0.304 4.411 0.274 44.163 0.304 8.842 0.243 44.088 0.304
LS 0.285 2.074 0.660 18.457 0.736 5.599 0.711 27.363 0.893
S (3) 0.301 4.412 0.269 44.148 0.299 8.846 0.237 44.113 0.297
S (1.5) 0.354 4.465 0.318 44.674 0.354 8.931 0.284 44.535 0.355
PP 0.385 4.439 0.355 44.397 0.394 8.913 0.321 44.430 0.402
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Table 5. Average sensitivity and specificity over 500 random samples following Model 1

ε1 LS PP S (3) S (1.5) HDR BAG LRT DTR DWE HU

Sensitivity
0.10 0.914 1.000 1.000 0.998 0.155 0.597 0.305 1.000 1.000 1.000
0.20 0.295 0.835 0.856 0.833 0.074 0.224 0.018 1.000 1.000 1.000

Specificity

0.00 0.982 0.982 0.981 0.982 0.986 0.983 0.978 0.802 0.802 0.782
0.10 0.999 0.997 0.996 0.997 0.999 0.982 1.000 0.839 0.839 0.792
0.20 1.000 1.000 1.000 1.000 0.999 0.989 1.000 0.897 0.897 0.808

detect abnormal points in the data. It is worth noticing that
the distribution of the residuals squared norm R2

i is unknown,
but typically skewed to the right because they are bounded
by 0 from below. Following the approach of Hubert and Van-
dervieren (2008), we propose to flag an observation as atypical
if its squared residual norm exceeds the upper whisker of a
skewed-adjusted boxplot.

Another way to use principal components to look for poten-
tial outliers considers the scores of each point on the estimated
principal eigenvectors. The solution to (4) provides an estimated
basis b̂(j ), 1 ≤ j ≤ q (the columns of B̂) for the optimal q-
dimensional linear space spanned by the first q eigenvectors, but
the b̂(j )’s themselves need not be estimates of the principal direc-
tions. However, we can use an approach similar to “projection
pursuit” to sequentially search for vectors in L̂B̂ that maximize
a robust scale estimate of the corresponding projections of the
data. Specifically, for each γ ∈ L̂B̂, let Fn[γ ] be the empirical
distribution of the projected observations γ Tx1, . . . , γ

Txn, and
σR(Fn[γ ]) be the corresponding scale estimator. The estimated
first principal direction is obtained maximizing σR(Fn[γ ]) over
unitary vectors in L̂B̂. Subsequent principal directions are simi-
larly computed with the additional condition of being orthogonal
to the previous ones. The scores of each observation on the es-
timated principal directions can be used to screen for atypical
data points.

Both of these last two approaches have natural counterparts
for functional data and can be used with the estimators defined
in Section 3. Hyndman and Shang (2010) defined two detec-
tion rules based on the scores of a robust two-dimensional fit
and compared them with a residuals-based PCA procedure in-
troduced by Hyndman and Ullah (2007). Our simulation study
in Section 5 includes these methods as well those based on
functional depth proposed by Febrero, Galeano, and Gonzalez-
Manteiga (2007, 2008).

As in the finite-dimensional case, to find potential outliers
one may consider looking for curves Xi that are poorly pre-
dicted by the S-estimator using the squared prediction errors
R2

i,H = ‖Xi − X̂i‖2
H, i = 1, . . . , n. As in the finite-dimensional

case, the distribution of these prediction residuals is unknown
and difficult to estimate. Hyndman and Ullah (2007) proposed to
use a normal approximation to the residual squared norm, which
they called the integrated squared error, to define a threshold.
Our approach is more data analytic and does not depend on
the underlying distribution of the process even if we always
have in mind that the uncontaminated process has an elliptical
distribution. For that reason, we mimic the proposal given in
the finite-dimensional case and to decide whether an observa-
tion may be flagged as a potential outlier, we used the adjusted
boxplot of Hubert and Vandervieren (2008) on the residuals
R2

i,H, identifying as an atypical observation a value exceeding
the upper whisker of the adjusted boxplot. We use this ap-
proach in the example and in our simulation study discussed
below.

5. SIMULATION

In this section, we present the results of a simulation study per-
formed to investigate the finite-sample properties of our robust
sieve proposal. In all cases, we generated 500 samples of size
n = 70 where each trajectory was observed at m = 100 equidis-
tant points in the interval [0, 1]. We used a cubic B-spline basis
of dimension p = 50, which is sufficiently rich to represent the
data well. This choice represents a realistic situation where the
sample size is similar to the dimension of the problem. Other
reasonable choices for the dimension of the spline basis (even
with n < p) yielded very similar results and lead to the same
conclusions in our numerical experiments.

Table 6. Average sensitivity and specificity over 500 random samples following Model 2

ε1 LS PP S (3) S (1.5) HDR BAG LRT DTR DWE HU

Sensitivity
0.10 0.178 0.996 0.979 0.915 0.135 0.774 0.059 0.350 0.353 1.000
0.20 0.020 0.708 0.637 0.474 0.053 0.079 0.005 0.239 0.239 1.000

Specificity

0.00 0.980 0.980 0.980 0.980 0.986 0.982 0.978 0.803 0.803 0.782
0.10 0.996 0.997 0.997 0.997 0.997 0.958 1.000 0.817 0.817 0.774
0.20 0.994 1.000 0.997 1.000 0.994 0.988 0.999 0.815 0.815 0.770
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Table 7. Average sensitivity and specificity over 500 random samples following Model 3

ε1 LS PP S (3) S (1.5) HDR BAG LRT DTR DWE HU

Sensitivity
0.10 0.936 1.000 1.000 1.000 0.148 0.489 0.124 0.982 0.988 1.000
0.20 0.603 0.848 0.850 0.848 0.071 0.418 0.063 0.922 0.977 1.000

Specificity

0.00 0.987 0.986 0.987 0.987 0.986 0.983 0.990 0.804 0.804 0.849
0.10 0.998 0.997 0.998 0.998 0.999 0.988 1.000 0.838 0.837 0.869
0.20 1.000 1.000 1.000 1.000 0.999 0.991 1.000 0.863 0.886 0.896

5.1 Simulation Settings

The following three different models constructed from finite-
and infinite-range processes were used to generate the data.
In two of them we included a relatively small proportion of
measurement errors, as is usual in many applications.

Model 1. This model corresponds to the case where most of
the curves follow a smooth trajectory, but some of them may
display sudden vertical jumps at a few time points. In this setup,
the noncontaminated observations Xi ∼ X, 1 ≤ i ≤ n, with
X(ts) ∼ 10 + μ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs , s = 1, . . . , 100,
where the additive errors zs are iid N (0, 1), the scores
ξ1 ∼ N (0, 25/4), ξ2 ∼ N (0, 1/4), ξ1 and ξ2 are independent
and independent of zs . The mean function is μ(t)=5+10 sin(4πt)
exp(−2t)+5 sin(πt/3)+2 cos(πt/2) and φ1(t) = √

2 cos(2πt)
and φ2(t) = √

2 sin(2πt) correspond to the Fourier
basis.

We also generated contaminated trajectories X
(c)
i as realiza-

tions of the process X(c) defined by X(c)(ts) = X(ts) + V Y (ts),
s = 1, . . . , 100, where V ∼ Bi(1, ε1) is independent of X and
Y , Y (ts) = Ws z̃s with Ws ∼ Bi(1, ε2), z̃s ∼ N (μ(c), 0.01),
Ws and z̃s are all independent. In other words, a trajectory
is contaminated with probability ε1, and at any point ts the
contaminated function is shifted with probability ε2. The shift
is random but tightly distributed around the constant μ(c) = 30.
Samples without outliers correspond to ε1 = 0. To investigate
the influence of different outlier configurations of our estimator,
we considered the settings: ε1 = 0.10 and ε1 = 0.20, with
ε2 = 0.30 in both cases.

Model 2 This situation corresponds to a similar case as in
Model 1, but with some curves starting on a different trajec-
tory that joins smoothly with the one that most curves fol-
low. In this case, noncontaminated observations Xi ∼ X were
generated as X(ts) ∼ 150 − 2μ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs ,
s = 1, . . . , 100, where zs , ξ1, ξ2, μ, φ1, and φ2 are as in the
previous model. However, contaminated trajectories are only
perturbed in a specific part of their range. The atypical observa-
tions satisfy X

(c)
i ∼ X(c), where X(c)(ts) = X(ts) + V Y (ts) for

ts < 0.4 and X(c)(ts) = X(ts) for ts ≥ 0.4, where V ∼ Bi(1, ε1)
is independent of X and Y , Y (ts) = Wsz̃s with Ws ∼ Bi(1, ε2),
z̃s ∼ N (μ(c)(ts), 0.01), with μ(c)(ts) = −5 − 2μ(ts), and Ws

and z̃s are all independent. In this model, we used ε1 = 0.10
and ε1 = 0.20, and in both cases we set ε2 = 0.90.

Model 3. This setting corresponds to functions that follow
an infinite-rank stochastic process. Contamination is present
in terms of short, sudden vertical shifts. Curves were gener-
ated from a Gaussian process with covariance kernel γX(s, t) =
10 min(s, t). The eigenfunctions of the covariance operator
equal φj (t) = √

2 sin((2j − 1)(π/2)t), j ≥ 1, with associated
eigenvalues λj = 10(2/[d(2j − 1)π ])2. As in Sawant, Billor,
and Shin (2012), the contaminated observations X

(c)
i are defined

as X
(c)
i (s) = Xi(s) + Vi Di M I{Ti<s<Ti+�}, where Vi ∼ Bi(1, ε),

P (Di = 1) = P (Di = −1) = 1/2, Ti ∼ U(0, 1 − �), � < 1/2,
and Vi , Xi , Di , and Ti are independent. We choose � = 1/15,
M = 30, and ε = 0.1 and 0.2.

5.2 The Estimators

We computed the classical principal components estimator
(LS) as well as the robust one defined in (2), using an M-scale
estimator, with function ρc in Tukey’s bisquare family with tun-
ing constants c = 1.54764 and b = 0.50. We also considered
the choice c = 3.0 and b = 0.2426, which we expect to yield
more efficiency. The robust estimators are labeled as S (1.5) and
S (3) in the tables. As mentioned in Section 2.1, after obtaining
the robust q-dimensional linear space, we orthonormalize its
basis and compute the scores âi as the corresponding orthogo-
nal projections. We also computed the sieve projection-pursuit
approach proposed in Bali et al. (2011), which is called “PP”
in our tables. For comparison purposes, we have also calcu-
lated the mean squared prediction errors obtained with the true
best q-dimensional linear space for uncontaminated data. This
benchmark is indicated as “True” in all tables. Since trajec-
tories following Models 1 and 2 were generated using a two-
dimensional scatter operator (i.e., the underlying process had
only two nonzero eigenvalues) plus measurement errors, we
used q = 1 with our estimator. For Model 3, we used q = 4,
which results in 95% of explained variance.

5.3 Simulation Results

To summarize the results of our simulation study, for each
replication we consider mean squared prediction errors in the
original space, that is, based on ‖Xi − X̂i‖2

H. The conclu-
sions that can be reached using the finite-dimensional resid-
uals squared prediction error ‖xi − x̂i‖2

Rp are the same as those
discussed below, and hence are not reported here. Tables 2
to 4 report the average mean squared error for outlying and
nonoutlying trajectories separately, as a way to quantify how the
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procedures fit the bulk of the data. More specifically, let γi = 1
when Xi is an outlier and γi = 0 otherwise, then

PEH,OUT = 1

n

n∑
i=1

γi‖Xi − X̂i‖2
H

and

PEH,CLEAN = 1

n

n∑
i=1

(1 − γi)‖Xi − X̂i‖2
H . (7)

Note that the total prediction error equals PEH = (1/n)
∑n

i=1
‖Xi − X̂i‖2

H = PEH,OUT + PEH,CLEAN. We also report the
mean PE over contaminated and clean trajectories separately:

PEH,OUT =
∑n

i=1 γi‖Xi − X̂i‖2
H∑n

i=1 γiand
PEH,CLEAN =

∑n
i=1(1 − γi)‖Xi − X̂i‖2

H∑n
i=1(1 − γi)

.

We also compute the prediction squared errors of the actual best
lower-dimensional predictions X̂0

i , obtained with the first q true
eigenfunctions (recall that we used q = 1 in Models 1 and 2, and
q = 4 in Model 3). The results for this “estimator” are tabulated
in the row labeled “True.” The averages over the 500 replications
of PEH,OUT, PEH,CLEAN, PEH,OUT, and PEH,CLEAN are labeled
“Out,” “Clean,” “Out,” and “Clean,” respectively.

As expected, when no outliers are present all procedures are
comparable, with a small loss for the robust procedures. The
S-estimator with c = 3 had the second smallest mean squared
prediction error, after the LS. When samples were contaminated,
the classical procedure based on least squares tries to compro-
mise between outlying and nonoutlying trajectories and this is
reflected on the values of PEH,OUT and PEH,CLEAN in (7) and
also on the average prediction error of the contaminated and
noncontaminated trajectories PEH,OUT and PEH,CLEAN. With
contaminated samples, the S-estimator had the best performance
overall. Its mean squared prediction was closest to the “True”
one, and it also provided better fits to the noncontaminated sam-
ples (and worse predictions for the contaminated trajectories).
This last observation can be seen comparing the columns labeled
“Out” and “Clean.” The only case when the sieves projection-
pursuit estimator performed slightly better than the S-estimator
is for Model 2 with ε1 = 0.20 and ε2 = 0.90 (see Table 3). The

advantage of the S-estimator was more notable in all the other
cases of Model 1, Model 2, and Model 3.

We also compared the performance of different outlier detec-
tion methods for functional data. As described in Section 4,
we used the squared prediction errors R2

i,H = ‖Xi − X̂i‖2
H,

i = 1, . . . , n, to find curves Xi that are poorly predicted. Those
with squared prediction errors exceeding the upper whisker of
the adjusted boxplot will be flagged as outliers. We used the
same approach with predictors X̂i obtained using the other es-
timators mentioned before.

In addition, we included other outlier-detection methods for
functional data that appeared in the literature. We considered
the functional high-density region and the functional bagplots
of Hyndman and Shang (2010) with a 99% coverage, denoted as
HDR and BAG, respectively, as well as the integrated squared
error method defined in Hyndman and Ullah (2007), denoted as
HU. The first two methods are based on the scores of a two-
dimensional robust projection-pursuit fit. To keep the compari-
son fair, for HU we chose a q-dimensional robust fit with q = 1
under Models 1 and 2 and q = 4 under Model 3. Furthermore,
we also compared our detection rule with the proposals based on
a likelihood-ratio-type statistic given in Febrero, Galeano, and
Gonzalez-Manteiga (2007) and on the modal depth, using both
trimmed and weighted bootstrap estimates for the threshold as
proposed in Febrero, Galeano, and Gonzalez-Manteiga (2008).
These methods are denoted as LRT, DTR, and DWE, respec-
tively. These detection rules are implemented in the R package
rainbow.

For each model and each outlier detection method, in Tables
5 to 7 we report the average sensitivity and specificity over the
500 samples. Sensitivity is the proportion of actual outliers that
are correctly flagged as such, while specificity is the proportion
of nonoutlying curves correctly identified as not atypical. An
ideal method will simultaneously maintain high sensitivity and
specificity.

For Model 1, we note that DRT, DWE, and HU identify too
many curves as outliers (resulting in a high sensitivity but low
specificity). On the other hand, LRT, HDR, and BAG consis-
tently miss most of the outliers (low sensitivity), as does LS
when the proportion of outliers is 20%. Using prediction resid-
uals based on S- and the projection-pursuit estimators offers the

Figure 2. Estimated density of the squared prediction errors with (a) the S-estimator and (b) the classical one. The dashed line corresponds
to the threshold suggested by adjbox() while the solid one indicates the beginning of a relatively heavy tail.
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Figure 3. Hourly mean concentration (in ppb) of ground level ozone in Richmond, BC, Canada. Thin gray lines show all the available data.
Solid lines correspond to potential outliers identified by the robust estimator, dashed lines to those found by a classical analysis.

best overall performance. When the data follow Model 2, LS,
HDR, LRT, DTR, and DWE fail to detect most of the outliers,
as does BAG for ε = 0.20. Again, HU flags too many curves as
outlying. The relatively low specificity of DTR and DWE (and
to some extent BAG) seems to indicate that the few observations
flagged as outliers are not the truly atypical ones. Once again the
approach based on S- and projection-pursuit estimators works
best. Note that although the S (1.5) appears to miss around half
of the outliers for ε1 = 0.20, those flagged as atypical are cor-
rectly identified. The results for Model 3 are very similar to
those for Model 1. Overall, for the three scenarios considered
here, the clear best method to detect functional outliers is to
use the squared prediction residuals based on a robust principal
components estimator.

6. EXAMPLE: GROUND LEVEL OZONE
CONCENTRATIONS

These data contain hourly average measurements of ground
level ozone (O3) concentration from a monitoring station in
Richmond, BC, Canada. Ozone at ground level is a serious air
pollutant and its presence typically peaks in summer months.
We focus on the month of August, and obtained data for the
years 2004 to 2012. We have 176 days with hourly average O3

measurements. Our purpose is to identify days in which the
temporal pattern of O3 concentration appears different from the
others. Based on the strong pattern observed in the data, we con-
sider one-dimensional approximations. We use an S-estimator

with tuning constant c = 3 applying the approach described in
Section 3 with a cubic B-spline basis of dimension p = 10. To
find potentially outlying curves, we use as threshold the upper
whisker of the adjusted boxplot of Hubert and Vandervieren
(2008) applied to the squared prediction errors using the LS
and S-estimators. Figure 2 contains the estimated density of the
L2 norm of the residuals for each of the 176 curves when we
compute predictions using our S-estimators (panel (a)) and the
classical LS ones (panel (b)). The dashed line in Figure 2 cor-
responds to the threshold suggested by the adjusted boxplot.
While there are a few extreme outliers at the right tail of each
plot, both plots also show a relatively heavy tail that suggests
the presence of moderate outliers. The solid line indicates ap-
proximately the beginning of this heavy tail, and is the cut-off
used in our analysis.

To make the visualization of the results easier, each panel
in Figure 3 shows the observations detected as outliers in 1
year, both by the robust estimator (solid lines) and the classical
approach (dashed lines). The thin gray lines in the background
show all the available observations, and are included as a visual
reference, while the light dashed horizontal line at 50 ppb is the
current maximum recommended level. We see that the robust
fit identifies as outliers all of the days with relatively high peaks
of O3 concentration, but also some days that exhibit a “flat”
profile.

Since ground level ozone is produced by the reaction between
sunlight and other compounds in the air, we use temperature
data to verify whether the potential outliers identified above
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Figure 4. Maximum daily temperature profile (in black) and rain levels (in gray) for the month of August. Solid circles indicate atypical days
found by the robust approach, triangles correspond to the classical method.

correspond to atypical days. Figure 4 shows maximum daily
temperature for the months of August between 2004 and 2012
together with the daily amount of rain. Days for which O3

data are not available are indicated with white circles. A day
identified as having an atypical O3 profile by the robust fit is
marked with a large solid circle. Potential outliers identified by
the classical approach are indicated with a solid triangle. We see
that the outliers identified by the robust fit correspond to days
with either a very high or low temperature. Furthermore, outly-
ing days with a “flat” O3 profile are those with a low maximum
temperature, while days with a sharp O3 peak correspond to par-
ticularly hot days. On the other hand, days flagged as possible
outliers by LS generally do not show any pattern with respect
to temperature. This analysis shows that the robust method is
able to identify potential outliers that correspond to extreme
values of an unobserved but closely associated meteorological
variable (temperature). In other words, the robust method is
able to uncover outliers that correspond to actual atypical days.

7. CONCLUDING REMARKS

In this article, we propose a robust estimator for the subspace
spanned by the first q principal components. We show that our
method is consistent and can be used in general settings, in-
cluding functional data applications. In this case, our method
works well when the observations can be well represented in

a sufficiently rich but arbitrary basis. Moreover, the resulting
robust predictions can be used to detect atypical observations
in the data. This is confirmed in our simulation study, where
this outlier detection method compares very favorably to other
proposals in the literature. Our estimators are defined via a non-
convex optimization problem, which is difficult to solve. As it is
done for similar problems arising in other contexts (robust linear
regression and multivariate location and scatter estimators, e.g.),
we use first-order conditions to derive an iterative reweighted
least-square-type algorithm. Extensive numerical experiments
show that this algorithm provides estimators with good statis-
tical properties. It would be interesting, but beyond the scope
of this work, to study whether a convex relaxation of the op-
timization problem (2) can provide a more scalable algorithm
with comparable robustness and statistical properties.

SUPPLEMENTARY MATERIALS

The supplementary material has three sections. Section 1con-
tains a discussion on the Fisher-consistency of the Sieves-
approach for S-estimators for functional principal components.
Section 2 includes the analysis of the French mortality dataset.
Finally, in Section 3 the proofs of Propositions 2.1 and 2.2 and
of the Fisher-consistency is given.

[Received June 2013. Revised July 2014.]

D
ow

nl
oa

de
d 

by
 [

G
ra

ci
el

a 
B

oe
nt

e]
 a

t 0
9:

44
 2

4 
N

ov
em

be
r 

20
15

 



Boente and Salibian-Barrera: S-Estimators for Functional PCA 1111

REFERENCES

Bali, L., Boente, G., Tyler, D., and Wang, J. L. (2011), “Robust Functional Prin-
cipal Components: A Projection-Pursuit Approach,” The Annals of Statis-
tics, 39, 2852–2882. [1101,1102,1107]

Becker, C., and Gather, U. (2001), “The Largest Nonidentifiable Outliers: A
Comparison of Multivariate Simultaneous Outliers Identification Rules,”
Computational Statistics and Data Analysis, 36, 119–127. [1105]

Boente, G. (1987), “Asymptotic Theory for Robust Principal Components,”
Journal of Multivariate Analysis, 21, 67–78. [1100]

Boente, G., Salibian-Barrera, M., and Tyler, D. (2014), “A Characterization of
Elliptical Distributions and Some Optimality Properties of Principal Compo-
nents for Functional Data,” Journal of Multivariate Analysis, 131, 254–264.
[1104]

Campbell, N. A. (1980), “Robust Procedures in Multivariate Analysis I: Robust
Covariance Estimation,” Applied Statistics, 29, 231–237. [1100]

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011), “Robust Principal Compo-
nent Analysis?” Journal of the ACM, 58, 1–37. [1101]

Chandrasekaran, V., Sanghavi, S., Parrilo, P., and Willsky, A. S. (2011), “Rank-
Sparsity Incoherence for Matrix Decomposition,” SIAM Journal of Opti-
mization, 21, 572–596. [1101]

Croux, C., Filzmoser, P., Pison, G., and Rousseeuw, P. J. (2003), “Fitting Mul-
tiplicative Models by Robust Alternating Regressions,” Statistics and Com-
puting, 13, 23–36. [1100]

Croux, C., and Haesbroeck, G. (2000), “Principal Component Analysis Based
on Robust Estimators of the Covariance or Correlation Matrix: Influence
Functions and Efficiencies,” Biometrika, 87, 603–618. [1100]

Croux, C., and Ruiz-Gazen, A. (1996), “A Fast Algorithm for Robust Princi-
pal Components Based on Projection Pursuit,” in Compstat: Proceedings
in Computational Statistics, ed. A. Prat, Heidelberg: Physica-Verlag, pp.
211–216. [1100]

——— (2005), “High-Breakdown Estimators for Principal Components: The
Projection-Pursuit Approach Revisited,” Journal of Multivariate Analysis,
95, 206–226. [1100]

Cui, H., He, X., and Ng, K. W. (2003), “Asymptotic Distribution of Prin-
cipal Components Based on Robust Dispersions,” Biometrika, 90, 953–
966. [1102]

De la Torre, F., and Black, M. J. (2001), “Robust Principal Components Analysis
for Computer Vision,” in Proceedings of the 8th International Conference
on Computer Vision, 1, pp. 362–369. [1101]

Devlin, S. J., Gnanadesikan, R., and Kettenring, J. R. (1981), “Robust Estimation
of Dispersion Matrices and Principal Components,” Journal of the American
Statistical Association, 76, 354–362. [1100]

Febrero, M., Galeano, P., and Gonzalez-Manteiga, W. (2007), “A Functional
Analysis of NOx Levels: Location and Scale Estimation and Outlier Detec-
tion,” Computational Statistics, 22, 411–427. [1106,1108]

——— (2008), “Outlier Detection in Functional Data by Depth Measures,
With Application to Identify Abnormal Nox Levels,” Environmetrics, 19,
331–345. [1106,1108]

Gervini, D. (2008), “Robust Functional Estimation Using the Spatial Me-
dian and Spherical Principal Components,” Biometrika, 95, 587–600.
[1101]

Hardin, J., and Rocke, D. (2005), “The Distribution of Robust Dis-
tances,” Journal of Computational and Graphical Statistics, 14, 1–19.
[1105]

Huber, P. J., and Ronchetti, E. M. (2009), Robust Statistics (2nd ed.), New York:
Wiley. [1102]

Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005), “ROBPCA: A
New Approach to Robust Principal Component Analysis,” Technometrics,
47, 64–79. [1100]

Hubert, M., Rousseeuw, P. J., and Verboven, S. (2002), “A Fast Method for Ro-
bust Principal Components With Applications to Chemometrics,” Chemo-
metrics and Intelligent Laboratory Systems, 60, 101–111. [1100]

Hubert, M., and Vandervieren, E. (2008), “An Adjusted Boxplot for Skewed
Distributions,” Computational Statistics and Data Analysis, 52, 5186–5201.
[1106,1109]

Hyndman, R. J., and Ullah, S. (2007), “Robust Forecasting of mortality and
Fertility Rates: A Functional Data Approach,” Computational Statistics and
Data Analysis, 51, 4942–4956. [1101,1106,1108]

Hyndman, R. J., and Shang, H. L. (2010), “Rainbow Plots, Bagplots, and Box-
plots for Functional Data,” Journal of Computational and Graphical Statis-
tics, 19, 29–45. [1106,1108]

Lerman, G., McCoy, M., Tropp, J. A., and Zhang, T. (2014), “Robust Computa-
tion of Linear Models, or How to Find a Needle in a Haystack,” Foundations
of Computational Mathematics, 15, 363–410. [1101]

Li, G., and Chen, Z. (1985), “Projection Pursuit Approach to Robust Dispersion
Matrices and Principal Components: Primary Theory and Monte Carlo,”
Journal of the American Statistical Association, 80, 759–766. [1100]

Liu, L., Hawkins, D., Ghosh, S., and Young, S. (2003), “Robust Singular Value
Decomposition Analysis of Microarray Data,” in Proceedings of the Na-
tional Academy of Sciences, 100, pp. 13167–13172. [1100]

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., and
Cohen, K. L. (1999), “Robust Principal Components for Functional Data,”
Test, 8, 1–28. [1100]

Maronna, R. (2005), “Principal Components and Orthogonal Regression Based
on Robust Scales,” Technometrics, 47, 264–273. [1101,1103]

Maronna, R., Martin, R. D., and Yohai, V. (2006), Robust Statistics: Theory and
Methods, Chichester, UK: Wiley. [1102]

Maronna, R., and Yohai, V. (2008), “Robust Lower–Rank Approximation of
Data Matrices With Element–Wise Contamination,” Technometrics, 50,
295–304. [1101]

McCoy, M., and Tropp, J. A. (2011), “Two Proposals for Robust PCA Using
Semidefinite Programming,” Electronic Journal of Statistics, 5, 1123–1160.
[1100,1101]

Naga, R., and Antille, G. (1990), “Stability of Robust and Non–Robust Principal
Component Analysis,” Computational Statistics and Data Analysis, 10,
169–174. [1100]

Pison, G., and van Aelst, S. (2004), “Diagnostic Plots for Robust Multivari-
ate Methods,” Journal of Computational and Graphical Statistics, 13,
1–20. [1105]

Rousseeuw, P. J., and van Driessen, K. (1999), “A Fast Algorithm for
the Minimum Covariance Determinant Estimator,” Technometrics, 41,
212–223. [1103]

Rousseeuw, P. J., and Van Zomeren, B. C. (1990), “Unmasking Multivariate
Outliers and Leverage Points,” Journal of the American Statistical Associ-
ation, 85, 633–651. [1105]

Salibian-Barrera, M., and Yohai, V. J. (2006), “A Fast Algorithm for S-
Regression Estimates,” Journal of Computational and Graphical Statistics,
15, 414–427. [1103]

Sawant, P., Billor, N., and Shin, H. (2012), “Functional Outlier Detection With
Robust Functional Principal Component Analysis,” Computational Statis-
tics, 27, 83–102. [1101,1107]

Verboon, P., and Heiser, W. J. (1994), “Resistant Lower-Rank Approximation
of Matrices by Iterative Majorization,” Computational Statistics and Data
Analysis, 18, 457–467. [1101]

Xu, H., Caramanis, C., and Sanghavi, S. (2012), “Robust PCA via Out-
lier Pursuit,” IEEE Transactions on Information Theory, 58, 3047–3064.
[1101]

Zhang, T., and Lerman, G. (2014), “A Novel M-Estimator for Robust PCA,”
Journal of Machine Learning Research, 15, 749–808. [1101]

D
ow

nl
oa

de
d 

by
 [

G
ra

ci
el

a 
B

oe
nt

e]
 a

t 0
9:

44
 2

4 
N

ov
em

be
r 

20
15

 


	<0:i >S</0:i>@empty -Estimators for Functional Principal&break; Component Analysis
	INTRODUCTION
	<0:i >S</0:i>@empty -ESTIMATORS OF THE PRINCIPAL COMPONENTS IN <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$@mathbb {R}^p$?></0:texstructure></0:equation></0:inlinematheqn>@empty 
	Algorithm for <0:i >S</0:i>@empty -Estimators
	Choosing the Dimension of the Approximating Subspace

	<0:i >S</0:i>@empty -ESTIMATORS IN THE FUNCTIONAL SETTING
	Algorithm for Functional Data

	OUTLIER DETECTION
	SIMULATION
	Simulation Settings
	The Estimators
	Simulation Results

	EXAMPLE: GROUND LEVEL OZONE CONCENTRATIONS
	CONCLUDING REMARKS
	SUPPLEMENTARY MATERIALS


