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a b s t r a c t

We study the deep connection between integrable models and Poisson–Lie T -duality
working on a finite dimensional example constructed on SL (2,C) and its Iwasawa factors
SU (2) and B. We shown the way in which the Adler–Kostant–Symes theory and collective
dynamics combine to solve the equivalent systems by solving the factorization problem of
an exponential curve in SL (2,C). It is shown that the Toda system embraces the dynamics
of the systems on SU (2) and B.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The search for dualities in theoretical physics is motivated by the hope of finding a couple of related theories in which
one of them is, in some sense, easily solved and the solutions to the second one is attained from the solution of the former
system. Poisson–Lie T -duality is a nice example in this direction: it is built on phase spaces having a rich structure entailing a
close connection with integrable model, exploiting the inherent self-dual character of Poisson–Lie groups in order to relate
a couple of sigma models having targets on the factors of a Drinfeld double Lie group [1]. In Refs. [2,3], PL T -duality was
accurately encoded in a Hamiltonian scheme ruled by some Hamiltonian actions of the double Lie group G on the cotangent
bundle of its factors, where T -duality transformations are provided by the associated momentum maps targeting on the
same coadjoint orbit. Moreover, it was realized that collective dynamics on these Hamiltonian G-spaces underpins the
dynamic correspondence between these models. In those references, Gwas taken as the centrally extended Drinfeld double
of a loop group and T -duality comes to relate sigmamodels built on each factor of it. This scheme also reveals the role played
by a WZNW model whose reduced phase space, the shared coadjoint orbit, embraces the dynamics of both sigma models.
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In all these systems, compatible dynamics are ruled by collective Hamiltonians. Thus, the natural setting is infinite
dimensional: it is provided by phase spaces modelled on cotangent bundles of loop groups, and the momentum maps are
associated with the centrally extended action of the double group. In spite of this, the essential issues of T -duality can be
clearly sketched in a finite dimensional context, avoiding the specific difficulties of the infinite dimensional case.
The currentwork is aimed to stress the intrinsic connection of the Poisson–Lie T -dualitywith integrable systems,working

in a finite dimensional framework, allowing us to concentrate on the structural facts behind this connection. We describe
the geometric structure underlying the Hamiltonian version of this duality, following Refs. [2,3], by considering a complex
Lie group G and its Iwasawa decomposition in the compact factor K and the soluble one, B. As an alternative to the standard
scheme built on Hamiltonian G-spaces, we introduce a wider version of T -duality in order to include schemes based on
the Hamiltonian action of the Iwasawa factors, giving rise to duality classes of Hamiltonian K - or B-spaces. This leads
straightforwardly to the Adler–Kostant–Symes (AKS) theory for integrable systems [4], through the introduction of collective
dynamics. An explicit example is constructed in full detailworking on SL (2,C) and its factors in the Iwasawadecomposition,
namely SL (2,C) ∼= SU (2) × B, involving three Hamiltonian B-spaces: T ∗SU(2), T ∗B and R2. The respective dually related
dynamical systems are a dressing invariant system in SU (2), a kind of generalized top on B, and a Toda model on R2. This
last system plays an analogous role to that played by the WZNW in loop group case, embracing the dynamics of the other
systems. Then, we use the AKS theory to show explicitly the integrability of these systems constructing the solution in
each case, and providing a precise meaning for the Poisson–Lie T -duality transformations. By passing to the Lagrangian
framework, we show the equivalence between systems described by bilinear forms on the corresponding tangent bundles,
so that the constructed duality relates different targets geometries.
It is important to point out thatmost of the results can be translated, with some cares, to the infinite dimensional case and

the underlying structure works in any case. Whatever the case, we can consider the finite dimensional case as a restriction
of the loop group one to the constant map from S1 to a Lie group.
Thiswork is organized as follows: in Section 2we give a description of the geometric setting for theHamiltonian approach

to PL T -duality and its relation with the theory of integrable models, in particular with the AKS theory. In Section 3, we
describe the main features related to Iwasawa decomposition and coadjoint orbits; in Section 4 the involved phase spaces
are presented, describing its symmetry properties; the T -duality scheme is described in Section 5; in Section 6 we apply
explicitly the AKS Theory to solve the systems, and in Section 7 the compatible dynamics is analyzed from Hamiltonian and
Lagrangian point of view. Finally, the conclusions are included in Section 8.

2. Geometric setting for Poisson–Lie T -duality

The standard Hamiltonian approach to PL T -duality, as introduced in [2,3], considers a Lie group Gwhich can be written
as a product of two subgroups K and B, so that all of them are endowed with a Poisson–Lie structure and their Lie algebras
g, k, b, such that g = k ⊕ b, turn in Lie bialgebras. Hence, the PL T -duality is built up on Hamiltonian G-spaces: the group
G acts on the cotangent bundle of its factors, giving rise to momentum maps with nontrivial intersections in g∗. In the loop
group case, this is warranted by taking the central extension of G or of its Lie algebra g, providing intersections with a rich
class of coadjoint orbits inside. However, this seems to be a very specific situation, in general it happens that themomentum
maps have no nontrivial intersection, as it is the case in finite dimension.
Handling this problem in a general fashion lead us to propose a wider scheme for PL T -duality by considering T -dual

equivalence classes constructed alternatively on Hamiltonian G, K or B-spaces. As we shall show below, the main facts
underlying the standard PL T -duality remain the same: the canonical transformation between systems on the factors K and
B arises from the symmetries involving their Poisson–Lie structure. In this way, one is able to built up PL T -dual equivalence
classes attached to coadjoint orbits in g∗, k∗ or b∗. In addition, this wider framework allows to make contact with the AKS
theory for integrable systems.
So, let us consider the Lie group G and its Iwasawa decomposition G = KB, where K is the compact factor and B is the

solvable one. The abstract framework we use here also includes the Lie algebras g, k, b, which correspond to the Lie groups
G, K , B so that g = k⊕b, and g is equipped with a nondegenerate symmetric bilinear form (, )g turning k and b into isotropic
subspaces. This allows the identification b∗ ' k and k∗ ' b. The projectors are denoted by ΠK : G → K ,ΠB : G → B;
moreover, the symbolsΠk : g→ k,Πb : g→ b are meant to indicate the projections into the summands of the Lie algebra
decomposition induced by the factorization.
Let us describe a PL T -duality scheme based on the action of one of the factors, B in this case, instead of the action of G.

It will involve the Poisson manifold (b∗, {, }b∗), where {, }b∗ is the Kirillov–Kostant bracket, and the symplectic manifolds
(T ∗K , ωK ) and (T ∗B, ωB), with ωK , ωB standing for the canonical symplectic forms on each phase spaces, respectively. All
the cotangent bundles are regarded in body coordinates, so they are trivialized by left translations.
The phase space T ∗B ∼= B× b∗ turns in a Hamiltonian B-space by the action τ : B× (B× b∗) −→ B× b∗ obtained as the

lift of the action of B on itself by left translations

τ
(
g̃, (h̃, η̃)

)
= (g̃ h̃, η̃)

for g̃, h̃ ∈ B, η̃ ∈ b∗, with Ad-equivariant momentum map λ : B× b∗ −→ b∗

λ(h̃, η̃) = Ad∗
h̃−1
η̃.
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On the other side, T ∗K ∼= K × k∗, becomes in a Hamiltonian B-space by virtue of the Poisson–Lie structure of K inherited
from the Iwasawa decomposition G = KB. In fact, we introduce the action dr : B× (K × k∗) −→ K × k∗

dr
(
b̃, (g, η)

)
=

(
g b̃,Adb̃gη

)
(1)

for b̃ ∈ B, g ∈ K , η ∈ k∗ which is obtained by lifting the dressing action of B on K to the cotangent bundle. This action,
introduced in [5,6], works as follows: by writing each element l ∈ G as l = gh̃, with g ∈ K and h̃ ∈ B∗, the product h̃g in G
can be expressed as h̃g = g h̃h̃g , with g h̃ ∈ K and h̃g ∈ B. The dressing action of B on K is defined as Dr : B× K −→ K , such
that Dr

(
h̃, g

)
:= ΠK h̃g = g h̃. Infinitesimally, ξ ∈ b is mapped onto the tangent vector

(ξK×k∗)(g,η) =
(
gξ ,

[
Ad∗gξ, η

])
at (g, η) ∈ K × k∗; here are assumed the identifications explained above, so that Ad∗g : b → b and the bracket is the Lie
bracket in b. The momentum map φ : K × k∗ −→ b∗ is

φ(g, η) = g
(
g−1

)η
having in mind that the right hand side belongs to k ' b∗. In order to avoid confusion, these identifications will be explicitly
shown in the specific case addressed in the following sections.
The momentum maps φ and λ turn (K × k∗, ωK ) and (B× b∗, ωB) in symplectic realizations of the Poisson manifold

(b∗, {, }b∗), as depicted in the diagram

K × k∗ B× b∗

b∗
��

??
??

??
?

φ
����

��
��

�

λ

(2)

which is the basic geometric scheme underlying PL T -duality. Seeking for compatible dynamics drives to the realm of
collective Hamiltonian systems [7], meaning that a Hamiltonian function h ∈ C∞ (b∗) is the masterpiece governing both
the PL T -dual systems on K × k∗ and B× b∗. In fact, the corresponding pull backs by the momentummaps φ and λ, namely
h ◦ φ ∈ C∞ (K × k∗) and h ◦ λ ∈ C∞ (B× b∗), produce the desired compatible dynamics.
These systems are said to be in collective Hamiltonian form and to understand its geometricmeaningwework on a generic

Hamiltonian B-space (M, ω), with an Ad-equivariant momentum map J : M → b∗ associated with the symplectic action
ϕ : B × M −→ M of the Lie group B, and taking the collective Hamiltonian H = h ◦ J . In terms of the orbit map through
m ∈ M, ϕm : B −→ M/ϕm(b) := ϕ (b,m), the infinitesimal generators can be written as XM(m) = (ϕm)∗ X , for X ∈ b

and XM ∈ X(M). Hence, introducing the Legendre transformation of h, namely the linear map Lh : b∗ → b defined as
〈ξ,Lh(η)〉g = 〈dh|η, ξ〉, for any ξ ∈ b∗, we may write the Hamiltonian vector field of H as

VH |m = (ϕm)∗ [Lh ◦ J] (m)

and its image by J is tangent to the coadjoint orbit through J(m)

J∗|mVH = −
(
adBLh(J(m))

)∗
J(m).

In other words, the Hamiltonian vector field VH is mapped on the tangent space of a coadjoint orbits in b∗. If m(t) denotes
the trajectory of the Hamiltonian system through m(0) = m, ṁ(t) = VH |m(t), the images γ (t) = J (m(t)) lies completely
on the coadjoint orbit through J(m), where the equation of motion is

γ̇ (t) = −
(
adBLh(γ (t))

)∗
γ (t) (3)

that corresponds to a Hamiltonian system on the coadjoint orbits on b∗, with Hamiltonian function h.

Proposition. Let γ : R→ b∗ be the solution curve of Eq. (3) with initial condition γ (0) = JM(m), and select a curve b(t) in B
such that

γ (t) =
(
AdBb−1(t)

)∗
JM(m). (4)

Then, among these curves there exists a solution of the differential equation on B

ḃ(t)b−1(t) = Lh (γ (t)) , b(0) = n0 ∈ BJM (m) (5)

where BJM (m) is the stabilizer group of the point JM(m) under the coadjoint action of B on b∗.

Proof. Let us suppose that b : R → B satisfies Eq. (3) through Eq. (4), and take n : R → BJM (m) such that b (t) n(t) solves
the differential equation (5). Then

d (b(t)n(t))
dt

(b(t)n(t))−1 = Lh (γ (t))
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or equivalently

ṅ(t)n−1(t) = AdBb−1(t)Lh (γ (t))− b−1(t)ḃ(t).

We have to verify that the right hand side of this expression belongs to bJM (m), the Lie algebra of the stabilizer subgroup
BJM (m). Taking into account that b satisfies Eq. (4), we have

ḃ(t)b−1(t) = Lh (γ (t))+M(t)

for some curveM : R→ bγ (t). Furthermore, we have that X ∈ bγ (t) iff
(
adBX

)∗
γ (t) = 0, and this means

0 =
(
adBX

)∗ (
AdBb−1(t)

)∗
JM(m) =

(
AdBb−1(t)

)∗ (
adBAdb−1(t)X

)∗
JM(m).

Then X ∈ bγ (t) iff AdBb−1(t)X ∈ bJM (m). Therefore,M(t) = Ad
B
b(t)N (t) for some curve N : R→ bJM (m), and finally

ṅ(t)n−1(t) = N(t) ∈ bJM (m)

as we want to show. �

Hence,m(t) = ϕ (b(t),m) is the solution to the original Hamiltonian system. Moreover, if b is supplied with an invariant
nondegenerate bilinear form (, ) : b × b −→ K, and denoting γ̃ : R → b the image of γ : R → b∗ through the induced
isomorphism b∗ → b, the equation of motion turns into the Lax form

dγ̃ (t)
dt
= [γ̃ (t),Lh (γ (t))]. (6)

2.1. Relation with AKS method

The success of the method described above relies on the integrability of the Eq. (3). The AKS theory [4] gives a family of
integrable Hamiltonians associated to AdG∗-invariant functions on g∗. First, we have the identification k◦ ' b∗ by the map
η ∈ b∗ 7→ η ◦Πb. It allows us to define a B-action via

τ Bb (µ) :=
((
AdGb

)∗
µ
)
◦Πb ∀b ∈ B, µ ∈ k◦.

The orbit OBµ ⊂ k◦ for this action through µ is a symplectic manifold; in fact, for η ∈ OBµ we have that

Tη
(
OBµ
)
=

{(
adGX

)∗
η ◦Πb : X ∈ b

}
and the symplectic structure is given by〈

ω,
(
adGX1

)∗
η ◦Πb ⊗

(
adGX2

)∗
η ◦Πb

〉
η
= 〈η, [X1, X2]〉 .

This structure will be used in proving the following result.

Theorem. Let f ∈ C∞ (g∗) be an Ad∗-invariant function, and let the restriction h := f |OBJM (m) be the Hamiltonian function for
the system defined on OBJM (m) ⊂ k◦ ' b∗. Hence, the solution of this system with initial condition η(0) = JM (m) is

η(t) =
(
AdGk(t)

)∗
JM(m)

where k : R→ K is the K-factor in the decomposition of the element g(t) = exp
(
tLf (JM(m))

)
.

Proof. Let η be an arbitrary element in the orbit OBJM (m) defined above. In this case, using the associated Legendre
transformationLf : g

∗
−→ g that allows to identify T ∗η (g

∗) ' g, we have〈
df ,

(
adGXη

)∗
◦Πb

〉
η
=

〈(
adGXη

)∗
◦Πb,Lf (η)

〉
=
〈
η,
[
X,ΠbLf (η)

]〉
so that the Hamiltonian vector field associated to h is given by

Vh|η = −
(
adGΠbLf (η)

η
)∗
◦Πb.

Because of the Ad∗-invariance of f , we have that
(
adGLf (η)

)∗
η = 0, and we can rewrite it as

Vh|η =
(
adGΠkLf (η)

)∗
η (7)

by taking into account that
(
AdGk

)∗
k◦ ⊂ k◦ for all k ∈ K .
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On the other side, the curve in k◦ defined through

η(t) =
(
AdGk(t)

)∗
JM(m)

has tangent vector field given by

η̇(t) =
Ed
dt

∣∣∣∣
t

[(
AdGk(t)

)∗
JM (m)

]
=

(
adGk−1(t)k̇(t)

)∗
η(t).

Now, considering the integral curve g(t) of the right invariant vector field Lf (JM(m)) g(t), written in terms of the
decomposition curves g (t) = k(t)b(t)we obtain

ġ(t)g−1(t) =
d (kb)
dt

(kb)−1
∣∣∣∣
t
= AdGk(t)

(
k−1(t)k̇(t)+ ḃ(t)b−1(t)

)
meaning that AdGk−1(t)Lf (JM(m)) = k

−1(t)k̇ (t)+ ḃ(t)b−1(t), and therefore

Πk

(
AdGk−1(t)Lf (JM(m))

)
= k−1(t)k̇(t).

By using Ad∗-invariance for f again, we have that

AdGk−1(t)Lf (JM (m)) = Lf

([
AdGk(t)

]∗
JM(m)

)
= Lf (η(t))

implying that k−1(t)k̇(t) = Πk

(
Lf (η(t))

)
. Comparing with Eq. (7) we can conclude that η(t) has Vh as tangent vector

field. �

The Ad∗-invariance implies the identity
(
adGLf (η)

)∗
η = 0, for all η ∈ g∗, and so[

AdGexp tLf (JM (m))
]∗
JM(m) = JM(m)

meaning that[
AdGk(t)

]∗
JM (m) =

[
AdGb−1(t)

]∗
JM(m)

and assuming JM(m) ∈ k◦ it is clear that we can take b : R → B (the B-factor of exp tLf (JM(m))) as the solution curve in
Eq. (3). In such case it is necessary to find the differential equation for the BJM (m)-factor n (Cf. proof of the proposition below
Eq. (3)). But as was previously shown

Lf (η(t)) = k−1(t)k̇(t)+ ḃ(t)b−1(t), η(t) = AdGk−1(t)JM(m),

so ḃ(t)b−1(t) = ΠbLf (η(t)).
On the other side, for all ξ, η ∈ k◦ we have that〈

Lf (η) , ξ
〉
=
〈
ΠbLf (η) , ξ

〉
〈
ξ,Lf (η)

〉
=
d
dt
f (η + tξ)

∣∣∣∣
t=0
=
d
dt

h (η + tξ)
∣∣∣∣
t=0
= 〈ξ,Lh (η)〉

meaning thatLh (η) = ΠbLf (η) and then ḃ(t)b−1(t) = Lh (η); therefore

ṅ(t)n−1(t) = 0

and the BJM (m)-factor is constant.

2.2. Summary

The setting consist of a factorizable Lie group G = KB and a Hamiltonian B-spaceM . The collective motion associated to
the restriction to k◦ ' b∗ of an

(
AdG

)∗-invariant function f gives rise to a collective Hamiltonian system onM , which can be
thus solved algebraically as follows:

1. Factorize the straight curve t 7→ exp tLf (JM(m)) = k(t)b(t).
2. The solution curve onM for the Hamiltonian system defined by H := (f |k◦) ◦ JM is given by

t 7→ ϕ (b(t)n0,m)

for some element n0 ∈ BJM (m).
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3. Iwasawa decomposition of SL(2, C) and coadjoint orbits

We now specialize the above abstract structure to G = SL(2,C) and its Iwasawa decomposition SL(2,C) ∼= SU(2) × B,
where B is the solvable group of 2 × 2 complex upper triangular matrices, with real positive diagonals and determinant
equal to 1. Let us address the construction of an explicit example of T -dual systems in this framework.
In order to start with, we consider the maximal Abelian subalgebra h = C〈σ3〉 of the Lie algebra sl2(C), with the root

system∆ := {−α, α}, where α ∈ h∗ is given by α(σ3) = 2. The associated decomposition is sl2(C) = h⊕ gα ⊕ g−α , with

g±α := C
〈
1
2
(σ1 ± iσ2)

〉
.

For the positive root set ∆+ = {α} we define n :=
⊕

β∈∆+
gβ = gα . Then we may find a decomposition as expected for

sl2(C)R by taking k = su2 and b := a⊕ nR, where a := R〈σ3〉 = it, being t := h ∩ su2 a real form for h,

sl2(C)R = su2 ⊕ b.

With this election for h, b is the subalgebra of upper triangular matrices with real diagonal and null trace, and k is the real
subalgebra of sl2(C) of antihermitian matrices.
Alternatively, one would may choose for instance h′ := C〈σ1〉, changing the roots α′ and the spaces gα′ , so that b′ is no

longer composed of upper triangular matrices. However, by change of basis (the one which diagonalize σ1) will turn b′ into
triangular matrices again. The compact real form is obtained as usual, defining

un :=
∑
α∈∆

R(iHα)+
∑
α∈∆

R(Xα − X−α)+
∑
α∈∆

Ri(Xα + X−α)

once h is fixed.
The Killing form for sl2(C) is κ(X, Y ) := tr (ad (X) ad (Y )) = 4tr (XY ), the restrictions to su2, a, and n are negative defined,

positive defined, and 0, respectively. We consider the nondegenerate symmetric bilinear form on sl2(C)

(X, Y )sl2 = −
1
4
Im κ(X, Y ) (8)

which turns b and k into isotropic subspaces. Also, we take the basis

X1 =
[
0 i
i 0

]
X2 =

[
0 1
−1 0

]
X3 =

[
i 0
0 −i

]
for su2, and

E =
[
0 1
0 0

]
, iE =

[
0 i
0 0

]
, H =

[
1 0
0 −1

]
in b. Then, the crossed product are

(X1, E)sl2 = −1 (X2, E)sl2 = 0 (X3, E)sl2 = 0
(X1, iE)sl2 = 0 (X2, iE)sl2 = 1 (X3, iE)sl2 = 0
(X1,H)sl2 = 0 (X1,H)sl2 = 0 (X3,H)sl2 = −2

(9)

allowing for the identification ψ : su2 → b∗ given by

ψ(X1) = −e, ψ(X2) = ẽ, ψ(X3) = −2h (10)

where
{
e, ẽ,h

}
⊂ b∗ is the dual basis to {E, iE,H} ⊂ b.

This map allows to carry the Poisson structure of b∗ to su2. In terms of the dual basis {xk} ⊂ su∗2,
〈
xk, Xj

〉
= δkj, so for

f ∈ C∞ (su2)we have that df (Xk) =
∂ f
∂xk
and the Poisson bracket reads as

{f , g} =
(
∂ f
∂x1

∂g
∂x3
−
∂ f
∂x3

∂g
∂x1

)
x1 +

(
∂ f
∂x2

∂g
∂x3
−
∂ f
∂x3

∂g
∂x2

)
x2.

The Hamiltonian vector fields are then

Vg =
∂g
∂x3

(
x1

∂

∂x1
+ x2

∂

∂x2

)
−

(
x1
∂g
∂x1
+ x2

∂g
∂x2

)
∂

∂x3
.

With the identification Xk = ∂
∂xk
, we get

Xx1 = x1X3, Xx2 = x2X3, Xx3 = −x1X1 − x2X2,

from where it can be determined the symplectic leaves, which are divided in two uniparametric families, namely,

– Symplectic leaves of dimension 0: each leaf is a point αX3, α ∈ R, on the vertical axis of su2 ' R3,
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– Symplectic leaves of dimension 2: each leaf is a vertical semiplane

Oθ =
{
(xXθ + zX3) ∈ su2/x ∈ R>0, z ∈ R, θ ∈ S1

}
(11)

where Xθ = cos θX1 + sin θX2.

The zero dimensional orbits lack of interest for our purpose, so let us focus our attention on the two dimensional ones.
They are semiplanes orthogonal to the plane X1, X2, spanned radially from the X3 axis like the pages of a book, without
touching it, and characterized by the angle θ between the X1 axis and the intersection of the leaf with the X1, X2 plane.
To write out the explicit form of the B action on su2, we parametrize an arbitrary element b̃ ∈ B as

b̃ =
[
a b+ ic
0 a−1

]
(12)

with a ∈ R>0 and b, c ∈ R. Then, ψ ◦ Ad∗
b̃−1
◦ ψ−1 : su2 −→ su2, in the basis {X1, X2, X3} ⊂ su2 gives

(ψ ◦
(
Adb̃−1

)∗
◦ ψ−1)X1 =

b
a
X3 + a−2X1

(ψ ◦
(
Adb̃−1

)∗
◦ ψ−1)X2 = −

c
a
X3 + a−2X2

(ψ ◦
(
Adb̃−1

)∗
◦ ψ−1)X3 = X3

(13)

so that on the orbit Oθ it acts as

(ψ ◦
(
Adb̃−1

)∗
◦ ψ−1) (xXθ + zX3) = xa−2Xθ +

(
z +

x
a
(b cos θ − c sin θ)

)
X3.

Hence, the stabilizer of X ∈ Oθ is the normal subgroup Bθ ⊂ B composed by the matrices

b̃θ :=
(
1 d (sin θ + i cos θ)
0 1

)
(14)

with d ∈ R. The Lie algebra bθ is generated by the element

Eθ = sin θE + cos θ(iE)

and, consequently, b/bθ is spanned by the images in the quotient of the elements

H =
(
1 0
0 −1

)
, Ẽθ =

(
0 (cos θ − i sin θ)
0 0

)
= cos θE − sin θ(iE).

3.1. Orbits and Bruhat decomposition

Let us nowdescribe an issuewhichwill be of central importance in defining the dualizable subspaces in cotangent bundle
of the compact factor K . As it was mentioned in (17), the action of the solvable factor B on this phase space arises from the
lift of the dressing action and its orbits on K are the dressing orbits.
The dressing orbits of the Poisson–Lie structure associated to the Iwasawa decomposition [6] in a semisimple group can

be described by using the Bruhat decomposition [8,9]. Let us begin with a compact Lie group K ; let G be its complexification.
For G = KB, the Iwasawa decomposition associated to K , let us choose in the Lie algebra k a maximal abelian subalgebra t;
then h := t+ it is a Cartan subalgebra for g. Let us fix some ordering of the roots associated to h. For example, if K = SU(n)
then G = SL (n,C) and we can choose the order in the roots such that B is the set of upper triangular matrices with real
diagonal entries. Let T ⊂ K be the connected subgroup associated to t.

Lemma. The set

T · B := {tb : t ∈ T , b ∈ B}

is a Lie subgroup of G; moreover, we have that T · B = B · T .

Proof. Because tBt−1 ⊂ B for all t ∈ T , we have that T · B is a subgroup of G and T · B = B · T ; if (cn) ⊂ T · B is a sequence
convergent in G, we have sequences (an) ⊂ T , (bn) ⊂ B such that cn = anbn for all n ∈ N. Now, because T is compact,
there exists a convergent subsequence

(
ank
)
, and ank → a ∈ T . Thus the sequence bnk =

(
ank
)−1 cnk has all its terms in B,

and it is convergent in G, due to the continuity of the group operations. But B is closed in G, thus bnk → b ∈ B. Therefore
cn → ab ∈ T · B, and T · B is a closed subgroup in G. �

In the example considered above, T is the set composed of diagonal matrices whose nonvanishing entries are elements
of S1; then B+ := B · T is the group of upper triangular matrices. Let N(T ) the normalizer of T : It consists of the elements
k ∈ K such that kTk−1 ⊂ T ; then the groupW := N(T )/T is theWeyl group of K .
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Theorem (Bruhat Decomposition). The group G can be decomposed as

G =
∐
w∈W

B+wB+.

In order to use this decomposition, a set of representatives must be chosen for the elements ofW . For example,W for
SU(n) is the set of permutations of n elements, and representatives for two-cycles are

si :=



1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

...
...

0 0 · · · 0 1 · · · 0 0
0 0 · · · −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0
0 0 · · · 0 0 · · · 0 1


with the permutation matrix in the i, i + 1-entries. The disjoint sets in the Bruhat decomposition gives a kind of cellular
decompositionwith a unique open cell plus lower dimensional submanifolds. In the SU(2) case, representatives for theWeyl
groups members are the identity matrix and the element

σ :=

[
0 1
−1 0

]
so the open submanifold is the set

B+σB+ =
{[
a b
c d

]
∈ SL (2,C) : c 6= 0

}
.

Note that the Bruhat decomposition yields to the decomposition

G =
∐
w∈W
t∈T

tBwB

by using the fact thatwTw−1 ⊂ T for everyw ∈ N(T ). On SL (2,C) this decomposition can be written as

SL (2,C) =

(∐
t∈T

t · B

)
q

(∐
t∈T

t · Bw
)

where Bw is the subset of SL (2,C) composed of those matrices with its lower-left element strictly negative.
By definition, the dressing orbits in K are the sets πK (Bk) for k ∈ K . With the previous decomposition at hands, it is

possible to characterize the orbits of the B-action on K : In fact, if w ∈ W , let us denote by Σw the B-orbit through w:
Σw = πK (Bw) (by fixing a set of representatives in K for the elementw ∈ W ). Then we have the following result.

Proposition. The orbits of the B-action on K can be parametrized by T ×W: That is, every orbit can be written as t ·Σw for some
(w, t) ∈ W × T .

Proof. Let us denote by Ok the B-orbit through k ∈ K ; then by using the previous decomposition we can write k = tb1wb2
for some b1, b2 ∈ B, t ∈ T andw ∈ W . Therefore

Ok = πK (Bk) = πK (Btb1w) = πK (tBw) = tπK (Bw) = t ·Σw

where it was used that tB = Bt . �

In the case G = SL (2,R), the orbits are

Σ1 := πSU(2) (B · id) = {id}

and

Σ−1 := πSU(2)

(
B
[
0 1
−1 0

])
=

{[
α b
−b ᾱ

]
: α ∈ C, b ∈ R+, |α|2 + b2 = 1

}
.

So the orbits of the B-action on SU(2) are the zero dimensional ones

t ·Σ1 =
{[
t 0
0 t−1

]}
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and the two dimensional, given by

t ·Σ−1 =
{[

α β

−β̄ ᾱ

]
: argβ = arg t + π

}
.

A comment on the choice of representatives for the elements of W is in order: Any other choice just gives another
parametrizationW × K → {Ok : k ∈ K}.

4. Hamiltonian B-spaces

In this section we describe some Hamiltonian B-spaces related to the two dimensional symplectic leaves Oθ (11) which
in turn will assemble the T -duality scheme.

4.1. Two dimensional symplectic leaves Oθ ⊂ su2

The semiplanes Oθ ⊂ su2 turn in symplectic manifolds when endowed with the pullback by ψ : su2 → b∗ of the
Kirillov–Kostant structure on the coadjoint orbits in b∗〈

ωOθ , ψ̄∗ad
∗

Xψ(Z)⊗ ψ̄∗ad
∗

Yψ(Z)
〉
= (Z, [X, Y ])su2

where ψ̄ : b∗ → su2 is the inverse mapping of ψ . They also are Hamiltonian B-spaces under the action (13).

4.2. R2 as a phase space

Given the phase space R2 with coordinates (q, p), there exist a family of embeddings which can be interpreted as the
momentum map associated with some action of B on R2, as explained in the following proposition.

Proposition. The maps ρ : B× R2 −→ R2 defined as

ρ
(
b̃, (q, p)

)
=

(
q−

1
µ
ln a, p− 2µ

ε

a
exp(2µq) (b cos θ − c sin θ)

)
(15)

are a family of transitive actions of B on R2, for (q, p) ∈ R2, b̃ ∈ B as given in (12), θ ∈ [0, 2π ] , µ ∈ R>0 and ε ∈ R, arbitrary
parameters. Moreover, regarding R2 as a symplectic space endowed with the canonical symplectic formω◦ = dq∧ dp,

(
R2, ω◦

)
,

it becomes in an homogeneous Hamiltonian B-space with associated equivariant momentum map σθ : R2 ↪→ b∗

σθ (q, p) = −
1
µ
ph+ ε exp(2µq)(cos θe− sin θ ẽ).

For each fixed value of θ , the induced map σ̃θ : R2 ↪→ su2

σ̃θ (q, p) := ψ−1 ◦ σθ (q, p) =
1
2µ
pX3 − ε exp(2µq)(cos θX1 + sin θX2)

is a symplectic isomorphism between
(
R2, ω◦

)
and (Oθ , ψ

∗ωKK ), where ωKK is the Kirillov–Kostant symplectic form.

Proof. It is straightforward to check that ρ is a transitive action and that it is Hamiltonian. The infinitesimal generator
associated to X̃ ∈ b,

X̃ = uE + v(iE)+ wH =
[
w u+ iv
0 −w

]
can be calculated from the expression

etX̃ =

etw 1
w
sinh(tw) (u+ iv)

0 e−tw


giving

X̃R2 |(q,p) =

(
−
1
µ
w,−2εµ exp(2µq) (u cos θ − v sin θ)

)
.

The contraction of this vector with the symplectic form is

ıX̃R2
(dq ∧ dp) = d

〈
−
1
µ
ph+ ε exp(2µq)(cos θe− sin θ ẽ), X̃

〉
from where we get the momentum map σθ (q, p).
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The last statement is a direct consequence of the equivariance property. Under the actionψ ◦Ad∗
b̃−1
◦ψ−1 : su2 −→ su2

it behaves as(
ψ ◦ Ad∗

b̃−1
◦ ψ−1

)
σ̃ (q, p) = −

1
2

(
p+

2ε exp(2µq)
a

(b cos θ − c sin θ)
)
X3

−
ε exp(2µq)

a2
(cos θX1 + sin θX2)

satisfying the equivariant property σ̃θ (ρb̃(q, p)) =
(
ψ ◦ Ad∗

b̃−1
◦ ψ−1

)
σ̃ (q, p). �

4.3. The cotangent bundle of B

Let us consider the phase space T ∗B = B×b∗, trivialized by left translation, endowedwith the canonical symplectic form
ω̃◦. It is a Hamiltonian B-space by the Hamiltonian action of B on B× b∗

λ : B×
(
B× b∗

)
−→

(
B× b∗

)
/λ
(
h̃,
(
b̃, η̃

))
=

(
h̃b̃, η̃

)
for h̃, b̃ ∈ B, X ∈ b∗, with associated momentum map µ : B × b∗ −→ b∗/µ

(
b̃, η̃

)
= Ad∗

b̃−1
η̃. The corresponding map

µ̃ : B× b∗ −→ su2 with µ̃ = ψ−1 ◦ µ is

µ̃
(
b̃, η̃

)
=

(
ψ̄ ◦ Ad∗

b̃−1
◦ ψ

)
ψ (η̃)

that has the explicit form

µ̃
(
b̃, η̃ee+ η̃ẽẽ+ η̃hh

)
= −a−2η̃eX1 + a−2η̃ẽX2 −

(
1
2
η̃h +

bη̃e + cη̃ẽ
a

)
X3 (16)

where we parametrized an element b̃ ∈ B as

b̃ =
(
a b+ ic
0 −a

)
with a ∈ R+, b, c ∈ R.

4.4. The cotangent bundle of SU(2)

The third phase space we consider here is the cotangent bundle of the remaining factor of the factorization of SL(2,C),
namely T ∗SU(2). To stand the notation to be used in rest of this work, we parametrize an element g ∈ SU(2) as

g =
(
α β

−β̄ ᾱ

)
where the bar over the complex entriesα, β ismeant to indicate the complex conjugate.We regard T ∗SU(2) trivialized by left
translation, T ∗SU(2) = SU(2)× su∗2 , endowed with the canonical symplectic form ω◦. In order to turn it into a Hamiltonian
B-space, we are given the dressing action d : B×SU(2) −→ SU(2)which arises from the factorization SL(2,C) = SU(2)×B
such that, for b̃ ∈ B and g ∈ SU(2),Dr

(
b̃, g

)
= ΠSU(2)

(
b̃g
)
= g b̃. It is lifted to SU(2) × su∗2 as explained in the following

proposition.

Theorem. The action d : B× SU(2) −→ SU(2), defined above as db̃(g) = g
b̃, lift to the cotangent bundle in body coordinates,

SU (2)× su∗2 , as

d̂b̃ (g, η) =
(
g b̃,

(
ψ∗ ◦ Adb̃g ◦ ψ̄

∗
)
η
)
. (17)

It is a symplectic action with Ad-equivariant momentum map ϕ : SU(2)× su∗2 −→ b∗

ϕ(g, η) = ψ
(
Πsu2

(
AdGg ψ̄

∗ (η)
))

(18)

where ψ̄∗ : su∗2 −→ b is the pullback of the bijection b∗
ψ̄
−→ su2.

Proof. We get the action on the left trivialized cotangent bundle from the relation〈(
g b̃, η

)
,
(
db̃
)
∗B (g, X)

〉
=

〈
η, X b̃

g
〉
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where X = g−1ġ and

X b̃ =
d
(
g−1g(t)

)b̃
dt

∣∣∣∣
t=0
= Ad∗

b̃g
X

by using the relations (gh)b̃ = g b̃hb̃
g
.

Then, the infinitesimal generator Z̃SU(2)×su∗2
|(g,η) =

d
dt d

SU(2)×su∗2

etZ̃
(g, η)

∣∣∣∣
t=0
is, for Z̃ ∈ b,

Z̃SU(2)×su∗2
|(g,η) =

(
g Z̃ , ψ∗

([
Ad∗g Z̃, ψ̄

∗ (η)
]))

where g Z̃ = d(ge
tZ̃
)/dt|t=0. From this vector field on SU(2) × su∗2 we compute the momentum map since

〈
η, g−1g Z̃

〉
=〈

ϕ(g, η), Z̃
〉
, using thatΠsu2Ad

G
g−1 Z̃ = g

−1g Z̃ and the bijectionψ : su2 −→ b∗, its the adjointψ∗ : b −→ su∗2 and its inverse

ψ̄∗ : su∗2 −→ b, obtaining〈
ϕ(g, η), Z̃

〉
g
=

〈
ψ
(
Πsu2Ad

G
g ψ̄
∗ (η)

)
, Z̃
〉
.

Since it arises as the lifting of a symmetry on the base space SU (2), it is naturally equivariant. �

As in the previous sections, we shall consider momentum maps valued on su2, so we define

ϕ̃ ∼= ψ̄ ◦ ϕ : SU(2)× su∗2 −→ su2

ϕ̃(g, η) = Πsu2

(
AdGg ψ̄

∗ (η)
)
= g

(
g−1

)ψ̄∗(η) (19)

where we used that AdGg ψ̄
∗ (η) = g

(
g−1

)ψ̄∗(η)
+ ψ̄∗

(
Ad∗g−1η

)
. Observe that the momentum map associated with the

dressing action is the Maurer–Cartan form applied to the infinitesimal generator at each point.

5. T -duality

The T -duality scheme involves the three Hamiltonian B-spaces described above, linking them with su2

ψ
∼= b∗ by

equivariant arrows

T ∗SU(2) R2 T ∗B

su2
��

??
??

??
??

ϕ̃
��

σ̃

����
��

��
��

µ̃

It is worth to remark that T -duality is not symplectic equivalence on the full phase space. Indeed, each symplectic
equivalence class is defined by a coadjoint orbit Oθ (11) and its elements are some symplectic submanifolds contained
in SU (2)× su∗2 and B× b∗, which are called dualizable subspaces. They can be defined as the leaves of some foliation in the
pre-images of Oθ through the maps µ̃, ϕ̃, σ̃θ , as it will be explained below.
Let us consider the three fibrations on Oθ

ϕ̃−1 (Oθ ) R2 µ̃−1 (Oθ )

Oθ su2
��

??
??

??
??

ϕ̃
��

σ̃

����
��

��
��

µ̃

� �
//

where µ̃−1 (Oθ ) ⊂ B × b∗ and ϕ̃−1 (Oθ ) ⊂ SU(2) × su∗2 are coisotropic submanifolds, and σ̃
−1
θ (Oθ ) ∼= R2 is a symplectic

space. Let us take a closer look of them. The tangent spaces of the fibers are the kernels of the corresponding differential
momentum map, and their symplectic orthogonal are the tangent spaces to the orbits of B through each point. Then,
collective Hamiltonians on B × b∗, SU (2) × su∗2 and R2 furnish the compatible dynamics having Hamiltonian vector fields
tangent to theB-orbits. The equivariantmomentummaps carry themover aHamiltonian vector field tangent to the coadjoint
orbit Oθ . This is the main idea underlying T -duality, establishing a correspondence between Hamiltonian vector fields, so
the correspondence between integral curves is defined up to a shifting of the initial condition.
Let us work out the dualizable space in each case.

5.1. Dualizable subspaces in B× b∗

Let us denote by τ̄B : B × b∗ → B to the canonical projection. Sizing up the set obtained by the intersection between
µ̃−1 (Oθ ) and the fiber τ̄−1B

(
b̃
)
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µ−11 (Oθ ) ∩ τ̄
−1
B

(
b̃
)
=

{(
b̃, η

)
∈

{
b̃
}
× b∗ : ψ̄

(
Ad∗
b̃−1
η̃
)
∈ Oθ

}
one realizes that µ̃−1 (Oθ ) = B×ψ (Oθ ). It is a coisotropic submanifold and the null distribution of the presymplectic form
ω̃◦|µ̃−1Oθ is spanned by the infinitesimal generators associated to the Lie algebra of the stabilizer subgroup Bθ . Amore precise
description of this set is

µ̃−1Oθ =

{(
b̃, η̃hh+ η̃ẽθ ẽθ

)
/b̃ ∈ B, η̃ẽθ ∈ R+, η̃h ∈ R

}
= B× ψ (Oθ ) (20)

where we introduced the dual basis
{
eθ , ẽθ ,h

}
⊂ b∗ with

ẽθ = cos θe− sin θ ẽ, eθ = sin θe+ cos θ ẽ.

Observe that eθ = −ψ (Xθ ).
In order to determine the presymplectic form on µ̃−1Oθ , we left trivialize the canonical vector bundles on B; thus we

have the identifications

T ∗T ∗B ' B× b∗︸ ︷︷ ︸
base

×b∗ × b TT ∗B '

base︷ ︸︸ ︷
B× b∗×b× b∗

and it yields to the following expression for the canonical 2-form on T ∗T ∗B

ω◦|(b̃,η̃) ((ξ1, ρ1) , (ξ2, ρ2)) = −ρ1 (ξ2)+ ρ2 (ξ1)+ η̃ ([ξ1, ξ2]) .

Having in mind that µ̃−1Oθ = E−1θ (0) and expanding it in the given basis, we can express the canonical form restricted to
this submanifold as

ω̃◦|µ̃−1Oθ

(
b̃, η̃

)
= 2η̃ẽθ

(
b̃−1h ∧ b̃−1ẽθ

)
− Ẽθ ∧ b̃−1ẽθ − H ∧ b̃−1h.

As a map from T(b̃,η̃)µ̃
−1Oθ −→ T ∗

(b̃,η̃)
µ̃−1Oθ , it assigns to a vector V =

(
b̃
(
vHH + vEθ Eθ + vẼθ Ẽθ

)
, ξ̃eθ eθ + ξ̃ẽθ ẽθ + ξ̃hh

)
the Hamiltonian 1-form

ıV ω̃◦|µ̃−1Oθ =
(
2η̃ẽθ vH − ξ̃ẽθ

)
b̃−1ẽθ −

(
2η̃ẽθ vẼθ + ξ̃h

)
b̃−1h+ vẼθ Ẽθ + vHH.

5.1.1. Gauge fixing and canonical coordinates
The evolution of the system is contained in the coisotropic submanifold µ̃−1 (Oθ ) ⊂ B × b∗. Without doing explicit

mention of this fact from now on, we will use in the current section the identification

B× b∗
id×ψ̄
' B× su2.

As it is known [7], the leaf of the null foliation through a point
(
b̃, X

)
in B× su2 coincides with the orbit Bζ̃ ·

(
b̃, X

)
of the

isotropy group Bζ̃ of the element ζ̃ := µ̃
(
b̃, η̃

)
. We also know that Bζ̃ = Bζ̃ ′ for every pair of elements ζ̃ , ζ̃

′
∈ Oθ in the

same orbit, so we denote it as Bθ and its elements where described in Eq. (14). Therefore the leaves of the null foliation for
the presymplectic structure on B× Oθ are the subsets

Bθ ·
([
a b+ ic
0 a−1

]
, X
)
=

{([
a id (b+ ic) e−iθ

0 a−1

]
, X
)
: d ∈ R

}
.

Then any slice for the action of Bθ on B × Oθ gives a symplectic submanifold of B × su2. As such slice we can consider the
submanifold S parametrized by R× R+ × R2 through the map

Ψ : (t, a; v3, vθ ) 7→
([
a −te−iθ

0 a−1

]
,−
1
2
v3X3 − vθXθ

)
where Xθ := cos θX1+ sin θX2. By taking into account the dual basis {xi} ⊂ su∗2 and the form xθ := − sin θx1+ cos θx2, the
constraints for S are{

F1(b̃, X) := xθ (X) = 0
F2(b̃, X) := b sin θ + c cos θ = 0.

Proposition. The pullback of the canonical 1-form along Ψ is given by

(θ0|S) |(t,a;v3,vθ ) = −a
−2 (tvθ − v3) da− a−1vθdt.



S. Capriotti, H. Montani / Journal of Geometry and Physics 60 (2010) 1509–1529 1521

Then the canonical 2-form on S is

ωS = −a−2 (tdvθ − dv3) ∧ da+ 2a−2vθda ∧ dt − a−1dvθ ∧ dt.

Furthermore it can be written as

ωS = −dpa ∧ da− dpt ∧ dt

where pa (a, t; v3, vθ ) := a−2 (tvθ − v3) , pt (a, t; v3, vθ ) := a−1vθ .

Proof. It is immediate to show that

[Ψ (t, a; v3, vθ )]−1 Ψ∗

(
∂

∂a

)
=

([
a−1 −a−2te−iθ

0 −a−1

]
; 0
)

[Ψ (t, a; v3, vθ )]−1 Ψ∗

(
∂

∂t

)
=

([
0 −a−1e−iθ

0 0

]
; 0
)
.

It implies

(θ0|S) |(t,a;v3,vθ ) =

(
[Ψ (t, a; v3, vθ )]−1 Ψ∗

(
∂

∂a

)
,−
1
2
v3X3 − vθXθ

)
sl(2,C)

da

+

(
[Ψ (t, a; v3, vθ )]−1 Ψ∗

(
∂

∂t

)
,−
1
2
v3X3 − vθXθ

)
sl(2,C)

dt

so, we can write

(θ0|S) = −a−2
(
tẼθ − aH

)
da− a−1Ẽθdt.

The rest follows by exterior differentiation. �

Corollary. The constraints describing the submanifold S are of second order.

Proof. For each pair (a, t) ∈ R+ × R, the map

(v3, vθ ) 7→
(
a−2 (tvθ − v3) , a−1vθ

)
is nonsingular, and mapsωS on a nondegenerate 2-form, as the previous proposition shows. ThenωS is nondegenerate, and
S is a symplectic submanifold. �

5.2. Dualizable subspaces in SU(2)× su∗2

In this case, the dualizable spaces are the symplectic leaves of the coisotropic submanifold ϕ̃−1 (Oθ ). To get some insight
about this set, we consider the infinitesimal generators of the dressing action of B on SU(2) associated with the basis
{E, (iE),H} ⊂ b

g−1gH = −i
(
αβ̄ − ᾱβ

)
X1 −

(
αβ̄ + ᾱβ

)
X2

g−1g(iE) = −
1
2

(
β2 + β̄2

)
X1 −

1
2
i
(
β2 − β̄2

)
X2 −

1
2

(
ᾱβ̄ + αβ

)
X3

g−1gE = −
1
2
i
(
β2 − β̄2

)
X1 +

1
2

(
β2 + β̄2

)
X2 −

1
2
i
(
αβ − ᾱβ̄

)
X3

(21)

whereψ : su2 → b∗ was given in Eq. (10). It is worth remarking that they can be also obtained from the coboundary Poisson
bivector on SU(2)

πSU(2)(g) =
1
4
(gX2 ⊗ gX1 − gX1 ⊗ gX2 − X2g ⊗ X1g + X1g ⊗ X2g) (22)

as

g−1g ψ̄
∗(η)
= Lg−1∗

[(
id⊗ η ◦ Rg−1∗

)
πSU(2) (g)

]
so

ϕ̃ (g, η) ≡ g
(
g−1

)ψ̄∗(η)
= Lg∗

[(
id⊗ η ◦ Rg∗

)
πSU(2)

(
g−1

)]
.

The dual map ψ̄∗ : su∗2 → b for the dual base {x1, x2, x3} ⊂ su∗2 gives

ψ̄∗(x1) = −E, ψ̄∗(x2) = iE, ψ̄∗(x3) = −
1
2
H
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which allows us to write

ψ̄∗ (η) = −η1E + η2(iE)−
1
2
η3H =

−
1
2
η3 −η1 + iη2

0
1
2
η3


so we get the explicit form of the momentum map ϕ̃ : SU (2)× su∗2 −→ su2

g
(
g−1

)ψ̄∗(η)
=

(
− Im

(
β2
)
(η1 cos θ − η2 sin θ)− Re

(
β2
)
(η1 sin θ + η2 cos θ)− η3 Im

(
αβeiθ

))
Xθ

+

(
Im
(
β2
)
(η1 sin θ + η2 cos θ)− Re

(
β2
)
(η1 cos θ − η2 sin θ)− η3 Re

(
αβeiθ

))
X∗θ

−
i
2

(
ᾱβ (η1 + iη2)+ αβ̄ (η1 − iη2)

)
X3 (23)

where Xθ = X1 cos θ+X2 sin θ and X∗θ = −X1 sin θ+X2 cos θ . The orbitOθ = {x (cos θX1 + sin θX2)+ zX3/x ∈ R>0, z ∈ R}
can be characterized by means the dual basis

{
xθ , x∗θ , x3

}
⊂ su∗2 , defining xθ = (cos θx1 + sin θx2) and x

∗

θ = (− sin θx1 +
cos θx2), so that

Oθ =
(
x∗θ
)◦
∩ x−1θ (R>0) .

In this way, we get for (23),〈
x∗θ , g

(
g−1

)ψ̄∗(η)〉
= −

i
2

(
β2 − β̄2

)
(η1 sin θ + η2 cos θ)−

1
2

(
β2 + β̄2

)
(η1 cos θ − η2 sin θ)

−
1
2
η3
(
ᾱβ̄e−iθ + αβeiθ

)
.

The annihilator is obtained from the condition
〈
x∗θ , g

(
g−1

)ψ̄∗(η)〉
= 0, implying that Re

((
β2η+ + η3αβ

)
eiθ
)
= 0, where

η+ := η1 + iη2. The remaining restriction is
〈
xθ , g

(
g−1

)ψ̄∗(η)〉
> 0 that is equivalent to Im

((
β2η+ + η3αβ

)
eiθ
)
< 0. Thus

have shown the following statement.

Proposition. ϕ̃−1 (Oθ ) is determined by the constraints

Re
((
β2η+ + η3αβ

)
eiθ
)
= 0 (24)

Im
((
β2η+ + η3αβ

)
eiθ
)
< 0 (25)

on the components of (g, η) ∈ SU(2)× su∗2 .

As explained above, the dualizable subspaces are the symplectic leaves in ϕ̃−1 (Oθ ), which coincide with the orbits of the
action d̂, see (17). Despite the rather obscure description of ϕ̃−1 (Oθ ), determining these orbit looks simpler working out
separately the factors in TSU(2) and su∗2 .
To start with, we work out the projection of T ϕ̃−1 (Oθ ) on the factor TSU(2). Here, we make use of the digression 3.1

to conclude that there are two kind of dressing orbits in SU(2): the zero dimensional ones determined by the points with
β = 0, and the two dimensional ones determined by ϑ = argβ , for β 6= 0, so they are two dimensional spheres S2. The
zero dimensional case are trivial dualizable subspaces, so we focus our attention on the last ones.
The infinitesimal generators (21) involve for each g ∈ SU(2) the linear transformation associated to d : b −→ TSU(2) ∼=

SU(2)× su2 relating the basis {H, E, iE} and {X1, X2, X3}, which has a nontrivial kernel spanned by the vector

X̃◦(g) = H − i
1
|β|2

(
αβ − ᾱβ̄

)
(iE)+

1
|β|2

(
αβ + ᾱβ̄

)
E.

On the other side, since (Im d)◦ = ker d>, where d> : SU(2)× su∗2 −→ b∗ is the transpose of d, we make the identification
Im d =

(
g, π̂

)◦, with (g, π̂) ∈ ker d> being the generator of ker d> with
π̂ = −

1
|β|2

Re
(
αβ̄
)
x1 −

1
|β|2

Im
(
αβ̄
)
x2 + x3 (26)

written it in terms of the dual basis {x1, x2, x3} ⊂ su∗2 . So, π̂ annihilates the vectors (21) which spans the tangent space of
each dressing orbit.
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The dressing action of B on SU(2) left invariant ϑ = argβ , so it is a suitable parameter to characterize the dressing orbits
in SU(2), and the Lie derivative along ϑ gives a normal vector to them. Thus, let us consider this tangent vector

V0|g =
(
g,−g−1

∂g
∂ϑ

)
=

(
g,−

1
2

(
αβ̄ + ᾱβ

)
X1 −

1
2
i
(
ᾱβ − αβ̄

)
X2 + |β|2 X3

)
. (27)

One may easily verify that〈
π̂ ,−g−1

∂g
∂ϑ

〉
= 1.

On the other side, the projection of T ϕ̃−1 (Oθ ) on the factor su∗2 is foliated by the orbits of the action

Πsu∗2
d̂b̃ (g, η) =

(
ψ∗ ◦ Adb̃g ◦ ψ̄

∗
)
η

which left invariant the x3 component of η, turning η3 = 〈η, X3〉 in a good parameter for the corresponding orbits.
Therefore, we introduce the projectors

P0 : TSU(2) −→ ΠTSU(2)T ϕ̃−1 (Oθ ) /P0 = Id− V0
(
π̂ ◦

(
Lg−1

)
∗

)
P3 : Tsu∗2 −→ Πsu∗2

T ϕ̃−1 (Oθ ) /P3 = Id− x3X3

so that P = P0 × P3 is the projector onto the d̂ orbits.
As mentioned before, the submanifold ϕ̃−1 (Oθ ) is a presymplectic one when endowed with the restriction of the

canonical form ω◦ of T ∗SU(2) ∼= SU(2) × su∗2 , and its symplectic leaves are the orbits of the action d̂ (17). We use the
above projectors to write down this restricted symplectic form on each orbit starting from the relation〈

ωR
◦
, (v, ρ)⊗ (w, λ)

〉
(g,η)∈ϕ̃−1(Oθ )

= 〈ω◦, P (v, ρ)⊗ P (w, λ)〉(g,η)∈ϕ̃−1(Oθ )

to get the expression

ωR
◦
= ω◦ − Lg−1∗π̂ ∧

(
g−1V0 − |β|2 X3 + g−1ad∗g−1V0η

)
+ X3 ∧ g−1x3 (28)

from where we obtain the Dirac bracket

{F ,G}D
ϕ̃−1(Oθ )

(g, η) = {F ,G} (g, η)−
〈
gdF ,

〈
π̂ , δG

〉
X3
〉
+
〈
gdG,

〈
π̂ , δF

〉
X3
〉
+

〈
η −

〈
η, g−1V0

〉
|β|2

x3, [δF , δG]

〉
and the Hamiltonian vector field

VG = V ◦G −

(〈
π̂ , δG

〉
X3, ad∗δG

(
η −

〈
η, g−1V0

〉
|β|2

x3

)
− 〈gdG, X3〉 π̂

)
(29)

which is tangent to the d̂-orbits in ϕ̃−1 (Oθ ), as expected.

6. AKS integrability scheme and dynamics on factors of SL(2, C)

Let us work out the dynamical setting on the coadjoint orbit in sl∗2C, which we shall identify sl2C through the invariant
nondegenerate bilinear form (X, Y )sl2 , (8). Following the AKS scheme, we choose an Ad-invariant function on a coadjoint
orbit of SL (2,C), so that its restriction to the coadjoint orbit of B in b∗ ↪→ sl∗2C gives a nontrivial dynamics embracing also
the dynamics on the cotangent bundles T ∗SU(2) and T ∗B [10,11]. In particular, the Ad-invariant function f : sl2C −→ R

f (X) := −
1
16
Re κ (X,X)

is related to the Hamiltonian function of the Toda model, as we shall see below. Its Legendre transform,Lf : sl2C −→ sl∗2C,
is 〈

Lf (X) , Y
〉
≡
d
dt
f (X+ tY)

∣∣∣∣
t=0
= −

1
8
Re κ (X, Y)

valid for all Y ∈ sl (2,C). As an element of sl (2,C) through the invariant product (·, ·)sl2 , it is given by
(
L̃f (X) , Y

)
sl2
=

−
1
4 Im κ(L̃f (X) , Y) and the C-linearity of κ enables to make the identification Re (κ (X, Y)) = Im (κ (iX, Y)). Hence, from

the definition of the bilinear product (·, ·)sl2 , we get

Im κ
(

L̃f (X)−
i
2
X, Y

)
= 0, ∀Y ∈ sl (2,C)
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and, because of the nondegeneracy of (·, ·)sl2 , we conclude that

L̃f (X) =
i
2
X.

Applying the AKS scheme to T ∗SU(2) and T ∗B, regarded as B-Hamiltonian spaces, requires that ψ∗ (ΠbX) be a character
of su2. The only chance isΠbX = 0, so X ≡ X ∈ su2 and the Hamiltonian vector field associated with f has integral curves
given by the fundamental flux t 7→ exp tL̃f (X): if X = a1X1 + a2X2 + a3X3,

exp tL̃f (X) = cosh
(
t
‖X‖
2

)
+ iX sinh

(
t
‖X‖
2

)
.

Here ‖X‖ =
√
det X , and fromnowonwe consider det X = 1, equivalent to a21+a

2
2+a

2
3 = 1. Thus, the solutions to collective

B-Hamiltonian systems are orbits of a curve in B obtained from the factorization of the curve exp tL̃f (X) on SU(2)×B [10,11].
In fact, the curve in SL(2,C)

exp tL̃f (X) =
[
cosh (t/2)− a3 sinh (t/2) − (a1 − ia2) sinh (t/2)
− (a1 + ia2) sinh (t/2) cosh (t/2)+ a3 sinh (t/2)

]
(30)

can be factorized out as
exp tL̃f (X) = g(t)b̃(t)

with g(t) ⊂ SU(2) and b̃(t) ⊂ B given by

g(t) =


cosh (t/2)− a3 sinh (t/2)
√
cosh t − a3 sinh t

(a1 − ia2) sinh (t/2)
√
cosh t − a3 sinh t

−
(a1 + ia2) sinh (t/2)
√
cosh t − a3 sinh t

cosh (t/2)− a3 sinh (t/2)
√
cosh t − a3 sinh t

 (31)

b̃(t) =


√
cosh t − a3 sinh t

− (a1 − ia2) sinh t
√
cosh t − a3 sinh t

0
(√
cosh t − a3 sinh t

)−1
 . (32)

Hence, the solution curves of suitable B-Hamiltonian systems are given by the orbits of b̃(t) in each space, aswe shall describe
below.

7. Dynamics on B-spaces

T -duality relates dynamical systems on the three Hamiltonian B-spaces, namely T ∗B, T ∗SU(2) and R2. The restriction of
the Ad∗-invariant function f to (su2)◦ ∼= su2 induces, on each of these spaces, collective systems whose solution can be
found through the AKS method. Accordingly with it, we just need to know the form of the action of the Lie group B on the
spaces under consideration to find out the solution to the equation of motion.
Hamiltonian systems modelled on the cotangent bundles of a Lie group G are characterized, in body coordinates, by the

canonical symplectic structure which, besides the Hamilton function, defines equations through the Hamiltonian vector
field VH |(g,η) =

(
gδH, ad∗δHη − gdH

)
, for the function H ∈ C∞ (G× g∗), where dH = (dH, δH), with dH ∈ T ∗g G and

δH ∈ T ∗η g∗, so

g−1ġ = δH
η̇ = ad∗δHη − gdH .

As explained, we consider a function h : su2 −→ R and, in each case, the Hamiltonian functions of the respective dynamical
systems are obtained by composing them with the corresponding momentum maps.

7.1. Dynamics on R2

The action of B on R2, Eq. (15), is

ρ
(
b̃, (q, p)

)
=

(
q−

1
µ
ln a, p− 2µ

ε

a
exp(2µq) (b cos θ − c sin θ)

)
where

b̃ =
[
a b+ ic
0 a−1

]
with associated momentum map σ̃θ

σ̃θ (q, p) =
1
2µ
pX3 − ε exp(2µq)(cos θX1 + sin θX2).
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The collective Hamiltonian here is

HR2 (q, p) = −
1
16
Re κ (σ̃θ (q, p), σ̃θ (q, p)) =

1
2

(
1
4µ2
p2 + 2ε2 exp (4µq)

)
.

By choosing the point X◦ := n◦ (cos θX1 + sin θX2)+m◦X3, n2◦+m
2
◦
= 1, inOθ ⊂ su2, the solution curve through the initial

point (q◦, p◦)with σ̃θ (q◦, p◦) = X◦ is given by the action of the curve b̃(t), obtained in Eq. (32),

t 7→ ρ
(
b̃(t), (q◦, p◦)

)
=

(
q◦ −

1
µ
ln a(t), p◦ −

2µε
a(t)

e2µq◦ (b (t) cos θ − c(t) sin θ)
)

where

a(t) =
√
cosh t − a3 sinh t

b(t) =
−a1 sinh t

√
cosh t − a3 sinh t

c(t) =
a2 sinh t

√
cosh t − a3 sinh t

and

a1 = −ε exp(2µq) cos θ
a2 = −ε exp(2µq) sin θ

a3 =
1
2µ
p

so

ρ
(
b̃(t), (q◦, p◦)

)
=

(
q◦ −

1
2µ
ln
(
cosh t −

1
2µ
p sinh t

)
,

p◦ − 2µ
ε2(

cosh t − 1
2µp sinh t

) exp(2µ (q◦ + q)) sinh t).
In order to have σ̃θ (q◦, p◦) = X◦, the following relations must hold

m◦ =
1
2µ
p◦

n◦ = −ε exp(2µq◦)

 H⇒
(
1
2µ
p◦

)2
+ ε2 exp(4µq◦) = 1.

Thus, the curve ρ
(
b̃(t), (q◦, p◦)

)
becomes in

ρ
(
b̃(t), (q◦, p◦)

)
=

(
q◦ −

1
2µ
ln
(
cosh t −

1
2µ
p◦ sinh t

)
,−2µ

sinh t − 1
2µp◦ cosh t

cosh t − 1
2µp◦ sinh t

)
.

For the particular values µ = 1
2 and ε = ±

√
2 inHR2 (q, p), we obtain the Toda Hamiltonian

HToda (q, p) =
1
2
p2 + exp(2q) (33)

whose Hamilton equation{
q̇ = p
ṗ = −2 exp(2q)

are solved by the curves

q(t) = − ln (cosh t − p◦ sinh t) , p(t) = −
sinh t − p◦ cosh t
cosh t − p◦ sinh t

.

A little note about parameters. In the previous setting it was possible to solve the Toda equations of motion in case in which the
energy of the system is equal to 1, however it is possible to choose the parameters in order to solve the system at any other (positive
of course) energy.
The Lagrangian corresponding to the Toda Hamiltonian (33) is

LToda (q, q̇) =
1
2
q̇2 − exp(2q). (34)



1526 S. Capriotti, H. Montani / Journal of Geometry and Physics 60 (2010) 1509–1529

7.2. Dynamics on T ∗B

In terms of the momentummap µ̃
(
b̃, η̃

)
=

(
ψ̄ ◦ Ad∗

b̃−1
◦ ψ

)
ψ (η̃), given in Eq. (16), the collective Hamiltonian on T ∗B

is then

HB

(
b̃, η̃

)
= −

1
16
κ
(
µ̃
(
b̃, X

)
, µ̃
(
b̃, X

))
=
1
2a4

(
η̃2e + η̃

2
ẽ
)
+
1
2

(
1
2
η̃h +

bη̃e + cη̃ẽ
a

)2
.

The evolution curve passing through the initial point
(
b̃◦, X◦

)
with X◦ = (n◦ cos θX1 + n◦ sin θX2)+m◦X3 is

t 7→ λ̃
(
b̃(t),

(
b̃◦, η̃◦

))
=

([
a(t) z(t)
0 (a(t))−1

]
·

[
a◦ z◦
0 a◦

]
, X◦

)
where the curve b̃(t) is that of Eq. (32). Explicitly, it means the curve

λ̃
(
b̃(t),

(
b̃◦, η̃◦

))

=


a◦

√
cosh t −m◦ sinh t

a◦z◦ cosh t −
(
m◦a◦z◦ + n◦e−iθ

)
sinh t

a◦
√
cosh t −m◦ sinh t

0
1

a◦
√
cosh t −m◦ sinh t

 , X◦
 .

The Lagrangian version of this model can be retrieved from the first Hamilton equation

b̃−1 ˙̃b = δHB

that in explicit form is

aḃ− ȧb = η̃ea−2

aċ − ȧc = η̃ẽa−2

a−1ȧ =
1
2

(
η̃eba−1 + η̃ẽca−1 +

1
2
η̃h

)
.

Hence, the Lagrangian is obtained as

L̃B
(
b̃, ˙̃b

)
=

〈
η̃, b̃−1 ˙̃b

〉
−HB

(
b̃, η̃

)
that after some calculation gives

L̃B
(
b̃, ˙̃b

)
=
1
2

(
bȧ− aḃ

)2
+
1
2
(cȧ− aċ)2 + 2

(
a−1ȧ

)2
. (35)

This Lagrangian reduce on µ̃−1Oθ to

L̃redB
(
b̃, ˙̃b

)
=
1
2

(
tȧ− aṫ

)2
+ 2

(
ȧ
a

)2
.

Since
˙̃bb̃−1 =

(
aḃ− ȧb

)
E + (aċ − ȧc) (iE)+ a−1ȧH

and introducing the linear map K := κ̂−1su2
◦ ψ∗ : b −→ su2, given by

KE =
1
8
X1, K(iE) = −

1
8
X2, KH =

1
4
X3

we may write the Lagrangian function (35) using the symmetric bilinear form (8) on sl2 as

L̃B
(
b̃, ˙̃b

)
= −4

(
K ˙̃bb̃−1, ˙̃bb̃−1

)
sl2

(36)

that resembles a generalized top Lagrangian on B.
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7.3. Dynamics on T ∗SU(2)

We consider the Hamiltonian function

HSU(2)(g, η) = −
1
16
κ(ϕ̃(g, η), ϕ̃(g, η)). (37)

In order to get the Hamilton equation of motion, we need to calculate the differential
(
dHSU(2), δHSU(2)

)
. In doing so, we use

the expression for the differential of the momentum map ϕ̃

ϕ̃∗ (gX, ξ) = −
(
id⊗ Ad∗g−1ξ

)
πR(g)+

(
id⊗ Ad∗g−1η

)
(id⊗ adX ) πR(g)−

(
Adg ⊗ η

)
δsu2(X)

where δsu2 : su2 −→ su2 ⊗ su2 is the coboundary coalgebra structure of su2 and πR(g) =
(
Rg−1∗ ⊗ Rg−1∗

)
πSU(2) (g). Thus,

the differential of the Hamilton function are

gdHSU(2) =
1
8

[
κ̂su2 ϕ̃(g, η),Ad

∗

g−1
(
ψ̄∗ (η)

)]
su∗2

δHSU(2) =
1
8
Adg−1

(
κ̂su2 (ϕ̃(g, η))⊗ id

)
πR(g).

Observe that

δHSU(2) =
1
8
Adg−1

(
κ̂su2 (ϕ̃(g, η))⊗ id

)
πR(g) = g−1g ψ̄

∗(κ̂su2 (ϕ̃(g,η)))

so
〈
π̂ , δHSU(2)

〉
= 0.

Now, using the expression for the Hamiltonian vector field on the d̂-orbits (29)

VG = V ◦G −

(〈
π̂ , δG

〉
X3, ad∗δG

(
η −

〈
η, g−1V0

〉
|β|2

x3

)
− 〈gdG, X3〉 π̂

)
where V ◦G =

(
gδG, ad∗δGλ− gdG

)
is the Hamiltonian vector field associated with the canonical Poisson bracket in TSU (2).

We get

VHSU(2) =

(
gδHSU(2), ad∗δHSU(2)

(〈
η, g−1V0

〉
|β|2

x3

)
− gdHSU(2)

)
which, obviously, satisfy PVHSU(2) = VHSU(2) , for the projector P =

(
Id− V0π̂

)
⊕ (Id− x3X3) on the d̂-orbits. So the reduced

equation of motion are
g−1ġ = gδHSU(2)

η̇ =
1
|β|2

〈
η, g−1V0

〉
ad∗δHSU(2)x3 − gdHSU(2).

Observe that the equation for g , including the explicit form of δHSU(2) given above in terms ofπR(g), resembles the equation
of motion of a finite dimensional Poisson sigma model.
The solution curve is generated by the action of the curve b̃ (t), Eq. (32), through the dressing action d̂ : B × SU(2) ×

su∗2 −→ SU(2) × su∗2 . Having in mind the explicit form of ϕ̃(g, η), we consider the initial point (g◦, η◦) such that
ϕ̃ (g◦, η◦) = X◦ := n◦ (cos θX1 + sin θX2)+m◦X3, n2◦ +m

2
◦
= 1, in Oθ ⊂ su2. A suitable election for the initial condition is

g◦ (ψ◦, φ◦) =
(

0 −ei(φ◦−ψ◦)

e−i(φ◦−ψ◦) 0

)
, η◦ = η3◦

(
− sin 2ψ◦
cos 2ψ◦
1

)
with

η23◦ cos
2 (θ + 2φ◦) = 1

that gives a solution curves in each d̂-orbit

(g(t), η(t)) =
(
g b̃(t)
◦
,
(
ψ∗ ◦ Ad(b̃(t))g◦ ◦ ψ̄

∗

)
η◦

)
with

g b̃(t)
◦
=

1√
λ2 sinh2 t + 1

(
−λe−i(φ◦−ψ◦+σ) sinh t −ei(φ◦−ψ◦)

e−i(φ◦−ψ◦) −λei(φ◦−ψ◦+σ) sinh t

)
η(t) = −η3 (sin (2ψ) (cosh t + a3 sinh t)+ λ cos (σ − 2 (φ◦ − ψ◦)) sinh t) x1

+ η3 (cos (2ψ) (cosh t + a3 sinh t)+ λ sin (σ − 2 (φ◦ − ψ◦)) sinh t) x2 + η3x3.

Here, we wrote the parameters a1, a2 in the curve b̃ (t), Eq. (32), as: a1 = λ cos σ and a2 = λ sin σ .
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Let us to obtain the Lagrangian version of this system. The Legendre transformation in this case is singular, it can be
partially retrieved from the first Hamilton equation written as

g−1ġ = −g−1g ψ̄
∗(κ̂su2 (ϕ̃(g,η))).

Explicitly, this equation are

ᾱβ̇ − β ˙̄α = −β2 (ϕ̃1(g, η)+ iϕ̃2(g, η))+ ᾱβϕ̃3(g, η)

ᾱα̇ + β ˙̄β = −
1
2

(
αβ − ᾱβ̄

)
ϕ̃1(g, η)−

1
2
i
(
ᾱβ̄ + αβ

)
ϕ̃2(g, η)

where we denoted ϕ̃(g, η) =
∑3
i=1 ϕ̃i(g, η)Xi. This system of equation can be solved for two components of η, for instance

η1 and η2, as a function of the velocities and η3,

η1 = i

(
αβ̄ − βᾱ

)
2βᾱ |β|2

(
ᾱβ̇ − β ˙̄α

)
− i

(
|β|4 + |β|2 + β2ᾱ2

)
2βᾱ |β|4

(
ᾱα̇ + β ˙̄β

)
−

(
|α|2 |β|2 + ᾱ2β2

)
2βᾱ |β|2

η3

η2 =

(
αβ̄ + βᾱ

)
2βᾱ |β|2

(
ᾱβ̇ − β ˙̄α

)
−

(
|β|4 + |β|2 − β2ᾱ2

)
2βᾱ |β|4

(
ᾱα̇ + β ˙̄β

)
+ i

(
|α|2 |β|2 − β2ᾱ2

)
2βᾱ |β|2

η3.

Then, the Lagrangian function is defined as

LSU(2) (g, ġ) =
〈
η, g−1ġ

〉
−H(g, η)

where π̂ was given in (26). Replacing η1, η2 by the above relations, we obtain the Lagrangian

LSU(2) (g, ġ) =
1
2

(
g−1ġ, g−1ġ

)
su2
+ η3

〈
π̂ , g−1ġ

〉
(38)

where we have introduced the metric in trivialized tangent bundle SU(2)× su2 given by(
g−1ġ, g−1ġ

)
su2
= −

1
8 |β|2

κ
(
g−1ġ, g−1ġ

)
.

Observe that η3 appears as a Lagrange multiplier realizing the constraint〈
π̂ , g−1ġ

〉
≡

i
2 |β|2

(
β̄β̇ − β ˙̄β

)
= 0

which in terms of the Euler angles reduces to

ψ̇ − φ̇ = 0

showing that the dynamics is naturally restricted on dressing orbit, as expected.
By introducing A(g) := 8 |β|2 η3κ̂−1su2

(
π̂
)
∈ su2, and after handling the quadratic form, we may write the Lagrangian as

LSU(2) (g, ġ) =
1
2

(
g−1ġ − A(g), g−1ġ − A(g)

)
su2
−
1
2
(A(g),A(g))su2

that describe the dynamics of a particle moving on the group manifold S3 under the action of non-Abelian potential vector
potential A, which confines its movement to the S2 sphere determined by the constraint argβ = cte.

8. Conclusions

We have shown how the theory of integrable systems, in particular AKS theory, can be used in its full scope to solve
effectively the systems involved in a Poisson–Lie T -duality scheme. In doing so, we have also introduced a variant for the
Hamiltonian Poisson–Lie T -duality scheme, by using as a central object of the scheme a coadjoint orbit of one of the Iwasawa
factors. This fact enhances the applicability of the PL duality, including awider class of systems, finite or infinite dimensional,
on which the techniques of integrable systems can be used.
The explicit finite dimensional example SL(2,C) = SU(2) × B exhibits a detailed description of the way in which this

duality works, constructing explicitly the solutions for all the involved systems from the factorization of the solution curve
of an almost trivial systemon sl∗2 . This curve b̃(t) ⊂ B gives rise to the solution curves in each case through the corresponding
actions. As an alternative way for using the scheme, the solutions would be obtained retrieving the curve b̃(t) ⊂ B from the
well known solution of the Toda system on R2. It is worth to remark that the election of the symmetry group defines the
master integrable system ruling the dynamics and it is realized in this example by the choice of B as the main symmetry,
putting the Toda system in the center of the scheme, or in the loop group case of Refs. [2,3], where theWZNWmodel appears
on the double Lie group LD = LG× LG∗. The compatible dynamics was obtained from collective Hamiltonian functions after
fixing a Hamiltonian on the selected coadjoint orbit.
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The systems in the equivalence class includes a kind of generalized top on the group B and a dressing invariant system on
the group manifold S3 which suffers a reduction to the S2 submanifold characterized by argβ . Dressing symmetry becomes
relevant for the so called Poisson sigma models, so our example may serve as a laboratory for understanding issues related
to the reduced space of systems with this kind of symmetry.
From the Lagrangian point of view, the PL T -duality transformation relates a constrained systems on the compact

configuration space SU(2) with a system on the noncompact space B, by a rather nontrivial transformation. A remarkable
fact is that these nonlinear systems arise from kinetic Lagrangians, that means, bilinear forms on the corresponding tangent
bundles. In the SU(2) case the bilinear form amounts to be metric, while in B case, because a solvable Lie group lacks of an
Ad-invariant bilinear form on it, the bilinear form is inherited from sl2 through a linear operator K. This relation between
two different target geometries relies on the dynamical equivalence of the reduced Hamiltonian systems and the coadjoint
orbit. In both cases, the structure of the reduced phase spaces were explicitly determined, and the PL T -duality equivalence
between the Lagrangian system (34), (36) and the (38) was established.
Most of the theory of integrable systems applied in this work can be used, with some cares, in the infinite dimensional

case (loop groups). In fact, the Refs. [4,10,11] deal with Kac–Moody algebras and infinite dimensional integrable systems like
KdV and others, so we expect they can be applied in the natural setting of Poisson–Lie T -duality, namely the loop groups
case and T -dualizable sigma models.
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