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1. Introduction

The search for dualities in theoretical physics is motivated by the hope of finding a couple of related theories in which
one of them is, in some sense, easily solved and the solutions to the second one is attained from the solution of the former
system. Poisson-Lie T-duality is a nice example in this direction: it is built on phase spaces having a rich structure entailing a
close connection with integrable model, exploiting the inherent self-dual character of Poisson-Lie groups in order to relate
a couple of sigma models having targets on the factors of a Drinfeld double Lie group [1]. In Refs. [2,3], PL T-duality was
accurately encoded in a Hamiltonian scheme ruled by some Hamiltonian actions of the double Lie group G on the cotangent
bundle of its factors, where T-duality transformations are provided by the associated momentum maps targeting on the
same coadjoint orbit. Moreover, it was realized that collective dynamics on these Hamiltonian G-spaces underpins the
dynamic correspondence between these models. In those references, G was taken as the centrally extended Drinfeld double
of aloop group and T-duality comes to relate sigma models built on each factor of it. This scheme also reveals the role played
by a WZNW model whose reduced phase space, the shared coadjoint orbit, embraces the dynamics of both sigma models.
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In all these systems, compatible dynamics are ruled by collective Hamiltonians. Thus, the natural setting is infinite
dimensional: it is provided by phase spaces modelled on cotangent bundles of loop groups, and the momentum maps are
associated with the centrally extended action of the double group. In spite of this, the essential issues of T-duality can be
clearly sketched in a finite dimensional context, avoiding the specific difficulties of the infinite dimensional case.

The current work is aimed to stress the intrinsic connection of the Poisson-Lie T-duality with integrable systems, working
in a finite dimensional framework, allowing us to concentrate on the structural facts behind this connection. We describe
the geometric structure underlying the Hamiltonian version of this duality, following Refs. [2,3], by considering a complex
Lie group G and its Iwasawa decomposition in the compact factor K and the soluble one, B. As an alternative to the standard
scheme built on Hamiltonian G-spaces, we introduce a wider version of T-duality in order to include schemes based on
the Hamiltonian action of the Iwasawa factors, giving rise to duality classes of Hamiltonian K- or B-spaces. This leads
straightforwardly to the Adler-Kostant-Symes (AKS) theory for integrable systems [4], through the introduction of collective
dynamics. An explicit example is constructed in full detail working on SL (2, C) and its factors in the Iwasawa decomposition,
namely SL (2, C) = SU (2) x B, involving three Hamiltonian B-spaces: T*SU(2), T*B and R?. The respective dually related
dynamical systems are a dressing invariant system in SU (2), a kind of generalized top on B, and a Toda model on R?. This
last system plays an analogous role to that played by the WZNW in loop group case, embracing the dynamics of the other
systems. Then, we use the AKS theory to show explicitly the integrability of these systems constructing the solution in
each case, and providing a precise meaning for the Poisson-Lie T-duality transformations. By passing to the Lagrangian
framework, we show the equivalence between systems described by bilinear forms on the corresponding tangent bundles,
so that the constructed duality relates different targets geometries.

Itis important to point out that most of the results can be translated, with some cares, to the infinite dimensional case and
the underlying structure works in any case. Whatever the case, we can consider the finite dimensional case as a restriction
of the loop group one to the constant map from S! to a Lie group.

This work is organized as follows: in Section 2 we give a description of the geometric setting for the Hamiltonian approach
to PL T-duality and its relation with the theory of integrable models, in particular with the AKS theory. In Section 3, we
describe the main features related to Iwasawa decomposition and coadjoint orbits; in Section 4 the involved phase spaces
are presented, describing its symmetry properties; the T-duality scheme is described in Section 5; in Section 6 we apply
explicitly the AKS Theory to solve the systems, and in Section 7 the compatible dynamics is analyzed from Hamiltonian and
Lagrangian point of view. Finally, the conclusions are included in Section 8.

2. Geometric setting for Poisson-Lie T -duality

The standard Hamiltonian approach to PL T-duality, as introduced in [2,3], considers a Lie group G which can be written
as a product of two subgroups K and B, so that all of them are endowed with a Poisson-Lie structure and their Lie algebras
g, &, b, such that g = £ @ b, turn in Lie bialgebras. Hence, the PL T-duality is built up on Hamiltonian G-spaces: the group
G acts on the cotangent bundle of its factors, giving rise to momentum maps with nontrivial intersections in g*. In the loop
group case, this is warranted by taking the central extension of G or of its Lie algebra g, providing intersections with a rich
class of coadjoint orbits inside. However, this seems to be a very specific situation, in general it happens that the momentum
maps have no nontrivial intersection, as it is the case in finite dimension.

Handling this problem in a general fashion lead us to propose a wider scheme for PL T-duality by considering T-dual
equivalence classes constructed alternatively on Hamiltonian G, K or B-spaces. As we shall show below, the main facts
underlying the standard PL T-duality remain the same: the canonical transformation between systems on the factors K and
B arises from the symmetries involving their Poisson-Lie structure. In this way, one is able to built up PL T-dual equivalence
classes attached to coadjoint orbits in g*, ¢* or b*. In addition, this wider framework allows to make contact with the AKS
theory for integrable systems.

So, let us consider the Lie group G and its Iwasawa decomposition G = KB, where K is the compact factor and B is the
solvable one. The abstract framework we use here also includes the Lie algebras g, €, b, which correspond to the Lie groups
G,K,Bsothatg = ¢®b, and g is equipped with a nondegenerate symmetric bilinear form (, ), turning ¢ and b into isotropic
subspaces. This allows the identification b* =~ ¢ and £ =~ b. The projectors are denoted by ITx : G — K, Il : G — B;
moreover, the symbols IT, : g — ¢, IT, : ¢ — b are meant to indicate the projections into the summands of the Lie algebra
decomposition induced by the factorization.

Let us describe a PL T-duality scheme based on the action of one of the factors, B in this case, instead of the action of G.
It will involve the Poisson manifold (b*, {, }+), where {, }y+ is the Kirillov-Kostant bracket, and the symplectic manifolds
(T*K, wg) and (T*B, wg), with wy, wp standing for the canonical symplectic forms on each phase spaces, respectively. All
the cotangent bundles are regarded in body coordinates, so they are trivialized by left translations.

The phase space T*B = B x b* turns in a Hamiltonian B-space by the action 7 : B x (B x b*) —> B x b* obtained as the
lift of the action of B on itself by left translations

v (& (i) = @h. i)
for g, h € B, i € b*, with Ad-equivariant momentum map A : B x b* —> b*
Ah, ) = Ad; 7.
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On the other side, T*K = K x £*, becomes in a Hamiltonian B-space by virtue of the Poisson-Lie structure of K inherited
from the Iwasawa decomposition G = KB. In fact, we introduce the action dr : B x (K x £*) — K x ¢*

dr (5, (e, n)) = (g[’, Adaw) (1)

forb € B, g € K,n € ¢ which is obtained by lifting the dressing action of B on K to the cotangent bundle. This action,
introduced in [5,6], works as follows: by writing each element ! € G as | = gh, withg € K and h € B*, the product hg in G
can be expressed as Flg = g"flg, with gh € K and h& € B.The dressing action of Bon K is defined as Dr : B x K — K, such

that Dr (E, g) = H,(flg = g’_'. Infinitesimally, £ € b is mapped onto the tangent vector

(Exxe) g = (85, [AdzE, n])

at (g, n) € K x £; here are assumed the identifications explained above, so that Ad; : b — b and the bracket is the Lie
bracket in b. The momentum map ¢ : K x & — b*is

pg.n=g(g")

having in mind that the right hand side belongs to ¢ >~ b*. In order to avoid confusion, these identifications will be explicitly
shown in the specific case addressed in the following sections.

The momentum maps ¢ and A turn (K x £, wy) and (B x b*, wg) in symplectic realizations of the Poisson manifold
(6*, {, }p*), as depicted in the diagram

K x ¢* B x b*

x / (2)

*

which is the basic geometric scheme underlying PL T-duality. Seeking for compatible dynamics drives to the realm of
collective Hamiltonian systems [7], meaning that a Hamiltonian function h € C* (b*) is the masterpiece governing both
the PL T-dual systems on K x £* and B x b*. In fact, the corresponding pull backs by the momentum maps ¢ and A, namely
ho¢ € C* (K x £*)and h o A € C* (B x b*), produce the desired compatible dynamics.

These systems are said to be in collective Hamiltonian form and to understand its geometric meaning we work on a generic
Hamiltonian B-space (M, w), with an Ad-equivariant momentum mapJ : M — b* associated with the symplectic action
¢ : Bx M —> M of the Lie group B, and taking the collective Hamiltonian H = h o J. In terms of the orbit map through
meM,¢, : B—> M/pn(b) := ¢ (b, m), the infinitesimal generators can be written as Xy (m) = (¢n), X, for X € b
and X,y € X(M). Hence, introducing the Legendre transformation of h, namely the linear map £, : b* — b defined as
(&, Ln(m)y = (dhl,, &), for any & € b*, we may write the Hamiltonian vector field of H as

VH|m = ((pm)* [°Ch O.” (m)
and its image by J is tangent to the coadjoint orbit through J(m)

JelmVu = ( £h(/(m))) J@m).

In other words, the Hamiltonian vector field Vy is mapped on the tangent space of a coadjoint orbits in b*. If m(t) denotes
the trajectory of the Hamiltonian system through m(0) = m, m(t) = Vy/|m(), the images y (t) = J (m(t)) lies completely
on the coadjoint orbit through J(m), where the equation of motion is

(t) = _( th(y(t))) y(t) (3)

that corresponds to a Hamiltonian system on the coadjoint orbits on b*, with Hamiltonian function h.

Proposition. Let y : R — b* be the solution curve of Eq. (3) with initial condition y (0) = Jy;(m), and select a curve b(t) in B
such that

y(© = (A2, ) Ju(m). (4)
Then, among these curves there exists a solution of the differential equation on B
bOb™(®) = £y (¥(©),  b(0) =g € By (my 5)

where By, (m) is the stabilizer group of the point Jy (m) under the coadjoint action of B on b*.

Proof. Let us suppose that b : R — B satisfies Eq. (3) through Eq. (4), and take n : R — Bj,,(m) such that b (t) n(t) solves
the differential equation (5). Then
d (b(t)n(t))

ar (b®n(t) ™" = Ly (¥ (1)
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or equivalently
At~ (6) = AdS, £y (7 (0) — b~ (D)D)

We have to verify that the right hand side of this expression belongs to bj,, ), the Lie algebra of the stabilizer subgroup
Bj,,m- Taking into account that b satisfies Eq. (4), we have

b(t)b™'(t) = L (y (1)) +M(D)

for some curve M : R — by, (). Furthermore, we have that X € b, () iff (adﬁ)* y (t) = 0, and this means

0= (adf)" (A2 1) o) = (AdE ) (a, ) Jm).

ThenX € by iff Ady_; X € by, (m- Therefore, M(t) = Ady N (t) for some curve N : R — by, (m), and finally

AN~ (t) = N(t) € by, m)
as we want to show. 0O

Hence, m(t) = ¢ (b(t), m) is the solution to the original Hamiltonian system. Moreover, if b is supplied with an invariant
nondegenerate bilinear form (,) : b x b — K, and denoting y : R — b the image of y : R — b* through the induced
isomorphism b* — b, the equation of motion turns into the Lax form

"
%t) — [7(0), L2 (O], (6)

2.1. Relation with AKS method

The success of the method described above relies on the integrability of the Eq. (3). The AKS theory [4] gives a family of
integrable Hamiltonians associated to Ad®*-invariant functions on g*. First, we have the identification £ ~ b* by the map
n € b* > n o IT,. It allows us to define a B-action via

B () = ((Adg)* M) oM, YbeB, uet.
The orbit (95 C ¢° for this action through p is a symplectic manifold; in fact, for n € (95 we have that

T, (08) = {(ad§) "m0 : x e v}
and the symplectic structure is given by

(. (@) n o 11, @ (ad,) m o 11) = (n. X2 2]
This structure will be used in proving the following result.

Theorem. Let f € C* (g*) be an Ad*-invariant function, and let the restriction h := f |(9fM(m) be the Hamiltonian function for
the system defined on OfM(m) C €° =~ b*. Hence, the solution of this system with initial condition n(0) = Jy; (m) is

n(t) = (Adg,)) " Ju(m)
where k : R — K is the K-factor in the decomposition of the element g(t) = exp (t£f Um (m))).

Proof. Let  be an arbitrary element in the orbit (QfM(m) defined above. In this case, using the associated Legendre
transformation &£ : g* — g that allows to identify T;‘ (g%) ~ g, we have

<df, (adSn)* o Hb>n - ((adgn)* o Iy, L5 (n)> = (. [X. Moy )))

so that the Hamiltonian vector field associated to h is given by
*
G
Valy = = (a5, 4,1 © Mo
*
Because of the Ad*-invariance of f, we have that <ad§f( n)) n = 0, and we can rewrite it as

*
Vily = (ad%keff(ﬂ)) n )

by taking into account that (Ad§)" & C e forallk € K.
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On the other side, the curve in ¢ defined through
n(t) = (Adgy) " Ju(m)

has tangent vector field given by

. a G \* G *

10 = | [(a) s m] = (a1 i) 000

Now, considering the integral curve g(t) of the right invariant vector field £y (Jy(m))g(t), written in terms of the
decomposition curves g (t) = k(t)b(t) we obtain

d (kb)

-1
ar (kb)

gg (1) =

= Adg,, (k™' (Dk(t) + b(H)b~ (1))
t
meaning that Adf,l(t) L5 (Ju(m)) = k=" (t)k (t) 4 b(t)b~'(t), and therefore

, (Ad,f,1 s (]M(m))) = k1 (Ok().
By using Ad*-invariance for f again, we have that
AdE L5 O (m) = £ ([Ad ] nm)) = 25 (n(©)

implying that k=1(t)k(t) = I, (£f (n(t))). Comparing with Eq. (7) we can conclude that 7(t) has V,, as tangent vector
field. O

*
If(n)) n =0, forall n € g* and so

The Ad*-invariance implies the identity (adG

I:Adgxp tL5 (m))]*JM (m) = Ju(m)

meaning that

[AdS ] s (my = [AdS. | m)

and assuming Jy (m) € ¢° it is clear that we can take b : R — B (the B-factor of exp t£; (Ju(m))) as the solution curve in
Eq. (3). In such case it is necessary to find the differential equation for the Bj,, ;n)-factor n (Cf. proof of the proposition below
Eq. (3)). But as was previously shown

L (n(6)) = k' (Ok®) + bOb'(©),  n(6) = AL Ju(m),

50 b(O)b™(£) = My Ly (7(1)).
On the other side, for all £, n € £ we have that

(Lr ). &) = (Mo Lr ), &)
d d
(€. £Lr ()= Ef n+t&)| = ah(rH-tE) = (&, L (M)
t=0 t=0
meaning that £y, (n) = ITyLs () and then b(t)b”(t) = L4, (n); therefore
an~'(t) =0

and the Bj,,m)-factor is constant.

2.2. Summary

The setting consist of a factorizable Lie group G = KB and a Hamiltonian B-space M. The collective motion associated to
the restriction to £ >~ b* of an (Adc)*—invariant function f gives rise to a collective Hamiltonian system on M, which can be
thus solved algebraically as follows:

1. Factorize the straight curve t > exp tLy (Ju(m)) = k(t)b(t).
2. The solution curve on M for the Hamiltonian system defined by H := (f|¢°) o J is given by

t = @ (b(t)ng, m)

for some element ng € By, (m).
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3. Iwasawa decomposition of SL(2, C) and coadjoint orbits

We now specialize the above abstract structure to G = SL(2, C) and its Iwasawa decomposition SL(2, C) = SU(2) x B,
where B is the solvable group of 2 x 2 complex upper triangular matrices, with real positive diagonals and determinant
equal to 1. Let us address the construction of an explicit example of T-dual systems in this framework.

In order to start with, we consider the maximal Abelian subalgebra h = C{o3) of the Lie algebra sl,(C), with the root
system A := {—«, a}, where a € h* is given by @ (03) = 2. The associated decomposition is sl,(C) = h @ gy D g_q, With

1 .
Oto = (C<2(01 + 102)>-

For the positive root set A, = {o} we define n := @ﬂ€A+ gp = &« Then we may find a decomposition as expected for
sl (C)F by taking ¢ = suy and b := a @ n¥, where a := R(03) = it, being t := § N su, a real form for b,
sL(C)F = su, @ b.
With this election for b, b is the subalgebra of upper triangular matrices with real diagonal and null trace, and ¢ is the real
subalgebra of sl, (C) of antihermitian matrices.
Alternatively, one would may choose for instance i’ := C{o), changing the roots «’ and the spaces g, so that b’ is no

longer composed of upper triangular matrices. However, by change of basis (the one which diagonalize o) will turn b’ into
triangular matrices again. The compact real form is obtained as usual, defining

w = ) R(H) + ) R —X-o) + ) RilXa +X-o)
aeA aeA aeA

once § is fixed.
The Killing form for sl (C) is« (X, Y) := tr (ad (X) ad (Y)) = 4tr (XY), the restrictions to su;, a, and n are negative defined,
positive defined, and 0, respectively. We consider the nondegenerate symmetric bilinear form on sl, (C)

X, V), = —% Im k(X Y) (8)

which turns b and ¢ into isotropic subspaces. Also, we take the basis

0 i 0 1 i o0
=llo] m=[ho] el

for su,, and

0 1 o i 10
U s I A FR)

in b. Then, the crossed product are
(Xl’ E)5[2 =-1 (X27 E)5[2 =0 (X3s E)s[z =0
X1,iE)sp, =0 (Xp,iE)s, =1  (X3,iE)q, =0 9
(Xl’ H)5(2 =0 (Xla H)5[2 =0 (X37 H)S[z = -2
allowing for the identification ¥ : su; — b* given by
V(X)) = —e, v(Xp) =&, ¥ (X3) = —2h (10)
where {e, & h} C b* is the dual basis to {E, iE, H} C b.
This map allows to carry the Poisson structure of b* to su,. In terms of the dual basis {X;} C su3, (xk, Xj> = &y, so for
f € C% (suy) we have that df (Xi) = d"—){k and the Poisson bracket reads as

<8f ag  of ag)x]_i_(afaig_iaig)x

9X; 0X3 03 0X; 0%, 0x3 0% 0%,

{f.g}=

The Hamiltonian vector fields are then
ag d 0 ag ag d
Vo= —IXi—+tX— |- | Xi—+X— ) —.
£ 8X3 ( laxl 2 8X2> ( ! X1 2
With the identification X, = adi we get
Xx; = X1X3, Xx, = X2X3, Xxy = —X1X1 — X2 Xo,
from where it can be determined the symplectic leaves, which are divided in two uniparametric families, namely,

- Symplectic leaves of dimension 0: each leaf is a point X3, « € R, on the vertical axis of suy >~ R3,
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- Symplectic leaves of dimension 2: each leaf is a vertical semiplane
09 = {(xXp +2X3) € su/x € Rog,z € R, 0 € S'} (11)
where Xy = cos 6X; + sin 6X5.

The zero dimensional orbits lack of interest for our purpose, so let us focus our attention on the two dimensional ones.
They are semiplanes orthogonal to the plane X;, X5, spanned radially from the X3 axis like the pages of a book, without
touching it, and characterized by the angle 6 between the X; axis and the intersection of the leaf with the X1, X, plane.

To write out the explicit form of the B action on su,, we parametrize an arbitrary element beBas

~ a b+ic
b=[o a-1] (12)

witha € R.g and b, c € R. Then, ¢ o Adgf1 o1 suy —> suy, in the basis {X;, X2, X3} C su, gives

- b -
(lﬂ o (Ad[)i]) o Iﬂ 1)X1 an +a 2X1

(¥ o (Ad;-1) 0¥ Xs = —gxz, +a7%X, (13)

(¥ o (Adj1) oy "HXs = X3
so that on the orbit ¢y it acts as

(W o (Adj—1)" 0 Y™ (xXp + 2X3) = xa %Xy + (z + Z (bcos8 — csin 0)) X;.

Hence, the stabilizer of X € (¢ is the normal subgroup By C B composed by the matrices

= 1 d(sinf +icosé
By = (0 (sin —1|—1cos )) (14)

with d € R. The Lie algebra by is generated by the element
Ey = sinOE + cos O (iE)

and, consequently, b/by is spanned by the images in the quotient of the elements

_ (1 0 = (0 (cos@ —isinf) \ _ P
H_(O _1>, Eg—(o 0 >_c0595—sm9(1E).

3.1. Orbits and Bruhat decomposition

Let us now describe an issue which will be of central importance in defining the dualizable subspaces in cotangent bundle
of the compact factor K. As it was mentioned in (17), the action of the solvable factor B on this phase space arises from the
lift of the dressing action and its orbits on K are the dressing orbits.

The dressing orbits of the Poisson-Lie structure associated to the Iwasawa decomposition [6] in a semisimple group can
be described by using the Bruhat decomposition [8,9]. Let us begin with a compact Lie group K; let G be its complexification.
For G = KB, the Iwasawa decomposition associated to K, let us choose in the Lie algebra ¢ a maximal abelian subalgebra t;
then b := t + it is a Cartan subalgebra for g. Let us fix some ordering of the roots associated to h. For example, if K = SU(n)
then G = SL (n, C) and we can choose the order in the roots such that B is the set of upper triangular matrices with real
diagonal entries. Let T C K be the connected subgroup associated to t.

Lemma. The set
T-B={thb:teT,beB}
is a Lie subgroup of G; moreover, we have that T -B=B-T.
Proof. Because tBt~! C Bforallt € T, we have that T - Bis a subgroupof Gand T - B = B - T; if (c,) C T - Bis a sequence

convergent in G, we have sequences (a,) C T, (b,) C B such that ¢, = a,b, for all n € N. Now, because T is compact,

. -1 . .
there exists a convergent subsequence (a,,,(), and a,, — a € T. Thus the sequence b,, = (ank) Cn, has all its terms in B,
and it is convergent in G, due to the continuity of the group operations. But B is closed in G, thus b,, — b € B. Therefore
¢p —>abeT-BandT - Bisaclosed subgroupinG. O

In the example considered above, T is the set composed of diagonal matrices whose nonvanishing entries are elements
of S'; then B, := B - T is the group of upper triangular matrices. Let N(T) the normalizer of T: It consists of the elements
k € K such that kTk~! C T; then the group W := N(T)/T is the Weyl group of K.
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Theorem (Bruhat Decomposition). The group G can be decomposed as

G= ][ B.ws..

weWw

In order to use this decomposition, a set of representatives must be chosen for the elements of W. For example, W for
SU(n) is the set of permutations of n elements, and representatives for two-cycles are

1 0 - 0 0 --- 0 0-
oo 0 1 0 0
Si=1o0 o -1 0 0 0
00 - 0 0 --- 10
lo 0 --- 0 0 --- 0 1.

with the permutation matrix in the i, i + 1-entries. The disjoint sets in the Bruhat decomposition gives a kind of cellular
decomposition with a unique open cell plus lower dimensional submanifolds. In the SU(2) case, representatives for the Weyl
groups members are the identity matrix and the element

=[]

so the open submanifold is the set

B,oB, = Hg 2} eSL(Z,(C):C;éO}.

Note that the Bruhat decomposition yields to the decomposition

G= ]_[ tBwB

wew
teT

by using the fact that wTw~" C T for every w € N(T). On SL (2, C) this decomposition can be written as

SL(2,C) = (]_[t-B) i} (]_[t-Bw>

teT teT

where B” is the subset of SL (2, C) composed of those matrices with its lower-left element strictly negative.

By definition, the dressing orbits in K are the sets i (Bk) for k € K. With the previous decomposition at hands, it is
possible to characterize the orbits of the B-action on K: In fact, if w € W, let us denote by X, the B-orbit through w:
X, = i (Bw) (by fixing a set of representatives in K for the element w € W). Then we have the following result.

Proposition. The orbits of the B-action on K can be parametrized by T x W: That is, every orbit can be written as t - X, for some
(w,t) e W xT.

Proof. Let us denote by @, the B-orbit through k € K; then by using the previous decomposition we can write k = th;wb,
for some by, b, € B,t € T and w € W. Therefore

Oy = i (Bk) = mx (Bthjw) = g (tBw) = tag(Bw) =t - X,
where it was used that tB = Bt. O
In the case G = SL (2, R), the orbits are
X1 = sy (B - id) = {id}

0 1 b
XY = TTSU(2) <B |:_.1 0]) = H:—ab 6[i| MO AS (C,b (S} ]R+, |Ol|2 +b2 = ]} .

So the orbits of the B-action on SU(2) are the zero dimensional ones

o[l 2]

and
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and the two dimensional, given by

t-¥X 1= ”—(XB g} :argﬁ:argt+n}.

A comment on the choice of representatives for the elements of W is in order: Any other choice just gives another
parametrization W x K — {0y : k € K}.

4. Hamiltonian B-spaces

In this section we describe some Hamiltonian B-spaces related to the two dimensional symplectic leaves @y (11) which
in turn will assemble the T-duality scheme.

4.1. Two dimensional symplectic leaves Oy C su,

The semiplanes Oy C su, turn in symplectic manifolds when endowed with the pullback by ¥ : su; — b* of the
Kirillov-Kostant structure on the coadjoint orbits in b*

(woy» Yradiy (2) @ Yiady () = (Z, [X, Y]y,
where V¥ : b* — su is the inverse mapping of . They also are Hamiltonian B-spaces under the action (13).

4.2. R? as a phase space

Given the phase space R? with coordinates (g, p), there exist a family of embeddings which can be interpreted as the
momentum map associated with some action of B on R?, as explained in the following proposition.

Proposition. The maps p : B x R*> — R? defined as
- 1 e
p (b, (q. p)) = (q — —Ina,p— 2”5 exp(2uq) (bcost — csin 9)) (15)
nw

are a family of transitive actions of B on R?, for (g, p) € R?, beBas givenin (12),0 € [0, 2], u € R.g and € € R, arbitrary
parameters. Moreover, regarding R? as a symplectic space endowed with the canonical symplectic form w, = dq A dp, (RZ, a)o),

it becomes in an homogeneous Hamiltonian B-space with associated equivariant momentum map oy : R? < b*
1 -
09(q, p) = ——ph + e exp(2uq)(cosfe — sinbe).
u
For each fixed value of 6, the induced map 6 : R* — su,

~ _ 1 .
G(q,p) =¥ o0y (q,p) = ﬂpxs — £exp(2uq)(cos 0X; + sin 6X;)

is a symplectic isomorphism between (Rz, a)o) and (Oy, Y*wkk), where wy is the Kirillov-Kostant symplectic form.

Proof. It is straightforward to check that p is a transitive action and that it is Hamiltonian. The infinitesimal generator
associated to X € b,

)~(:uE+v(iE)+wH:|:w ”+‘”]

0 —w

can be calculated from the expression
tw 1 : .
% e — sinh(tw) (u + iv)
= w
0 ef[w
giving
~ 1 .
Xp2lgp = (——w, —2epexp(2uq) (ucosf — vsin 9)) .
uw
The contraction of this vector with the symplectic form is
1 ~
1)~(R2 (dg A dp) = d<—ph + g exp(211q)(cos fe — sin6e), X>
uw

from where we get the momentum map oy (q, p).
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The last statement is a direct consequence of the equivariance property. Under the action i o Adz_l o1 suy —> suy
it behaves as

(vondy ov)o@p = -3

€ exp(211q)
-

1 2 2
(p+ 2e exp(2uq) (bcos@ —CSin9)>X3
a

(cos 6X; + sin6X5)
satisfying the equivariant property 64 (0;(q, p)) = (w o Adz‘f1 o w”) o(q,p). O

4.3. The cotangent bundle of B

Let us consider the phase space T*B = B x b*, trivialized by left translation, endowed with the canonical symplectic form
@,. It is a Hamiltonian B-space by the Hamiltonian action of Bon B x b*

A iBx (Bx ) — (Bxv") /i (R (B.7)) = (b, 7)

for h,b € B,X € b*, with associated momentum map x : B x b* —> b/ (E, f;) = Ad;_, 7. The corresponding map
f:Bxb* — suywithjt = ¢ 1opuis

i (1) = (¥ o Adyy o w) v (D)

that has the explicit form

i (B fiee + g€ + inh ) = —a~2jeXs + a 2ieXs - (fnh + Xs (16)

1. bije + i
2

where we parametrized an element b eBas

~ f(a b+ic
=5 ")
witha e R, b, c e R.

4.4. The cotangent bundle of SU(2)

The third phase space we consider here is the cotangent bundle of the remaining factor of the factorization of SL(2, C),
namely T*SU(2). To stand the notation to be used in rest of this work, we parametrize an element g € SU(2) as

= (% )

where the bar over the complex entries «, 8 is meant to indicate the complex conjugate. We regard T*SU(2) trivialized by left
translation, T*SU(2) = SU(2) x suj, endowed with the canonical symplectic form w,. In order to turn it into a Hamiltonian
B-space, we are given the dressing action d : B x SU(2) — SU(2) which arises from the factorization SL(2, C) = SU(2) x B

such that, for b € B and g € SU(2), Dr (B, g) = IIsy() (Eg) = gl It is lifted to SU(2) x suj as explained in the following
proposition.

Theorem. The action d : B x SU(2) — SU(2), defined above as d;(g) = gB, lift to the cotangent bundle in body coordinates,
SU (2) x suj, as

5 (g.m = (&", (v o Adgs 0 ¥") ). (17)
It is a symplectic action with Ad-equivariant momentum map ¢ : SU(2) x suj —> b*
o(g.n) =¥ (M, (Adgy* () (18)

where i : suy — b is the pullback of the bijection b* <, SUy.

Proof. We get the action on the left trivialized cotangent bundle from the relation

<<g’3, n) (d5) (g,X)> _ <,7’X13g>
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where X = g~ 'g and

o dEe0)’

= = Adf, X
dt =0 be
by using the relations (gh)’3 = g’_’hf’g .
P 5 SU@) xsu . 5
Then, the infinitesimal generator ZSU(Z)X5u§|(g,,,) = %d t; )51 (g.n) is, forZ € b,
€ t=0

Zsu<z>xsu§ lg.m = (gz, U ([Adzi v* (U)]))
where gz = d(gerz)/dth:o. From this vector field on SU(2) x suj we compute the momentum map since <n, g*‘g2> =
<<p(g, n), 2>, using that HﬁuzAdg,j = g”gz and the bijection ¥ : su; — b*, its the adjoint ¥* : b — suj and its inverse
¥* : su —> b, obtaining

(ote.m.2) = (v (1,750 ) .2).

Since it arises as the lifting of a symmetry on the base space SU (2), it is naturally equivariant. O
As in the previous sections, we shall consider momentum maps valued on su;, so we define

P =Y op:SUR) X su; —> suy
~ - IO
$(g, 1) = Moy (ASY* () =g (g7)" "

where we used that AdSy™* () = g (gfl)w*(") + Yt (Ad;,] n). Observe that the momentum map associated with the
dressing action is the Maurer-Cartan form applied to the infinitesimal generator at each point.

(19)

5. T-duality

The T-duality scheme involves the three Hamiltonian B-spaces described above, linking them with su;
equivariant arrows

T*SU(2) R? T*B

b* by

S5U.
It is worth to remarl<2that T-duality is not symplectic equivalence on the full phase space. Indeed, each symplectic
equivalence class is defined by a coadjoint orbit @y (11) and its elements are some symplectic submanifolds contained
in SU (2) x suj and B x b*, which are called dualizable subspaces. They can be defined as the leaves of some foliation in the
pre-images of @y through the maps i, ¢, 6y, as it will be explained below.
Let us consider the three fibrations on 9y

1) R T(0)

Oy —— 51y
where 271 (9y) C B x b* and ¢! (95) C SU(2) x si are coisotropic submanifolds, and &, ' (9y) = R? is a symplectic
space. Let us take a closer look of them. The tangent spaces of the fibers are the kernels of the corresponding differential
momentum map, and their symplectic orthogonal are the tangent spaces to the orbits of B through each point. Then,
collective Hamiltonians on B x b*, SU (2) x su} and IR? furnish the compatible dynamics having Hamiltonian vector fields
tangent to the B-orbits. The equivariant momentum maps carry them over a Hamiltonian vector field tangent to the coadjoint
orbit 9. This is the main idea underlying T-duality, establishing a correspondence between Hamiltonian vector fields, so
the correspondence between integral curves is defined up to a shifting of the initial condition.
Let us work out the dualizable space in each case.

5.1. Dualizable subspaces in B x b*

Let us denote by 7 : B x b* — B to the canonical projection. Sizing up the set obtained by the intersection between
fi~" () and the fiber 7; ! (b)
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1t O N (E) - {(E n) c [E} X b P (Ad;;,li;) c (9@]

one realizes that ji~! () = B x ¥ (0). It is a coisotropic submanifold and the null distribution of the presymplectic form
@010, 1s spanned by the infinitesimal generators associated to the Lie algebra of the stabilizer subgroup By. A more precise
description of this set is

7710y = | (b.inh + 16,8 ) /b € B, e, € B, 7in € R} = B x v/ (0)) (20)
where we introduced the dual basis {e, &, h} C b* with

€y = cosfe — sinfe, ey = sinfe + cos He.

Observe that ey = — (Xp).
In order to determine the presymplectic form on ji~'®y, we left trivialize the canonical vector bundles on B; thus we
have the identifications

base
———
T*T"B~Bx b* xb*xb  TTI*B~Bx b*xb x b"
base

and it yields to the following expression for the canonical 2-form on T*T*B
@ol(5.7) (515 p1) , (52, p2)) = —p1 (§2) + p2 (§1) + 11 ([§1, &2) -

Having in mind that i ~10@y = E, 1(0) and expanding it in the given basis, we can express the canonical form restricted to
this submanifold as

L‘L‘)O|/~l_7109 (5, 7}) = Zﬁég (Eilh A 57169) — Eg A 57169 —HA 57111.
As a map from T(E’ﬁ)/l”(% — TE‘BY;Y),&”(%, it assigns to a vector V = (E (UHH + vg, Eg + UE—HEQ) , éea ey + ééyég + §hh)

the Hamiltonian 1-form

y Wolp-10, = (27759 Uy — 559) b~le, — (27]59 Vg, + éh) b~'h + v,;eég + vyH.

5.1.1. Gauge fixing and canonical coordinates
The evolution of the system is contained in the coisotropic submanifold fi~' (9y) C B x b*. Without doing explicit
mention of this fact from now on, we will use in the current section the identification

i
B x b*léwasuz.
As it is known [7], the leaf of the null foliation through a point (B, X) in B x su; coincides with the orbit B; - (E, X) of the

isotropy group B; of the element g: = (B, 77). We also know that B; = B, for every pair of elements g: f/ € Oy in the

same orbit, so we denote it as By and its elements where described in Eq. (14). Therefore the leaves of the null foliation for
the presymplectic structure on B x (¢ are the subsets

. . . —ig
B, - ([g b(jf] ,x) - {([g ld(ng_lf)e }x) .d ER}.

Then any slice for the action of By on B x 9y gives a symplectic submanifold of B x su;. As such slice we can consider the
submanifold 8 parametrized by R x R* x R? through the map

a —te 1
¥ (t,a; v3, v9) > ([0 0 ] ) —5U3X3 - U9X9>

where Xy := cos 6X; + sin 6X,. By taking into account the dual basis {X;} C su} and the form X, := — sin 6X; + cos 6X,, the
constraints for 4 are

Fi(b. X) = %(X) = 0
F>(b,X) := bsin6 + ccosf = 0.

Proposition. The pullback of the canonical 1-form along ¥ is given by

1

(90|’3) |(t,a;v3,v9) = —072 (tv0 - v3) da—a vﬂdt-
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Then the canonical 2-form on 4§ is

ws = —a 2 (tdvg — dvs) A da + 2a 2vpda A dt — a~'duy A dt.
Furthermore it can be written as

wg = —dpg A da — dp; A dt
where pg (a, t; v3, vg) = a2 (tvg — v3), p: (a, t; v3, Vy) == a lvg.

Proof. It is immediate to show that

_ 9 a ' —a?te™
) 1 _ .
[lI/ (taa7 v3,U9)] lI/* (aa> — ([ 0 _afl aO
~ 9 0 —gle i
) 1 _ .
[¥ (t,a;v3,v9)] W <8t>_(|:0 0 ;0.

It implies

0

_ 1
(ol8) |(t,a;v3,09) = ([W (t,a; vs, vp)] ' W, (*) , == U3X3 — Uex(a) da
da 2 s1(2,0)

d 1
+ ([‘1’ (t, @ v3, vp)] ' W (*) , — - U3X3 — Uexe) dt
at 2 s((2,C)

S0, we can write
(6o|8) = —a2 (tE‘e — aH) da — a'Epdt.
The rest follows by exterior differentiation. O

Corollary. The constraints describing the submanifold § are of second order.
Proof. For each pair (a, t) € R* x R, the map
(v3,v9) > (a2 (tvg — v3) , @ 'vp)
is nonsingular, and maps wy on a nondegenerate 2-form, as the previous proposition shows. Then wy is nondegenerate, and
4 is a symplectic submanifold. O

5.2. Dualizable subspaces in SU(2) x su}

In this case, the dualizable spaces are the symplectic leaves of the coisotropic submanifold ! (9). To get some insight
about this set, we consider the infinitesimal generators of the dressing action of B on SU(2) associated with the basis
{E, (iE),H} C b

g g =—i(ap—ap)Xi — (@B +aB) X,
g 1glB) — _% (ﬁz +BZ)X1 — %i (ﬁz _ ,BZ)XZ — % (aB +(x,B)X3 (21)

g8 = i (B~ F) X+ (8 + F) % — i (B — aB)Xs

where i : su; — b* was given in Eq. (10). It is worth remarking that they can be also obtained from the coboundary Poisson
bivector on SU(2)

1
Tsu) (&) = y (8X2 ® gX1 — gX1 ® gX2 — Xog ® X1g + X18 ® X28) (22)
as
g‘lg‘”*(") = Lg—l* [(id ®no Rg,l*) Tsu(2) (g)]
)

v _ Lgs [(id ® 1 o Rgs) Tsuca) (g_l)] .

The dual map ¥* : suy — b for the dual base {X1, X,, X3} C suj gives
1

PO =<E ) =iE ) = —oH

p@E.mn=g(g"
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which allows us to write

1 )
_ ) 1 Ty T + 12
V™ (1) = —mE + n2(iE) — 57731'1 = 1

0 =13

2
so we get the explicit form of the momentum map ¢ : SU (2) x suj —> su,

: (gil)d}*(”) B <_ " (ﬁZ) (1 cos 6 —nz sin6) — Re (/32) (n1sinf + ny cosf) — n3Im (Olﬁem)>xe
" (Im (%) G sin6 + n, cos 6) — Re (8?) (71 cos 6 — > sin6) — ns Re (aﬁei9)>X$

- % (&ﬁ (771 + 17’)2) + Ol,B (n1 — 17]2)) X3 (23)

where Xy = X; cosf+X; sin6 and X) = —X; sin6 +-X; cos 6. The orbit Oy = {x (cos 0X; + sin0X;) 4+ zX3/x € R.o,z € R}
can be characterized by means the dual basis {xe X3, X3} C suj, defining Xy = (cos 6x; + sin6x,) and x; = (—sinHx; +
cos 0x;), so that

Oy = (x5)° N x5 (Rp) .
In this way, we get for (23),

Tk i - 1 —
<x;,g ")’ (’”> - —% (B2 = B?) (misin® + 1z cos6) — = (B2 + B?) (11 cos 6 — 1, sin6)
- %773 (@pe™™ + ape).

The annihilator is obtained from the condition <x;, g (g*1)'/’*(”)> = 0, implying that Re ((8%1+ + n3aB) e”) = 0, where

N4 = 11 + in,. The remaining restriction is (xa, g (g‘l)w ('7)> > 0 that is equivalent to Im ((B%n + n3aB) ) < 0. Thus

have shown the following statement.

Proposition. ¢~ (0y) is determined by the constraints

Re ((,3217+ + n3oe/3) eie) =0 (24)
m ((B%n+ +nsap)e’) <0 (25)
on the components of (g, n) € SU(2) X suj.

As explained above, the dualizable subspaces are the symplectic leaves in &~1 (09y), which coincide with the orbits of the
action d, see (17). Despite the rather obscure description of ¢ @~ ' (0y), determining these orbit looks simpler working out
separately the factors in TSU(2) and su3.

To start with, we work out the projection of T¢~! () on the factor TSU(2). Here, we make use of the digression 3.1
to conclude that there are two kind of dressing orbits in SU(2): the zero dimensional ones determined by the points with
B = 0, and the two dimensional ones determined by © = arg 8, for 8 # 0, so they are two dimensional spheres S2. The
zero dimensional case are trivial dualizable subspaces, so we focus our attention on the last ones.

The infinitesimal generators (21) involve for each g € SU(2) the linear transformation associated tod : b —> TSU(2)
SU(2) x su, relating the basis {H, E, iE} and {Xl , X2, X3}, which has a nontrivial kernel spanned by the vector

~

X.(g) =H — (B — aB) (E) + — (B + aB)E

Iﬂ |2 18 |2
On the other side, since (Imd)° = kerd', whered' : SU(2) x suy — b* is the transpose of d, we make the identification
Imd = (g, 7%)0, with (g, 77) € kerd " being the generator of kerd " with
. 1 - 1 -
# = ———=Re(af)X; — — Im (aB) Xs + X3 (26)
18] 18I
written it in terms of the dual basis {X;, X, X3} C suj. So, 7 annihilates the vectors (21) which spans the tangent space of
each dressing orbit.
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The dressing action of B on SU(2) left invariant = arg 8, so it is a suitable parameter to characterize the dressing orbits
in SU(2), and the Lie derivative along ¢ gives a normal vector to them. Thus, let us consider this tangent vector

~1908
V0|g - <g7 —8 1@

One may easily verify that

) = (g, —% (B +ap)Xi — %i (@B — )Xo + |/5|2x3> : (27)

On the other side, the projection of T¢~! (94) on the factor suj is foliated by the orbits of the action

Hsuia[} g.n= (‘/f* o AdEg ° sz*) n

which left invariant the X3 component of 7, turning n3 = (5, X3) in a good parameter for the corresponding orbits.
Therefore, we introduce the projectors

Py : TSU2) —> MrsuT@~ ' (Op) /Po =1d — Vo (7 0 (Lg-1),)
P;: Tsuy —> nsu;w—l (9p) /P3 = 1d — X3X3

so that P = Py x Ps is the projector onto the d orbits.

As mentioned before, the submanifold $~' (9) is a presymplectic one when endowed with the restriction of the
canonical form w, of T*SU(2) = SU(2) x suj, and its symplectic leaves are the orbits of the action d (17). We use the
above projectors to write down this restricted symplectic form on each orbit starting from the relation

(@f, (0. p) ® (W, M), 516,) = (@ P (0, 0) ® P (W, 1) g eit(op)

to get the expression

wf = wo — L1, A (g‘lvo —1B81* X3 +g_1ad;—1v077) + X3 AgIXs (28)

from where we obtain the Dirac bracket
-1
A A~ n,8 0

{‘7‘.7 9}2_1(09) (g7 77) = {?7 g’} (g» 7]) _<gd$,(7[,59)x3)+(gd9,<7T75~¢>X3>+<77_ < |ﬂ|2 >X3, [8$38$]>

and the Hamiltonian vector field
-1
. N . 7,8 Vo .
Vg = Vg — ((n, 84)Xs, adj, (n - (“3|2>x3) — (gdg, X3) n) (29)

which is tangent to the d-orbits in ?~1(0y), as expected.

6. AKS integrability scheme and dynamics on factors of SL(2, C)

Let us work out the dynamical setting on the coadjoint orbit in s;C, which we shall identify s[,C through the invariant
nondegenerate bilinear form (X, Y).,, (8). Following the AKS scheme, we choose an Ad-invariant function on a coadjoint
orbit of SL (2, C), so that its restriction to the coadjoint orbit of B in b* < s[5C gives a nontrivial dynamics embracing also
the dynamics on the cotangent bundles T*SU(2) and T*B[10,11]. In particular, the Ad-invariant function f : sl,C — R

fX) = —% Re k (X, X)

is related to the Hamiltonian function of the Toda model, as we shall see below. Its Legendre transform, £y : s,C — s[5C,
is

d 1
(£Lr X),Y)= af(x+ﬂ{) = —gReK(X,Y)

t=0

valid for all Y € s[(2, C). As an element of sl (2, C) through the invariant product (-, -),., it is given by (if X), Y) =

sl

—% Im K(ff (X),Y) and the C-linearity of ¥ enables to make the identification Re (« (X, Y)) = Im (k (iX, Y)). Hence, from
the definition of the bilinear product (-, -),,,, we get

sly»

slyr

Im « (Iff X) — %x, Y) =0, VYesl(2,0)
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and, because of the nondegeneracy of (-, -),,, we conclude that

~ 1

Applying the AKS scheme to T*SU(2) and T*B, regarded as B-Hamiltonian spaces, requires that ¢* (IT,X) be a character
of su. The only chance is IT,X = 0,s0 X = X € su, and the Hamiltonian vector field associated with f has integral curves
given by the fundamental flux t — exp tLy(X): if X = a1Xq + X5 + a3X3,

~ . X1 o X1
exp tLf(X) = cosh tT + iX sinh tT .

Here ||X|| = +/det X, and from now on we consider detX = 1, equivalent to a% +a§ +a§ = 1.Thus, the solutions to collective

B-Hamiltonian systems are orbits of a curve in B obtained from the factorization of the curve exp tff (X)onSU(2) xB[10,11].
In fact, the curve in SL(2, C)

exptdy 00 = | D IR o e | (30
can be factorized out as
exp tL(X) = g(t)b(t)
with g(t) C SU(2) and b(t) C B given by
cosh (t/2) — a3 sinh (t/2) (a; — iay) sinh (t/2)
/cosht —assinh ¢ /cosht —assinh ¢ (31)

8t = (ay 4 iay) sinh (t/2) cosh (t/2) — as sinh (t/2)
J/cosht — azsinht J/cosht —azsinht

B - — (aq — iay) sinht
y/cosht — assinht -
E(t) _ J/cosht — azsinht ' (32)

- -1
0 (\/cosht — asz sinh t)

Hence, the solution curves of suitable B-Hamiltonian systems are given by the orbits of B(t) in each space, as we shall describe
below.

7. Dynamics on B-spaces

T-duality relates dynamical systems on the three Hamiltonian B-spaces, namely T*B, T*SU(2) and R?. The restriction of

o ~~

the Ad*-invariant function f to (su;)° = su, induces, on each of these spaces, collective systems whose solution can be
found through the AKS method. Accordingly with it, we just need to know the form of the action of the Lie group B on the
spaces under consideration to find out the solution to the equation of motion.

Hamiltonian systems modelled on the cotangent bundles of a Lie group G are characterized, in body coordinates, by the
canonical symplectic structure which, besides the Hamilton function, defines equations through the Hamiltonian vector
field Vy| g = (g8, adj,n — gdJt), for the function # € C* (G x g*), where d# = (d#, §¢), with d# € T;G and
SH € T;]“ g", so

g lg=08#

il = ady,n — gdJ¢.
As explained, we consider a function h : su; —> R and, in each case, the Hamiltonian functions of the respective dynamical
systems are obtained by composing them with the corresponding momentum maps.

7.1. Dynamics on R?
The action of B on R?, Eq. (15), is
0 (E, (q, p)) = (q — % Ina,p — Z/LZ exp(2uq) (bcosd — ¢ sin 9))
where
B _ |:(C)l ba—|—11c:|
with associated momentum map &y

~ 1 .
o9(q,p) = prg — eexp(2uq)(cos 6X; + sin6X5).
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The collective Hamiltonian here is
1 - - 1 1
Hz2 (q,p) = ——Rek (64(q, P), 60(q, P)) = = | 7—5P° +26° exp (4q) ) .
16 2 \4u

By choosing the point X, := n, (cos 6X; + sin 6X;) + m.Xs, ni + mi = 1,in Oy C suy, the solution curve through the initial
point (¢,, po) wWith 6y (q., p.) = X, is given by the action of the curve E(t), obtained in Eq. (32),

t p (E(t), G, po)) = <qo - %ln alt), ps — %ez’“’" (b (t) cos 6 — c(t) sin 9))

where

a(t) = y/cosht — azsinht

—ay sinh t
b(t) =

J/cosht — azsinht

a, sinh t

J/cosht — azsinht

c(t) =

and
a; = —eexp(2uq) cos o

a, = —eexp(2uq) sin

1
a3 = —
3 Z,up

N¢]

- 1 1
P (b(f), (4o, po)) = (qo ——1n (cosht — —psinh t) ,
21 21

2

Po — 21 exp(2u (9o + q)) sinh t)-
(cosh t — 5-psinh t)
i
In order to have 6y (q., p.) = X,, the following relations must hold
m — 1 1 2
° = b = (m) + &% exp(4uq.) = 1.
n, = —& exp(2/q,) 2u

Thus, the curve p (E(t), 9o, po)) becomes in

sinht — ipo cosh t)

- 1 1
b(t), (q., o): o — — In | cosht — —p, sinht |, —2
,o( ©), (Ge: po) (q 2u ( 2Mp ) Mcosht—z—lﬂposinht

For the particular values u = % and e = +4/2in Hg2 (q, p), we obtain the Toda Hamiltonian

1
Hroda (4, D) = 5192 + exp(2q) (33)

whose Hamilton equation

q=p
p=—2exp(2q)
are solved by the curves

. sinht — p, cosht
q(t) = —In(cosht — p, sinht), pt)y)=——""""—.
cosht — p, sinht
A little note about parameters. In the previous setting it was possible to solve the Toda equations of motion in case in which the
energy of the system is equal to 1, however it is possible to choose the parameters in order to solve the system at any other (positive
of course) energy.
The Lagrangian corresponding to the Toda Hamiltonian (33) is

1,
Loda (¢, ) = qu — exp(29). (34)



1526 S. Capriotti, H. Montani / Journal of Geometry and Physics 60 (2010) 1509-1529

7.2. Dynamics on T*B

In terms of the momentum map /i (5, ﬁ) = (1} o Adg,1 o 1//) Y (1), given in Eq. (16), the collective Hamiltonian on T*B
is then

(33) = e (3 (6. 60)

1,5 oy 1 (1.  bije+ciig)?
2a4('7e+”é)+2<2”h+ a :

The evolution curve passing through the initial point (Eo, Xo) with X, = (n, cos 0X; + n, sin6X;) + m,X3 is

~ [~ ~ a(t) z(t) a,  Z
tr> % (b0 (5o o)) = ([ 0 (@) ] ‘ [o ao} ’X")
where the curve B(t) is that of Eq. (32). Explicitly, it means the curve
3 (b, (B o))

i 052, cosh t — (me0oz, + noe ) sinh t
a.+/cosht — m, sinht -
_ a,+/cosht — m, sinht X
l 9 (e}
0 -
a,+/cosht — m, sinh t

The Lagrangian version of this model can be retrieved from the first Hamilton equation

b~'b = 85s
that in explicit form is

ab — ab = jjea™?

ac — ac = fsa~>

ala= 1 fleba™! + flaca™! + lﬁh

2\ ¢ ¢ 2"

Hence, the Lagrangian is obtained as

Ly (b, b) = (7.57'b) — s (b. )

that after some calculation gives

~ ~ 2 1 . 2 1 . .2 —1:\2

L3<b,b>=5(ba—ab) +5(ca—ac) +2(a'a)”. (35)
This Lagrangian reduce on i~ 'Oy to

- ~ 2 1 2 a 2

Lred(b,b):f ta—ai)’ +2(2) .

B 2 ( ) + a
Since

bb~" = (ab — ab) E + (aé — c) (iE) + a~"aH

~—1

g © Y* b —> suy, given by

and introducing the linear map K :=

1 1 1
KE = -X;, K@GE)=—-X,, KH=-X
gk (iE) g2 R
we may write the Lagrangian function (35) using the symmetric bilinear form (8) on sl; as
Lg (13, B) =—4 (]KEB”, BE”) (36)
sl

that resembles a generalized top Lagrangian on B.
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7.3. Dynamics on T*SU(2)

We consider the Hamiltonian function

1
Hsu@) (8, 1) = —EK(qﬁ(g, ., ¢g. n). (37)

In order to get the Hamilton equation of motion, we need to calculate the differential (dJ{’SU@), 1) JESUQ)). In doing so, we use
the expression for the differential of the momentum map ¢

7. @%,6) = — (0@ Ad_1£) 7*(@) + (d @ AdZ_7) (id @ ady) 7"(2) — (Ady ® 1) 8, X)

where 8, : suy —> su, ® su; is the coboundary coalgebra structure of su, and 7R(g) = (qu* ® qu*) Tsu(2) (8). Thus,
the differential of the Hamilton function are

1 A ~ * 7ok
gdtsua) = 3 [k @(e. ). AdY . (F7 ) |

*
5!.12

1 . .
dFsu) = gAdg—l (Reuy (@(8, 1) ®id) 7*(2).
Observe that
1 A ~ . _ Tk (0 P
Sitsue) = GAdg1 (R, (Bl 1) @ id) (@) = g g (o Plem))

SO <ﬁ', (Sﬂsu(z)) =0.
Now, using the expression for the Hamiltonian vector field on the d-orbits (29)

.8V .
Vg =V — ((fr, 84)Xs, adj, (n - W&) — (gd§, X3) n)

where Vg = (ch g, adg‘gk - gdg,) is the Hamiltonian vector field associated with the canonical Poisson bracket in TSU (2).
We get

—1
(n.g7'Vo)
Visa = (gS]fSU(Z)’ ad;J{SU@) ( 7%'2 X3) —gdﬂsu(2)>

which, obviously, satisfy PVii) = Voo » for the projector P = (Id — Voﬁ) @ (Id — X3X3) on the d-orbits. So the reduced
equation of motion are

g8 = g8 Hsu)

. 1 1
n= W <}7, g V0>ad;'§%su(2)x3 — gdﬂsu(z).
Observe that the equation for g, including the explicit form of § #sy(2) given above in terms of 7% (g), resembles the equation
of motion of a finite dimensional Poisson sigma model. B

The solution curve is generated by the action of the curve b (t), Eq. (32), through the dressing action d : B x SU(2) x
suj — SU(2) x suj. Having in mind the explicit form of ¢(g, n), we consider the initial point (g, 7,) such that

@ (2, 1) = X, := 1, (cosBXy + sin0X;) + m X3, ng + mg = 1,in @y C suy. A suitable election for the initial condition is

0 _ei(@e—) —sin2y,
o (1//07 ¢o) = < —i(po—10) ) s Mo = N30 cos 2¢o
e 0 1

with
13, cos® (8 +2¢.) = 1

that gives a solution curves in each d-orbit

©©. () = (2. (¥ 0 Ad(gpe 0 ¥7) o)

with
o 1 (e Vet ginht —ei@e—10)
° /AZsinhZt+1 e 0oV —rel@o—Vot ginht

n(t) = —ns3(sin (2y) (cosht + assinht) + A cos (o0 — 2 (¢, — ¥,)) sinh t) xq
+ 13 (cos (2¢) (cosht + as sinht) + Asin (o — 2 (¢, — ¥,)) sinh t) X, + 13X3.

Here, we wrote the parameters ay, a, in the curve b (t),Eq.(32),as:a; = Acoso and a; = Asino.
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Let us to obtain the Lagrangian version of this system. The Legendre transformation in this case is singular, it can be
partially retrieved from the first Hamilton equation written as

g lg = —g gV (Ray (G@m)
Explicitly, this equation are
ap — pa = —p* (@1(g. 1) +iG2(g. M) + aB@s(g. n)
_. 2 1 _ o\~ 1, _- -
aa+ BB = -3 (xB —aB) pi(g. n) — 51 (@B +aB) p2(g. 1)

where we denoted ¢(g, ) = Zle @i(g, n)X;. This system of equation can be solved for two components of 7, for instance
n1 and 1, as a function of the velocities and 73,

IBI* + 1BI” + B*a?)

(@B—Ba) . N Gl A
n1=1%(aﬂ—ﬂa)—l( — (05054‘,3,3)_(_—2)773
2o | Bl 2Ba |B| 2Ba |B|
ap+pa) o . (BAHIBP =) ey (le I8P - @
nz=%(aﬂ—ﬂa)— ( — )<050l+,3/3)+1(_—2)773-
2Ba |Bl 2pa | Bl 2Ba (Bl
Then, the Lagrangian function is defined as
Lsu) (8.8) = (n.g7'8) — H(g. n)
where 7 was given in (26). Replacing 11, 1, by the above relations, we obtain the Lagrangian
. 1, 4. 4. A 1.
Lue (8:8) = 5 (87'8.87'8),,, +m(#.87'8) (38)

where we have introduced the metric in trivialized tangent bundle SU(2) x su, given by
1
_‘l . _‘1 . _‘l . _] .
g &8 8, =" kg 88 &)
Observe that n3 appears as a Lagrange multiplier realizing the constraint

(B —pB) =0

i
21817
which in terms of the Euler angles reduces to

—d=0
showing that the dynamics is naturally restricted on dressing orbit, as expected.
By introducing A(g) := 8 |B8|? n3k ;! (7%) € suy, and after handling the quadratic form, we may write the Lagrangian as

sUp

(7.g7'8) =

s5up

. 1, . 1. 1
Lsue) (8,8) = 5 (78 —A®.g7¢—A®),, — 5 (A®), A®))a,
that describe the dynamics of a particle moving on the group manifold S under the action of non-Abelian potential vector
potential A, which confines its movement to the S? sphere determined by the constraint arg 8 = cte.

8. Conclusions

We have shown how the theory of integrable systems, in particular AKS theory, can be used in its full scope to solve
effectively the systems involved in a Poisson-Lie T-duality scheme. In doing so, we have also introduced a variant for the
Hamiltonian Poisson-Lie T-duality scheme, by using as a central object of the scheme a coadjoint orbit of one of the Iwasawa
factors. This fact enhances the applicability of the PL duality, including a wider class of systems, finite or infinite dimensional,
on which the techniques of integrable systems can be used.

The explicit finite dimensional example SL(2, C) = SU(2) x B exhibits a detailed description of the way in which this
duality works, constructing explicitly the solutions for all the involved systems from the factorization of the solution curve
of an almost trivial system on s[3. This curve E(t) C Bgivesrise to the solution curves in each case through the corresponding

actions. As an alternative way for using the scheme, the solutions would be obtained retrieving the curve E(t) C Bfrom the
well known solution of the Toda system on R2. It is worth to remark that the election of the symmetry group defines the
master integrable system ruling the dynamics and it is realized in this example by the choice of B as the main symmetry,
putting the Toda system in the center of the scheme, or in the loop group case of Refs. [2,3], where the WZNW model appears
on the double Lie group LD = LG x LG*. The compatible dynamics was obtained from collective Hamiltonian functions after
fixing a Hamiltonian on the selected coadjoint orbit.
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The systems in the equivalence class includes a kind of generalized top on the group B and a dressing invariant system on
the group manifold S which suffers a reduction to the S? submanifold characterized by arg 8. Dressing symmetry becomes
relevant for the so called Poisson sigma models, so our example may serve as a laboratory for understanding issues related
to the reduced space of systems with this kind of symmetry.

From the Lagrangian point of view, the PL T-duality transformation relates a constrained systems on the compact
configuration space SU(2) with a system on the noncompact space B, by a rather nontrivial transformation. A remarkable
fact is that these nonlinear systems arise from kinetic Lagrangians, that means, bilinear forms on the corresponding tangent
bundles. In the SU(2) case the bilinear form amounts to be metric, while in B case, because a solvable Lie group lacks of an
Ad-invariant bilinear form on it, the bilinear form is inherited from sl, through a linear operator K. This relation between
two different target geometries relies on the dynamical equivalence of the reduced Hamiltonian systems and the coadjoint
orbit. In both cases, the structure of the reduced phase spaces were explicitly determined, and the PL T-duality equivalence
between the Lagrangian system (34), (36) and the (38) was established.

Most of the theory of integrable systems applied in this work can be used, with some cares, in the infinite dimensional
case (loop groups). In fact, the Refs. [4,10,11] deal with Kac-Moody algebras and infinite dimensional integrable systems like
KdV and others, so we expect they can be applied in the natural setting of Poisson-Lie T-duality, namely the loop groups
case and T-dualizable sigma models.
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