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ABSTRACT
Introduction. Environmental exposure to lead 
is still a major public health problem, especially 
in children. Oxidative stress may be a primary 
mechanism associated with toxicity. The 
objective of this study was to measure blood lead 
levels (BLLs) in children aged 1 to 6 years exposed  
to lead in La Plata and suburban areas and their 
relation to oxidative stress biomarkers.
Population and methods. Cross-sectional, 
analytical study. Clinically healthy children aged 
1 to 6 years were analyzed. BLLs, antioxidant 
enzyme activity, and extent of lipid peroxidation 
were measured. The statistical software 
package R, version 3.5.1, was used.
Results. A total of 131  children participated; 
their median age was 2.33 years. The geometric 
mean of BLLs was 1.90  µg/dL; 32% showed 
a measurable BLL and 3%, BLLs ≥  5  µg/dL 
(international reference). The comparison of 
oxidative stress biomarkers based on BLLs 
showed a significant difference in median 
thiobarbituric acid reactive substances (TBARS): 
12.0 versus 10.0  nmol  MDA/mL of plasma; 
p  =  0.02. In addition, the correlation between 
BLLs and TBARS was positive (r = 0.24; p = 0.012).
Conclusions. Most children had a BLL below 
the limit recommended by international 
agencies; although such BLLs do not affect 
antioxidant enzyme activity, they can induce 
lipid peroxidation. These results demonstrate the 
usefulness of this biomarker as an early diagnosis 
tool to assess subtoxic lead effects.
Key words: lead, oxidative stress, antioxidants, lipid 
peroxidation, children.
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INTRODUCTION
Lead is a non-essential metal for 

humans, although widely distributed 
in nature, both due to its natural 
production and its industrial use.1 
Most studies carried out in Latin 
America refer to exposure from 
specific sources. For this reason, 
the challenge in this region lies 
i n  i d e n t i f y i n g  l e a d  e f f e c t s  o n 
populations of children exposed to 
unknown sources or resulting from 
environmental exposure to lead over 
long periods of time.2,3

Due to the convincing evidence 
about the toxic effects of lead, still in 
low levels, reference values reduced in 
recent decades. In 2012, the Advisory 
Committee  on Childhood Lead 
Poisoning Prevention (ACCLPP) 
advised reducing the recommended 
value from 10 μg/dL to 5 μg/dL,4 
a value that has to be reviewed 
p e r i o d i c a l l y  b e c a u s e  s e v e r a l 
multicenter studies concluded that 
there is no safe lead level for immature 
bodies.5,6

Lead causes multisystemic effects; 
the central nervous system is the 
main target of toxicity, especially if 
exposure occurs during development, 
and this becomes a causative factor of 
neurobehavioral alterations.7,8

To date,  no single process to 
account for its toxicity has been 
described, although several studies 
suggest that oxidative stress may be a 
primary mechanism associated with 
toxicity.9-11 The emergence of a redox 
imbalance may result from a direct 
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effect of lead on cell membranes, inducing lipid 
peroxidation, development of oxygen reactive 
species and/or depletion of the antioxidant 
defense system.12-14

Based on the preceding, the objective of this 
study was to measure blood lead levels (BLLs) 
in children aged 1 to 6 years exposed to lead in 
La Plata and suburban areas and their relation to 
oxidative stress biomarkers.

POPULATION AND METHODS
An observational, cross-sectional, analytical 

study was conducted in male and female, 
clinically healthy children aged 1 to 6 years 
who attended the Pediatric Clinic at the Health 
Observatory of the Pediatric Research and 
Development Institute (Instituto de Desarrollo e 
Investigaciones Pediátricas, IDIP) of Hospital de 
Niños Sor María Ludovica of La Plata between 
May 2014 and March 2015. It is worth noting that 
La Plata, the capital city of the province of Buenos 
Aires, Argentina, is located near one of the largest 
oil refinery industrial sites in South America. 
Children with diagnosed chronic conditions, 
acute conditions and/or infections at the time 
of the study, genetic disorders and neurological 
history, or moderate or severe malnutrition were 
excluded.

The sample was selected by convenience, in 
a non-probabilistic fashion. The sample size was 
estimated to establish a 0.3 correlation between 
BLLs and oxidative stress biomarkers, with  
a 95% confidence interval and an 80% power. 
There were 85 cases.

The research protocol was approved by 
the Institutional Research Protocol Review 
Committee (Comité Institucional de Revisión de 
Protocolos de Investigación, CIRPI) of Hospital de 
Niños Sor María Ludovica, La Plata, Argentina. 
Parents or legal guardians participating in the 
study signed an informed consent form in the 
presence of a witness. Results were reported to 
parents. Children whose BLLs were above 5 µg/
dL were referred to the Department of Toxicology  
for follow-up.

Data collection instruments and techniques
Blood samples were collected in all children by 

venipuncture and divided into 2 heparin tubes: 
1 mL in a tube used to measure BLLs and the 

rest in a tube that was immediately centrifuged 
to obtain plasma and packed red blood cells, 
then stored at -70 ºC until processing. Plasma 
was used for the measurement of thiobarbituric 
acid reactive substances (TBARS) and packed red 
blood cells for the measurement of the enzymes 
catalase (CAT), superoxide dismutase (SOD), and 
glutathione peroxidase (GPx).

Biochemical testing
F o r  B L L  m e a s u r e m e n t ,  h e p a r i n i z e d 

samples were diluted 1:10 in 15% nitric acid 
(Merck, Argentina) and centrifuged. The 
resulting supernatant was analyzed by atomic 
absorption spectrometry at a wavelength 
of 283.3 nm (equipment: Varian AA 240 Z®, 
120 programmable sample dispenser, Zeeman 
background correction, Mulgrave, Australia). The 
internal quality control (IQC) process used the 
Lyphochek® whole blood metals control from BIO-
RAD Laboratories, 8.03 μg/dL, with a percent 
coefficient of variation (CV%) of 6.8% between  
runs. The materials for IQC prepared at the 
laboratory included whole blood with added lead  
nitrate –Pb(NO3)2– (Merck, Argentina) at an 
average level of 5.1 μg/dL and a CV% of 
8.8% between runs. It is worth noting that the 
laboratory has been part of an external quality 
control (EQC) called German External Quality 
Assessment Scheme (G-EQUAS). The percent 
relative error at the level reported by our 
laboratory, compared to the consensus value, was  
at  a  range of  7 .3%-11.0%, i .e .  within the 
acceptability range of the EQC scheme. The limit  
of detection (LOD) with this method was 
0.8 µg/dL, and the limit of quantification (LOQ)  
was 2.7 µg/dL.

Enzyme activity and lipid peroxidation levels 
were measured using a Shimadzu UV-1800® 
spectrometer. The lipid peroxidation index 
was established using the method described 
by Ohkawa et al.15 According to this method, 
malondialdehyde (MDA) and thiobarbituric 
acid (TBA) react at a high temperature (90-100 °C) 
in acid mean to form the TBA/MDA adduct, 
measured at 532 nm, and the result was expressed 
as nmol MDA/mL of plasma.

Erythrocyte CAT activity was measured 
with red blood cells that were first hemolyzed 
using distilled water (1/20 dilution) and 
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centrifuged at 10 000 g for 10 min; the resulting 
hemolyzed sample was diluted once again 
(1/100 dilution) using a phosphate buffer with 
a pH of 7.0. Enzyme activity was measured 
based on the method described by Aebi,16 by 
reducing substrate absorbance (H2O2) for 5 min 
at 240 nm (e240 ¼ 0.0394 per mmol/cm). Results 
were described as unit (U), corresponding to the 
consumption of 1 µmol of H2O2 per minute per 
gram of hemoglobin (Hb).

SOD activity was measured using a commercial 
kit (Ransod®; Randox Labs, Argentina). This 
method uses xanthine and xanthine oxidase 
to generate superoxide radicals that react with  
2 - ( 4 - I o d o p h e n y l ) - 3 - ( 4 - n i t r o p h e n o l ) -
phenyltetrazolium chloride (INT) and form red 
formazan dye. SOD activity was measured based 
on the extent of inhibition from this reaction. A U 
is defined as the one that causes 50% of inhibition 
in INT reduction rate in assay conditions. Values 
referred to Hb levels.

GPx act ivity was measured using red 
blood cells hemolyzed using distilled water 
(1/5 dilution) and centrifuged at 10 000 g for 
10 min. The resulting supernatant was used to 
measure enzyme activity according to the method 
proposed by Paglia and Valentine,17 which 
determines NADPH consumption rate per minute 
during 10 min at 340 nm. A U is defined as the 
consumption of 1 µmol of NADPH per minute 
and expressed as U/g Hb.

Characteristics of the population
An unmet basic need (UBN) indicator was 

developed using the method described by the 
National Statistics and Censuses Institute of 
Argentina to establish the characteristics of the 
population. The maternal level of education was 
also recorded.

Statistical analysis
The statistical analysis of data was done using 

the R software, version 3.5.1. The normality 
of all variables was determined using the 
Kolmogorov-Smirnov test. For the initial analysis, 
BLLs were considered a continuous variable 
and expressed as mean with a 95% confidence 
interval, considering the variable distribution as 
a normal log. If BLLs were below the LOD, the 

mean value was adjusted using the extrapolation 
method based on a linear regression considering 
the characteristics of value distribution above the 
LOD to estimate values below the LOD, which 
have smaller error rates than all the standard 
replacement techniques.18 Thus, BLLs were 
classified into 3 groups: < 2.7 µg/dL (LOQ), 
between 2.7 and 4.9 µg/dL, and ≥ 5.0 µg/dL.

Redox parameters did not show a normal 
distribution and were expressed as median and 
interquartile range (IQR). However, the enzyme 
GPx showed a normal distribution, so its values 
were expressed as geometric mean ± standard 
deviation (SD).

Spearman’s test was used to assess the 
correlation between levels of lead and oxidative 
stress indicators. The Mann Whitney (MW) or 
Kruskal Wallis (KW) tests were used to compare 
TBARS, enzyme activity, and BLLs above or 
below the LOQ (2.7 µg/dL). This value was used 
because it is the minimum level as of which BLLs 
can be measured.

In all cases, a value of p < 0.05 was considered 
significant.

RESULTS
A total of 131 children aged 1 to 6 years old 

participated in the study (43.5% were females). 
Their mean age was 2.33 years (IQR: 1.51-3.68). In 
relation to social variables, 53.2% of families lived 
in households with UBNs and 78% of mothers 
had completed more than 7 years of formal 
education.

The geometric mean of BLLs was 1.90 µg/dL 
(1.71-2.10). BLLs were below the LOQ (2.7 µg/
dL) in 67.9% (n = 89) of children; 29.0% (n = 38) 
of measurements were between the LOQ and 
5 µg/dL. Only 4 children (3.1%) had values 
above 5 µg/dL, the limit value established by the 
United States Centers for Disease Control and 
Prevention.

Table 1 describes antioxidant enzyme activity 
and levels of lipid peroxidation products.

Table 2 shows oxidative stress biomarker levels 
based on BLL categories.

The statistical analysis of the correlation 
between BLLs and each oxidat ive stress 
biomarker found a statistical difference in terms 
of TBARS (r = 0.24; p = 0.012).
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DISCUSSION
Environmental exposure to lead is a known 

public health problem because this metal is still 
present in urban areas and industrial sites across 
countries in this region.19 In this regard, large 
studies developed in countries like the United 
States contrast with the few data available about 
BLLs in children with environmental exposure in 
different regions of Latin America.

T h i s  s t u d y  r e v e a l s  n o n - i n d u s t r i a l 
environmental exposure given that 97% of 
children showed BLLs < 5 µg/dL and this is 
supported by the lower BLLs observed here 
compared to previous studies. In our first article,20 
mean BLLs reported in children younger than 
5 years was 4.3 μg/dL. Consistent with this, a 
critical reduction in BLLs was also observed in 
the pediatric population in the city of Córdoba, 
Argentina,21 where BLLs were 2.58 ± 0.30 μg/
dL, a significantly lower value than what had 
been previously reported (7.70 ± 1.10 μg/dL).22 
However, in both populations, BLLs were mildly 

higher than those reported in United States 
children: 0.86 μg/dL.23

T h e r e f o r e ,  s t u d i e s  l i k e  t h i s  o n e  a r e 
fundamental for the implementation of public 
policies or to test the success of such policies in 
regions like Latin America, where large surveys 
and regular lead tracing studies are uncommon.2,3 
In addition, most studies have a cross-sectional 
approach, which may minimize the permanent 
changes resulting from a prolonged contact with 
lead, even at low levels of exposure.

Another confounding factor that should 
be taken into consideration is the inclusion of 
children living near specific lead sources, which 
may imply antenatal exposure not only to lead, 
but also to other toxic substances. In addition, 
industrial areas are, in general, inhabited by 
populations with socioeconomic disadvantages 
and nutritional deficiency, which may conduct 
to a greater absorption of several neurotoxics, 
including lead.

Also ,  i t  i s  wor th  not ing  that  rout ine 
biomonitoring to determine lead exposure is 
usually limited to measuring lead levels in 
di f ferent  b iological  matr ices  and del ta-
aminolevulinic acid dehydratase (δALAd) and 
ferrochelatase activity; all these parameters 
are changed to BLLs that are higher than those 
reported here.24 For these reasons, the exploration 
of an association between BLLs and oxidative 
stress biomarkers should be further investigated. 
In line with this, epidemiological studies 
conducted in children25-27 have failed to provide 
conclusive evidence in relation to antioxidant 
enzymes and lipid peroxidation levels.10,11,25-27 

Table 1. Oxidative stress biomarker levels

Biomarker	 Median (IQR)

CAT (KU/g Hb)	 131.6 (108.2-157.9)
SOD (U/g Hb)	 1262.9 (1135.7-1415.3)
GPx (U/g Hb) *	 24.4 ± 2.7
TBARS (nmol MDA/mL of plasma)	 10.7 (8.1-14.0)

*Mean ± SD.
CAT: catalase; SOD: superoxide dismutase; GPx: glutathione 
peroxidase; TBARS: thiobarbituric acid reactive substances; 
IQR: interquartile range; SD: standard deviation.

Table 2. Comparison of oxidative stress biomarker levels based on blood lead levels

Biomarker 	 BLL ≤ LOQ (n = 89)	 BLL > LOQ (n = 42)	 p value

CAT (KU/g Hb)	 123.2 (105.0-156.5)	 146.3 (116.9-162.6)	 0.07
SOD (U/g Hb)	 1277.0 (1129.0-1444.0)	 1256.0 (1151.0-1346.0)	 0.76
GPx* (U/g Hb)	 24.3 ± 2.7	 24.6 ± 2.7	 0.52
TBARS (nmol/mL)	 10.0 (8.0-12.5)	 12.0 (9.5-15.5)	 0.02

*All enzymes are expressed as median and IQR between parentheses, except for GPx enzyme activity, which is expressed as 
mean ± SD; LOQ: BLL = 2.7 µg/dL.
CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase; TBARS: thiobarbituric acid reactive substances;
LOQ: limit of quantification; IQR: interquartile range; SD: standard deviation.
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Thus, although this study did not find differences 
in CAT, SOD or GPx levels, lipid peroxidation 
levels were related to BLLs above the LOQ, and 
this is consistent with most studies carried out in 
children that reported a higher lipid peroxidation 
with a direct correlation to high BLLs.11

Therefore, based on our results, there is 
evidence of the implication of lipid peroxidation 
in adverse events caused by environmental 
exposure to lead, a biomarker that may be 
proposed as a complement to other tools for the 
early diagnosis of environmental exposure to 
lead.

To sum up, in Argentina, public health 
research in relation to pediatric population 
exposure to environmental contaminants is an 
emerging field of study. Further studies like this 
one will help to improve knowledge about the 
problem of lead exposure in children and provide 
a mechanistic approach to lead toxicity.

CONCLUSIONS
BLLs observed in children aged 1 to 6 years 

suggest a low exposure to lead. Still, with BLLs 
below those recommended by international 
agencies, lead may cause cell damage, resulting 
in permanent alterations that may lead to a higher 
vulnerability to challenging events later in life.
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