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Opinion
Glossary

Dedicated models of timing: models in which timing relies on specialized and

modular neural mechanisms that are primarily dedicated to temporal

processing. Man-made clocks are examples of dedicated timers, as is the

internal clock model of timing (Box 1).

Internal clock model: one of the first models of timing. The pulses of a central

oscillator or a pacemaker are integrated by an accumulator, thus providing an

explicit and linear metric of time (Box 1).

Intrinsic models of timing: models in which timing is a general and inherent

ability of neural networks. In these models the same neural circuit processes

temporal information and other feature dimensions of stimuli. An example of an

intrinsic mechanism for timing is the state-dependent network model (Box 1).

Labeled-line model: phenomenological model in which it is assumed that

different cells represent different time periods or delays. Labeled lines are often

used in models that require timing but that are agnostic as to the neural

mechanisms of timing.

Motor timing: production of timed motor actions or responses, ranging from a

simple timed motor response to complex spatiotemporal patterns of muscle

activation. Examples of motor timing include self-paced finger tapping, interval

reproduction, sending a message in Morse code and playing the piano.

Population clock model: models in which a given point in time is represented

by a unique spatial pattern of activity within a neural network. Distinct patterns

of activity in the network unfold over time (Box 2).

Recurrently connected neural networks: networks in which the connections

can form a loop; thus, activity in a single unit could indirectly feedback onto

itself. Most neocortical circuits exhibit robust recurrent connectivity and many

theoretical models, including state-dependent networks, rely on recurrent

connectivity. Recurrent networks stand in contrast to feed-forward models

such as a standard multilayer perceptron.

Sensory timing: processing or discrimination of stimuli based on temporal

features. A typical sensory timing task is discrimination of the duration or

interval of auditory or visual stimuli.

Spatiotemporal pattern: pattern of neural activation that unfolds both in time

and space, where space refers to different neurons in a circuit.

State-dependent network model: model that proposes that cortical networks

are inherently capable of processing spatial and temporal information in the

range of hundreds of milliseconds as a result of state-dependent network

properties imposed by ongoing activity (the active state) and time-dependent
An understanding of sensory and motor processing will
require elucidation of the mechanisms by which the
brain tells time. Open questions relate to whether timing
relies on dedicated or intrinsic mechanisms and whether
distinct mechanisms underlie timing across scales and
modalities. Although experimental and theoretical stud-
ies support the notion that neural circuits are intrinsical-
ly capable of sensory timing on short scales, few general
models of motor timing have been proposed. For one
class of models, population clocks, it is proposed that
time is encoded in the time-varying patterns of activity of
a population of neurons. We argue that population
clocks emerge from the internal dynamics of recurrently
connected networks, are biologically realistic and ac-
count for many aspects of motor timing.

The problem of time
The fact that people can communicate using a purely
temporal code - as occurs when two individuals are receiv-
ing and sending messages in Morse code - is one of many
pieces of evidence that the nervous system has evolved
sophisticated mechanisms to tell time and process tempo-
ral information. Indeed, the sheer diversity of time scales
and computational problems that rely on temporal proces-
sing suggests that multiple mechanisms are in place to tell
time. The neural bases of timing have been the subject of a
number of recent reviews [1–6] and one critical question
addressed in these reviews is whether timing relies on
dedicated (specialized) neural mechanisms or on an intrin-
sic and general ability of networks of neurons (Box 1). An
equally important and related unanswered question is
whether sensory and motor forms of timing share mechan-
isms and circuits. For example, does the discrimination of a
400- or 500-ms tone rely on the same neural circuitry as
that required to generate a 400- or 500-ms depression of a
piano key?

Here we focus on the problem of motor timing and,
although the issue of whether motor and sensory timing
rely on the same circuitry remains open [7–12], we take the
position that they generally rely on nonoverlapping net-
works. Specifically, we argue that motor timing relies on
the internal dynamics that arise from the ability of recur-
rent neural networks to generate self-sustained, complex,
time-varying patterns of neural activity, whereas, as pre-
viously proposed, sensory timing depends on the interac-
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tion between incoming stimuli and time-dependent
changes in the internal state of recurrent networks
[13,14]. A key distinction between models is the regime
of recurrent networks. Motor timing would rely on regimes
with strong internal connections capable of self-sustained
activity, whereas sensory timing depends on with weak
connections regimes, which do not support self-perpetuat-
ing dynamics. One consequence of these differences is that
the circuits involved in motor timing can encompass longer
time scales of many seconds.

Motor timing
Motor control, from catching a ball to playing the piano,
requires the production of complex spatiotemporal patterns
cellular and synaptic properties (the hidden state).
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Box 1. Dedicated versus intrinsic neural mechanisms of

timing

Central to the issue of the neural basis of timing and temporal

processing is the question of whether the brain uses dedicated or

intrinsic neural mechanisms to tell time [3]. This distinction in many

ways revolves around whether there are ‘clocks’ in the brain, that is,

whether there are specialized systems that were ‘designed’ to tell

time and are exclusively devoted to the problem of timing, or

whether timing is a general and intrinsic ability of neurons and

neural circuits. In this view the same circuits responsible for timing

can process other aspects of sensory stimuli simultaneously in a

multiplex fashion.

The classic internal clock model, composed of a pacemaker and

accumulator, is an instantiation of a dedicated and centralized

mechanism of timing [74,75]. By contrast, an example of an intrinsic

model is a state-dependent network; in this class of models, sensory

timing emerges from the interaction of the time-varying internal

state of neural networks with incoming stimuli [13,14]. Although the

notion that subsecond timing is performed locally has recently

received experimental support [10–12,76], there is still little direct

evidence of whether the brain relies on dedicated or intrinsic

mechanisms.
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of muscle activity. The spatial dimension refers to which
muscle groups are activated, and the temporal dimension to
the timing of activity in relation to other muscle groups or
to external sensory stimuli. Most motor tasks, including
speech production and playing a musical instrument,
require carefully orchestrated movements timed on the
orderof tensofmilliseconds toa fewseconds. In the following
discussion we focus on motor problems that explicitly
require timing, as opposed to the production of any sequence
of movements, such as touching different points on a
computer screen (which should not be taken to imply that
we view the mechanisms as different).

Localization of motor timing

Many different neural structures are known to contribute
to motor control. Most movements require a precise tem-
poral structure, so it is not surprising that many of these
areas have also been implicated in motor timing. One area
known to be important for motor coordination, the cerebel-
lum, was one of the first structures hypothesized to con-
tribute to timing [15] and decades of research have
provided compelling evidence that the cerebellum is criti-
cal to some forms of motor timing. For example, human
studies have revealed that patients with cerebellar lesions
exhibit a range of general motor coordination deficits
[16,17]. In addition, this patient population has impair-
ments in pure motor timing tasks, including the precision
(standard deviation) of finger tapping ([18,19], but see
[20]). More directly, animal studies have established that
the appropriate timing of conditioned eyeblink responses,
which are learned as a function of the conditioned stimu-
lus–unconditioned stimulus interval, are abolished by lo-
calized cerebellar lesions [21,22].

Other areas also play an important role in timing, par-
ticularly in the timing of complex movements associated
with recently learned motor tasks. Numerous studies indi-
cate that the basal ganglia are involved in motor timing.
Such a role has been inferred in part from pharmacological
and Parkinson’s disease studies that point to alteration in
motor timing on a scale of seconds [23–25]. In addition,
imaging studies have revealed changes in activity in the
basal ganglia during motor production tasks [5,26–28].

Different neocortical areas have also been implicated in
motor timing. Imaging studies have revealed a large, and
as yet not agreed on, network of cortical areas that are
activated during implicit and explicit timing tasks [5,26].
In addition, electrophysiological studies have revealed
time-sensitive neuronal responses during motor timing
tasks in many different cortical areas [29–32]. But con-
verging evidence supports the role of pre- and supplemen-
tary motor areas [30,33], which are also known to
contribute to sequence generation [34]. In subsequent
sections, we argue that many aspects of motor timing
can be addressed bymodels based on the internal dynamics
of excitatory recurrent networks characteristic of neocorti-
cal circuits; for this reason, our discussion focuses primari-
ly on timing in neocortical areas.

Models of timing
Timing has long been incorporated into abstract models of
motor control [35]. However, relatively few biologically
realistic neuron-based models of motor timing have been
proposed. The internal clockmodel (Glossary), for instance,
assumes the presence of a pacemaker and accumulator in
the brain; however, evidence on the location of the pace-
maker or nature of the accumulator has been elusive after
several decades of research. Other models of motor control
and sequence generation either have simply assumed that
there is a population of neurons that fires selectively at
different points in time, or have limited their focus to
sequence generation [36–38].

Multiple oscillator models

Some models are based on the hypothesis that timing
arises from a population of elements oscillating at different
frequencies [39,40]. These multiple-oscillator models do
not require integration or counting of pulses in any of
the oscillators, but rely on detecting specific beats or
synchronous patterns among the population of oscillators.
This detection process can be performed by readout neu-
rons that detect the coincident activity of a subset of
oscillators corresponding to a specific point in time.

Labeled-line models

Other biologically inspired models have proposed that
motor timing might rely on an array of neuronal elements
that exhibit a spectrum of different time constants of some
neuronal or synaptic property, implementing what is com-
monly referred to as a labeled line [37,41]. Biologically
plausible implementations of such spectral, or delay line,
models have been proposed, including the time constants of
neurotransmitter receptors [42], the time constant of slow
membrane conductances [43,44] and the decay time of
inhibitory postsynaptic potentials [45,46]. In these models
all elements share a common implementation, but at least
one of the variables is set to a different value, which
endows each unit with the ability to respond selectively
to a different interval. In specialized domains, such as the
auditory system of the bat, there is evidence that the
duration of inhibitory postsynaptic potentials contributes
to the detection of temporal windows of <50 ms. However,
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Box 2. Population clocks

For a population clock it is assumed that a group of neurons exhibit

time-varying activity and that each point in time is coded by a unique

pattern of activity in the network [47–49]. Consider a group of three

neurons (N1–N3) that in response to a start signal (t = 0) reliably produce

a specific pattern of firing (represented as the number of spikes in a time

bin, Figure I). In this example, each time step can be identified by a

unique combination of the number of spikes in each cell: bin t1 has the

spike signature [0,3,1], whereas bin t3 has the signature [3,0,3]. Time

can be read by output units that receive synapses from all the neurons

in the population clock network if the synaptic weights are adjusted

appropriately. For example, to generate a motor response at time bin 3,

the synapses onto the output neuron from N1 and N3 should be fairly

strong, because both these neurons are strongly active at this time bin

and not at the others (note that the synapses cannot be too strong

because then the output would fire at other time points as well). In a

network in which thousands of neurons fire in a time-varying manner, it

is easy to establish a population code for time. A simple instantiation of

a population clock consists of a chain of neural activity in a population

of neurons. In this case, each point in time would be represented by the

activity of a single or a small population of neurons [52,53,77,78]. This

sparse code (which is essentially a labeled line) for time has been

observed experimentally [79].

[(Figure_I)TD$FIG]
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Figure I. Reading a population clock.
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it seems unlikely that suchmechanisms can be generalized
to complex forms of temporal processing that require dis-
crimination of the patterns generated by consecutive inter-
vals and there is little evidence that they are involved in
motor timing.

Population clock models

A distinct class of neural-based models proposes that time
is both generated and represented in a population of
essentially identical neurons [47]. Here timing emerges
from the dynamics of the entire network and is encoded in
the population vector of neurons that are active at any
specific point in time (Box 2). Critical to the notion of a
population clock is that the activity of neurons in the
network is time-varying and that output units can be
trained to recognize specific patterns of activity within
the population clock network and thus serve as a readout
of time. Note that as withmultiple oscillator or labeled-line
models, time can ultimately be read by a single output
neuron; importantly, however, timing per se (the clock) is
an emergent property of the network; in other words, it
relies on the interaction between many units, and the time
scale over which a network can time far exceeds the longest
time constant of the individual elements.

The critical challenge to any population clock model is
how a dynamic population of active neurons would be
generated. In principle, any recurrent neural network
(Glossary) can produce time-varying activity, which can
be thought of as a neural trajectory (Box 3). Assuming that
a network is in the appropriate regime, a given population
of active neurons A could activate population B and so on,
leading to the pattern A!B!C!. . ., in which each letter
522
corresponds to a distinct but possibly overlapping popula-
tion of neurons. The second challenge to population clock
models is that the trajectory must be able to be elicited in a
robust and reproducible manner. We address these two
issues below and show that the dynamics of a recurrently
connected neural network can subserve a population clock
in neocortical circuits.

Dynamics in recurrent networks
The first population clock model was proposed by Michael
Mauk in the context of the cerebellum [48–50]. In his
model, a continuously changing population of granule cells
encodes time, and specific time points are read by Purkinje
cells that detect distinct patterns of granule cell activity. It
is proposed that the evolving trajectory of granule cells
arises from the interaction between a tonic input into the
cerebellum and the internal state defined by the granule
and Golgi cells. Granule cells excite, and are inhibited by,
Golgi cells, thus creating a negative feedback loop that can
result in a dynamic pattern of granule cell activity and
implement a population clock. Realistic large-scale simu-
lations based on spiking neurons have revealed that it
accounts for many of the experimental observations on
timing of eyeblink conditioning [50,51].

The cerebellar circuitry is unique for its absence of recur-
rent excitatory activity. Consequently, the cerebellum can-
not sustain a self-maintaining and dynamic pattern of
activity in the absence of an external input. By contrast,
neocortical networks are characterized by robust excitatory
connections capable of sustaining internal dynamics.

Critical to the dynamics of recurrent neural networks,
and whether they support self-maintaining activity, is the



Box 3. Neural trajectory

A complex and time-varying pattern of activity in a population of

neurons can be thought of as a neural trajectory in neural space. In a

network with three neurons, all possible patterns of activity can be

represented in three-dimensional space, where each axis corresponds

to the instantaneous firing rate of each neuron (or the presence or

absence of a spike at each point in time). In a network composed of

1500 neurons, the trajectory takes place in a 1500-dimensional space

that can nevertheless be visualized using dimension reduction

methods. Figure I illustrates the simulated activity of 10 units from

the network shown in Figure 1. In this simulation the activity of each

unit is bounded between –1 and 1. The activity of the entire network

can be visualized as a 3D neural trajectory by plotting the first three

components of a principal component (PC) analysis on the activity of

the entire network. Note that in the neural trajectory time is

represented as a color gradient. Thus, the rate of color change

provides information about the speed of the trajectory or the rate of

change of the firing pattern. The same point in time could be

represented by many nearby points in state space, and the output or

downstream neurons that would fire with the network is somewhere

within this cloud of points. The effect of both the input pulse and the

output pulse (fed back) on the network activity is evident as large

excursions in PC space.
[(Figure_I)TD$FIG]

Figure I. Low-dimensional representation of a high-dimensional neural trajectory. Left: Activity of 10 sample units in a network of 1500 units. Right: Plot of the first three

components of a Principal Component analysis on the activity of the whole network.
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average strength of the recurrent synaptic weights. It is
evident that if the internal weights are on average very
weak, there is little coupling between the units and in
response to a brief input (or start signal) network activity
will quickly fade away (this is generally the regime a state-
dependent network model operates in for sensory timing).
By contrast, if the recurrent weights are strong, it is easy to
imagine that in response to a brief input the network could
potentially enter a self-maintaining activity regime (which
could be steady state, periodic or non-periodic in nature).
Thus, the weights within the recurrent network are critical
to the behavior of the circuits. Yet setting these weights in
theoretical models has proven challenging because of the
highly nonlinear nature of the internal dynamics. It has
recently been shown that biologically plausible learning
rules facilitate the development of spatiotemporal patterns
that can be used for motor timing, although the patterns
are simple and limited in time scale [52,53].

It seems likely that the brain harnesses the computa-
tional potential of recurrent networks by using the complex
dynamic regimes that are ideally suited to generate popu-
lation clocks. However, these regimes are precisely those
that lead to chaotic dynamics [54]. In a systemwith chaotic
activity, there is a critical dependence on the initial con-
ditions and noise: tiny perturbations to the system will
make the trajectory of a system diverge exponentially in
time. It has been shown that feedback is a powerful tool for
controlling the chaotic dynamics of nonlinear systems
[55,56] and advances have provided insights into how
recurrent networks can both generate complex patterns -
that could be used for a population clock – and not be
dominated by chaos. In the context of artificial networks,
Jaeger and Haas [57] demonstrated that carefully con-
trolled feedback can be used to generate complex yet
reproducible patterns. Sussillo and Abbott [58] recently
extended this approach and demonstrated how it can be
used for networks that are spontaneously active (strong
internal connections). The recurrent weights in these net-
works are set at random (with specific distributions),
avoiding the need to carefully set them. Pivotal, however,
are the weights of the recurrent network onto the output
unit, because they define the output and feedback (if
present). Different supervised learning rules have been
used to effectively adjust these weights, and using both
firing-rate and spiking models it has been shown that
recurrent networks with feedback can generate time-vary-
ing outputs [57–60].

Recurrent networkswith strong internal coupling, with
or without feedback, are potentially well suited for timing
tasks. Consider a psychophysical task that requires a
subject to press a button 1 s after stimulus 1 and 2 s after
stimulus 2. As shown in Figure 1, a recurrent network can
be trained to solve this task; in response to a brief input
representing stimulus 1, a well-timed response is gener-
ated with a delay of 1 s (the time constant of the elements
in this circuit was 10 ms, which, along with the size of
the network, determines the upper limit that can be timed
[61]). Importantly, in response to a different input
523



[(Figure_1)TD$FIG]

Figure 1. Simple interval timing with a population clock model. (a) The network architecture is composed of a population of 1500 firing-rate units (time constant 10 ms), all

of which are connected to a single output unit that also provides feedback to the network. Each target output pattern (blue traces in panels b and c) is triggered by a

combination of the three inputs to the network. Tonic input 3 sets the network to a ready state (not shown) and then pulses at inputs 1 or 2 are used to elicit either of two

different trained output patterns. Training consists of adjusting the weights from the recurrent units onto the output unit (red arrows). Network architecture and the learning

rule used to train the weights onto the output units were similar to those reported by Sussillo and Abbott [58]. The network connectivity matrix was sparse with probability

of connection p = 0.1 and synaptic strength factor g of 1.35. A noise ‘current’ from a uniform distribution with a maximal amplitude of 0.001 was present in all the units. It

should be stressed that although these simulations are biologically realistic in the sense that they rely on the interaction of neuron-like units, future work must use spiking

units with realistic synaptic dynamics. In addition, the precise role of feedback when using nonperiodic targets must be examined; indeed, similar results can be obtained in

the absence of feedback. (b) The upper panel shows the activity of the output unit trained to generate a delayed pulse-like response at 1 s to input 1 at time zero (traces from

three different trials are overlaid). The lower panel shows a sample of the activity of the units in the recurrent network. The activity level of the recurrent units is color-coded

and bounded between –1 (blue) and 1 (red). Input and output activity is normalized to the corresponding maximum value. (c) The same network shown in panel b generates

an output pulse at 2 s in response to a pulse in input 2 at time zero (three traces overlaid).
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(stimulus 2) the samenetwork can be trained to generate a
response at 2 s. Specifically, different input patterns will
set the network along different neural trajectories, and
thus the same points in absolute time can be encoded in
different network states, depending on the task. An in-
herent strength of this approach is that it provides a
general and robust model of motor timing. As shown in
Figure 2, it is easy to use the same network to generate
temporal patterns (multiple time responses from the same
output unit), each triggered by different inputs. Thus, the
same network can be used to generate multiple distinct
temporal or spatiotemporal output patterns [58].
[(Figure_2)TD$FIG]

Figure 2. Production of two different complex temporal patterns. The same type of netw

each consisting of three pulses. When pattern 1 is elicited, the output unit pulses at 600,

Pattern 1(2) is triggered by input 1(2). Three traces for each input are overlaid. Input and

factor was 1.4.
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Neural correlates of timing
In vivo electrophysiology studies have revealed neural
correlates of time in animals when performing tasks in-
volving implicit or explicit timing tasks. One robust obser-
vation is that some neurons exhibit a more or less linear
change in firing rate as time elapses (increasing or decreas-
ing). Such ramping activity has been observed in different
parts of the brain, including the prefrontal, parietal and
motor areas [30,33,62,63]. Typically, graded firing rates
that peak at the time of an anticipated response are
observed. Although activity in ramping neurons correlates
with time, these neurons might not be keeping track of
ork as shown in Figure 1 was trained to produce two different temporal patterns,

1000 and 1800 ms, whereas in pattern 2 the output pulses at 800, 1300 and 1800 ms.

output are normalized to the corresponding maximum value. The synaptic strength



[(Figure_3)TD$FIG]

Figure 3. Ramping output. Dynamics or the regime in the network is governed in part by the synaptic strength factor g that scales the weights in the recurrent network. A

value of g < 1 leads to decaying activity, whereas values greater than 1 make the network increasingly chaotic. (a) In this simulation, the internal synaptic strength factor

was at the low end of the g>1 regime (g = 1.25) and the output unit was trained to ramp linearly from 0 to 1000 ms. In this regime, many of the neurons in the recurrent

network exhibit approximately linear (graded color transitions) responses during the trained interval (raster plot shows selected units grouped according to whether they

exhibit a positive or negative slope; average of ramping up and ramping down units shown below). Input and output are normalized to the corresponding maximum value.

(b) When the internal synaptic coupling is increased (g = 1.5) the internal dynamics of the network becomes more complex and most recurrent units do not ramp in a linear

fashion; however, the output unit can still be trained to exhibit a linear ramp. The weights of the output to recurrent units were bounded between –0.5 and 0.5 in these

simulations.
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absolute time, but might reflect temporal expectation of or
preparation for a motor response, which in most tasks is
linearly related to absolute time. In a study in which the
delay before an expected event was drawn from a bimodal
distribution, the firing rate of ramping neurons did not
increase monotonically with time, but increased and de-
creased according to expected likelihood [64]. Thus, ramp-
ing neurons might not be telling time, but using temporal
information from other areas to anticipate or react to
events [5].

It has been proposed that the linear ramping of neuro-
nal firing rate is a result of neuronal or network mechan-
isms [65–67]. Importantly, the population clock model
based on recurrent networks with feedback can account
for the experimentally observed ramping responses. Spe-
cifically, the readout units of these networks can be trained
to exhibit ramping behavior. As shown in Figure 3, when
the strength of the coupling within the recurrent network
is relatively weak (but still self-sustaining), the activities of
neurons in the population clock can themselves be posi-
tively or negatively ramping. On the other hand, with
strong internal coupling (rich internal dynamics), activity
in the population clock is highly variable. In both cases,
however, the weights of synapses onto the readout unit can
be set so that it fires in a linear manner.

In addition to linearly ramping neurons, electrophysio-
logical studies have revealed a rich diversity of time-
varying firing rate profiles, including neurons that fire
at select time intervals or in a complex aperiodic manner
[31,68–70]. These observations are what would be expected
for a population clock. Indeed, some of these studies have
shown that a linear classifier (readout unit) can be used to
decode time based on the profiles of the experimentally
recorded neurons, thus effectively implementing a popula-
tion clock.
Concluding remarks
Population clock models propose that motor timing arises
from the time-varying activity of a population of neurons.
We suggest that the dynamics required for a population
clock arises naturally in recurrent cortical networks as a
result of the internally generated dynamics, but many
critical issues regarding the control and regimes of neural
dynamics in these networks remain to be resolved. Impor-
tantly, a given network can embark on different neural
trajectories depending on the task at hand; this provides a
powerful mechanism to generate a large number of timed
motor patterns (Figures 1 and 2). Thus, in principle, dif-
ferent well-timed sequences of key presses on a piano can
be generated by triggering different sets of inputs to the
recurrent network and appropriately adjusting the
weights from the recurrent units to a small set of output
units.

The population clock framework falls into the category
of intrinsic models, and thus many of its predictions re-
quire resolution of whether different forms of timing rely
on distinct circuits. Recent psychophysical experiments
have suggested that sensory timing is local, which indi-
rectly supports the notion that sensory and motor timing
are distinct [10–12], but future research must further
examine this issue. Population clocks predict that the
spatial and temporal components of motor patterns can
be inextricably linked; once a spatiotemporal motor pat-
tern is learned, it could be difficult to transfer the learned
temporal structure to a new spatial pattern (e.g. a different
sequence of finger movements). This is because both the
spatial and temporal patterns are jointly encoded in the
internal dynamics of the network (although population
clocks could be used to code for absolute time if different
external stimuli triggered a master neural trajectory).
Whereas some psychophysical data are consistent with
525
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this suggestion [71,72], it remains an unresolved issue [73].
Ultimately, however, validation of the population clock
model will require electrophysiological confirmation of
the predicted complex neural trajectories and demonstra-
tion that modification of these trajectories alters behavior-
al timing.
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