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a  b  s  t  r  a  c  t

The  lignan  nordihydroguaiaretic  acid  (NDGA)  and  its derivatives  existing  in  Larrea  divaricata  species  show
a  wide  range  of  pharmacological  activities  which  makes  this  genus  an  interesting  target  to  consider  the
plant in  vitro  cultivation  systems  as  a feasible  alternative  source  for  their  production.  These  compounds
are  potentially  useful  in treating  diseases  related  to  heart  condition,  asthma,  arteriosclerosis,  viral  and
bacterial  infections,  inflammation  and  cancer.  In the present  study,  calli, cell  suspension  cultures,  and
in vitro  and  wild  plants  of  L. divaricata  were  investigated  for their  potential  to synthesize  phenolic  com-
pounds.  Calli,  both  with  and  without  organogenesis,  produced  NDGA  and  quercetin,  as  did  plantlet  and
n vitro cultures
ild plants

DGA
uercetin
henylpropanoids

wild plants.  NDGA  was  also  produced  by  the  cell  suspension  cultures,  together  with  p-coumaric  acid,
ferulic  acid  and  sinapyl  alcohol.  The  capacity  of  undifferentiated  tissues  to form  phenolic  compounds  is
very limited,  but  when  the  calli  underwent  organogenesis,  developing  mainly  adventitious  shoots,  the
phenolic  compound  production  increased  significantly.  Plantlets  regenerated  from  adventitious  shoots
of L.  divaricata  calli  did  not  show  the  same  phenolic  pattern  as  wild  plants,  with  levels  of  NDGA  and
quercetin  being  3.6- and  5.9-fold  lower,  respectively.
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. Introduction

Larrea divaricata Cav., also known as “Jarilla”, is a perennial shrub
idely documented among different communities of the “Monte”
hytogeographical province (Salta to Chubut) [1,2].

Different ethnobotanical studies demonstrate that the medici-
al value of this plant was discovered centuries ago by American

ndian culture [3].  Various preparations are made from the plant,
specially extractions from the leaves and steams. Several medici-
al claims and uses have been made for the “Jarilla tea”: treatment
f stomach disorders, arthritis, rheumatism, bronchitis and other
reathing problems, cancer and venereal diseases [3–5]. These
ctivities have been attributed in part to the lignans, although
he evidence suggests that other chemical substances (flavonoids)
xisting in the extracts could be acting synergically [3].

The most prevalent and biologically active compound present in
he external surface of the leaves is the potent antioxidant nordi-
Please cite this article in press as: L. Palacio, et al., Phenolic compound 

of Larrea divaricata (Cav.), Plant Sci. (2012), http://dx.doi.org/10.1016/

ydroguaiaretic acid (NDGA), but this species has been previously
hown to also contain a series of lignans, flavonoids, condensed
annins, triterpene saponins, essential oils and waxes [6–9].
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To scientifically support the traditional use, several pharmaco- 

logical studies have been carried out with “Jarilla” plant extracts
and with isolated compounds. Many studies have shown that “Jar- 

illa”, NDGA and its derivatives are well known strong antioxidants
as well as selective inhibitors of lipoxygenases [10–12].  It has also 

been reported that these compounds have been effective against 

several viruses (human immunodeficiency virus, herpes simplex 

virus, human papilloma virus, influenza virus, and Junin virus) 

[13–18] as well as that they inhibit the growth of tumors, both in 

cell cultures and in animal models [19–25].  The semi-synthetic nat- 

ural product tetra-O-methyl NDGA (M4N) can inhibit the growth of 

human xenograft tumors [26] and it is also currently undergoing 

Phase I/II clinical trials as a treatment for central nervous system 

and brain tumors [27]. 

Despite the growing potential of clinical uses for NDGA and its 

derivatives, there are few reports on the biosynthesis of these com- 

pounds [28], and studies on their production in L. divaricata plant 

cell cultures have only been carried out in the last two years [29]. 

Therefore, the need for the establishment of in vitro cultures from 

this plant is considered to be an important goal for plant biotech- 
production in relation to differentiation in cell and tissue cultures
j.plantsci.2012.05.007

nology. The capacity for plant cells, tissue, and organ cultures to 63

produce and accumulate many of the same valuable chemical com- 64

pounds as the parent plant in nature has been recognized almost 65

since the inception of in vitro technology. At the present time, many 66
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edicinal valuable compounds are produced by in vitro plant cell
ultures; however, in other cases production requires more differ-
ntiated organ cultures such as shoot and root [30].

The aim of this study was to investigate the potential capacity of
. divaricata in vitro cultures to synthesize phenolic compounds and
o evaluate the changes in phenolic compound content during the
rocess of organogenesis. To secure a constant high quality supply
wo possible techniques might be followed. One of these is culti-
ation of a selected elite variety, for which plant biotechnology is
mportant for the micropropagation, with the other method being
n vitro plant cell or organ culture of the plant. In the present work,
oth micropropagation and the cell biotechnological production
re addressed. By studying the various pathways connected with
he production of the compounds of interest, more information
oncerning metabolic engineering strategy was provided.

. Materials and methods

.1. Chemicals

The different media were preformed using macro- and micronu-
rient salts, as well as vitamins of Murashige and Skoog [31]. These
hemicals, plant growth regulators and Phytagel were purchased
rom Sigma–Aldrich (St. Louis, MO,  USA).

All solvents for the HPLC analysis were of HPLC grade and
urchased from Merck Co. (Darmstadt, Germany). NDGA, l-
henylalanine, p-coumaric acid, cinnamic acid, ferulic acid, caffeic
cid, sinapic acid, sinapyl alcohol, coniferyl alcohol, quercetin and
aemferol aglycones were obtained from Sigma–Aldrich (St. Louis,
O,  USA). The solvent used for the extraction of samples was of

nalytical grade and also obtained from Merck Co. (Darmstadt,
ermany).

.2. Callus induction and cell suspension cultures

Wild plants and seeds of L. divaricata Cav. were collected in Santa
aría de Punilla, Córdoba, Argentina. A voucher specimen has been

eposited in the International Herbarium of the National University
f Río Cuarto, Argentina, with the registration number RIOC 501.

L. divaricata seeds were surface-sterilized by immersion in 3%
w/v) sodium hypochlorite solution for 15 min. Subsequently, the
eeds were washed with sterile distilled H2O, germinated on half-
trength MS  medium without plant growth regulators at pH 5.8 and
olidified with 0.8% (w/v) plant agar.

Leaf explants (50 explants) from aseptically obtained three-
onth-old seedlings were cultured in MS  medium supplemented
ith 3% (w/v) sucrose and 0.1% (w/v) myo-inositol before being

olidified with 0.27% (w/v) Phytagel.
The medium was supplemented with different types and com-

inations of auxins [Pi (Picloran):2,4-D (2,4-dichlorophenoxyacetic
cid)] and cytokinins [KIN (kinetin):BAP (N6-benzylaminopurine)]
t different concentrations: 0.1, 1 and 2 mg/L. The pH of the media
as adjusted to 5.6 prior to autoclaving. Cultures were kept in a

rowth chamber at 25 ◦C under a 16/8 h light/dark photoperiod
sing cool-white fluorescent light (�mol  m−2 s−1) in order to form
alli, which were subcultured every 4 weeks.

For fresh weight determination (FW), twelve callus pieces were
arvested from each treatment and weighed, with the dry (DW)
eing determined after lyophylization. These parameters were
ecorded after four months of culture.
Please cite this article in press as: L. Palacio, et al., Phenolic compound 
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Cell suspension cultures were established from the four-month-
ld calli to a liquid medium (MS, 2 mg/l of 2,4-D and 1 mg/l BAP, 3%
w/v) sucrose), and incubated under the same conditions as that for
allus culture, but with continuous shaking (120 rpm).
 PRESS
e xxx (2012) xxx–xxx

The calli were incubated for 15 days after inoculation (1/10, p/v) 

and were harvested to determine the biomass and the phenolic 

compounds present by vacuum filtration at defined times. 

2.3. Induction of adventitious shoots and roots

Half gram fresh mass of calli without organogenesis was  iso-
lated and cultivated in MS  medium supplemented with 0.1 mg/l Pi
in combination with three concentrations of BAP (2, 3 and 4 mg/l) 

or each phytohormone alone (0.1 mg/l of Pi or 4 mg/l of BAP). These 

calli were subcultured every 4 weeks. Adventitious shoots regen-
erated from these callus cultures were excised and cultivated in 

Magenta vessels (Sigma–Aldrich) with 150 ml  MS  medium supple- 

mented with auxin indole-3-butyric acid (IBA) (2.5 �M)  and 5% 

(w/v) sucrose. The plantlets were routinely subcultured every 4 

weeks, and the cultures were kept in a growth chamber at 25 ◦C 

under a 16/8 h light/dark photoperiod using cool-white fluorescent 

light (�mol  m−2 s−1). 

2.4. Extraction and analysis of phenolic compounds 

Four-month-old calli without organogenesis; organogenic calli 

grown on medium supplemented with 4 mg/l BAP, cells cultured
in suspension, three-month-old plantlets, and five-year-old wild 

plants were lyophilized overnight (Labconco Instrument, USA),
before being ground to a powder with a pestle in a mortar, using 

liquid nitrogen to facilitate sample homogenization, and stored at
−20 ◦C. 

500 mg  of each powered plant material was  mixed with 10 ml 

of 99.5% ethanol in a 100 ml  Erlenmeyer flask and covered with 

parafilm. Samples were shaken at 120 rpm for 24 h in the dark 

at room temperature, after which the resulting cell organic sol- 

vent extracts were filtered. The organic phase was  centrifuged at 

1500 rpm for 10 min  and filtered under reduced pressure. The wild 

plant extract was also partitioned three times with water:diethyl 

ether (30 ml  each time) and evaporated, since wild plants have a 

complex matrix. 

The organic residues from each plant material were re-dissolved 

in methanol (1 ml), filtered through a membrane filter (0.45 �m 

pore size) and analyzed by HPLC, as described previously by Pala- 

cio et al. [29]. The phenolic compounds were detected at 265 nm 

for coniferyl alcohol, 272 nm for cinnamic acid, 275 nm for sinapyl 

alcohol, 281 nm for NDGA, 310 nm for p-coumaric acid, 325 nm for 

ferulic acid and caffeic acid, 328 nm for sinapic acid, and 370 nm for 

quercetin and kaemferol aglycones. The peak areas corresponding 

to each detected phenolic compound from the samples, and having 

the same retention time as authentic compounds, were integrated 

for comparison with an external standard calibration curve. 

2.5. Statistical analysis 

All experiments were repeated 3 times and the values are pre- 

sented as means ± standard deviation (SD). The data from different 

in vitro culture tissues were statistically analyzed using a one-way 

analysis of variance and the means were compared by Duncan’s 

multiple range tests at a 5% probability level. 

3. Results and discussion 

3.1. Callus induction and cultures 

To evaluate the production of phenolic compounds in L. divar- 
production in relation to differentiation in cell and tissue cultures
j.plantsci.2012.05.007

icata callus cultures, we initially tested more than 36 culture 179

media using different hormonal treatments with the aim of 180

obtaining friable calli of this plant species. Table 1 shows the con- 181

centrations of plant growth regulators tested in this study and 182
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Table  1
Callus induction and organogenesis from L. divaricata leaf explants.

PGRa Callus induction Shoots (% explants)

Auxins Cytokinins % explants FW (g)b

mg/l mg/l

Pi 0.1 BAP 0.1 – – –
1  – – –
2 33.3  0.69 ± 0.11bc 28.0 ± 4.0c

Pi 1 BAP 0.1 58.3 0.77 ± 0.09b –
1  – – –
2  – – –

Pi  2 BAP 0.1 50.0 1.85 ± 0.12d –
1 58.3  0.78 ± 0.08b –
2 – – –

2,4-D  0.1 BAP 0.1 – – –
1 58.3  1.40 ± 0.08c –
2  – – –

2,4-D 1 BAP 0.1 58.3 0.32 ± 0.07a –
1  – – –
2  58.3 0.31 ± 0.09a –

2,4-D 2 BAP 0.1 75.0 0.71 ± 0.01b –
1 75.0  3.23 ± 0.14e –
2  – – –

2,4-D 0.1 KIN 0.1 48.3 0.39 ± 0.05a –
1  48.3 0.38 ± 0.04a –
2  58.3 0.31 ± 0.06a –

2,4-D 1 KIN 0.1 50.0 0.86 ± 0.08b –
1  58.3 1.29 ± 0.09c –
2 58.3  1.82 ± 0.08d –

2,4-D 2 KIN 0.1 58.3 1.66 ± 0.07d –
1  41.6 1.69 ± 0.09d –
2  58.3 1.38 ± 0.09c –

Pi  0.1 KIN 0.1 – – –
1 – –  –
2  – – –

Pi  1 KIN 0.1 – – –
1 –  – –
2  – – –

Pi 2 KIN 0.1 – – –
1  – – –
2 –  – –

a PGR, plant growth regulator; BAP, (N6-benzylaminopurine); KIN, kinetin; 2,4-D, 2,4-dichloroacetic acid; Pi, Picloran.
b FW,  fresh weight.
c Organogenic calli.
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ata of FW were collected after four months.
alues represent the mean ± S.D. Means following the same letter within columns a

he callus induction results after a four months growth period
subcultured every 4 weeks). Between 33.3 and 75.0% of callus
nduction and growth occurred. However, in nine treatments no
ormation of calli was observed. Different types and concentra-
ions of growth regulators are known to have different effect
n growth and developmental processes [32,33]. A particularly
trong interaction was observed between 2 mg/l 2,4-D and 1 mg/l
AP. After 11–12 weeks, these calli became whitish-yellow and

riable, with this indicating that different auxin and cytokinin
ypes and ratios played important roles in callus induction
nd proliferation (Fig. 1B).

The medium with Pi/BAP produced compact, slow-growing
alli with hard tissue. In the 0.1 mg/l Pi:2 mg/l BAP culture
edium assayed, small calli appeared after 6 weeks of cul-

ure, but also simultaneously showed a certain degree of
Please cite this article in press as: L. Palacio, et al., Phenolic compound 
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edifferentiation, and developed adventitious shoots (Table 1).
he concentrations of Pi/KIN were toxic for the cultures,
hich proved to be the strongest inhibitor of callus growth

Table 1).
t significantly different, according to Duncan’s multiple range test (P < 0.05).

A cell suspension culture was  also established in order to obtain 

plant material with the lowest degree of differentiation. The growth 

in suspension cultures of L. divaricata was studied in cells cultured 

in MS  medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP, 

which was  the medium that provided the strongest growth in cal- 

lus cultures (Table 1). When yellow and friable calli were placed in 

liquid culture, they easily broke apart and dispersed into clumps. 

Further agitation fragmented these clumps into small cell aggre- 

gates. This cell suspension culture presented a normal growth cycle 

with a lag growth phase of approximately 5 days for fresh weight 

and 7 days for dry weight, an exponential phase until day 9 and a 

stationary phase until the end of the culture cycle (Fig. 2). 

3.2. Study of callus organogenesis and plant regeneration 
production in relation to differentiation in cell and tissue cultures
j.plantsci.2012.05.007

Small callus pieces (0.5 g FW)  were cultured separately in MS  215

medium supplemented with 0.1 mg/l Pi in combination with three 216

concentrations of BAP (2, 3 and 4 mg/l) or each phytohormone 217

alone (0.1 mg/l of Pi or 4 mg/l of BAP). Table 2 shows the callus 218

dx.doi.org/10.1016/j.plantsci.2012.05.007
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Fig. 1. Morphogenetic developments in tissue cultures of L. divaricata from leaf explants. (A
shoot formation; (E and F) shoot elongation and growth and (G) full development.
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ig. 2. Kinetics of biomass formation by L. divaricata cell cultures on MS  medium
ontaining 2,4-D and BA (2:1 mg/l). Data represent average values from 3 separate
xperiments ± SD. FW,  fresh weight; DW,  dry weight.
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rowth capacity and tendency to develop organogenesis. In this
tudy, although the starting material was undifferentiated tissue,
fter six weeks of culture, the callus developed organogenesis. The
resence of adventitious buds was apparent after 6 weeks, and

able 2
ffects of different growth regulator combinations on adventitious shoot regeneration in

PGRa

Auxin Cytokinin
mg/l mg/l

Pi 0.1 BAP 2 

0.1  3 

0.1  4 

–  4 

0.1  – 

a PGR, plant growth regulator; BAP, (N6-benzylaminopurine); Pi, Picloran.
ata collected after four months of culture.
alues represent the mean ± S.D. Means following the same letter within columns are no
) Leaf explants (0 day); (B and C) callus mass formation and growth; (D) adventitious

adventitious shoot development was  also observed after 16 weeks
of culture (Fig. 1A–D). These results confirm the strong propen- 

sity of L. divaricata callus pieces grown on media with a high BAP
concentration to develop organized structures and also demon- 

strate the low efficiency of the plant growth regulator treatments 

to completely inhibit this process. 

BAP plays a key role in plant regeneration in vitro [34,35]. In 

the present experiment, BAP alone was  able to induce adven- 

titious shoot regeneration at a rate of 88.0%, whereas Pi alone 

appeared to have a suppressive effect on shoot differentiation 

(Table 2). Increasing the concentration of BAP in the culture 

media generally stimulated the development and regeneration 

of adventitious shoots, an observation previously found in sev- 

eral types of in vitro cultures for other plant species [36]. To 

the best of our knowledge, no successful method has been 

reported for adventitious shoots regeneration from the callus of 

L. divaricata.  

When adventitious shoots regenerated from organogenic cal- 

lus cultures were cultivated in MS  together with 2.5 �M AIA 

and 5% (w/v) sucrose for rooting (as previously described 

[29]), 70% of adventitious shoots rooted after 6 weeks. The 

in vitro plants obtained showed a very similar morphology to 
production in relation to differentiation in cell and tissue cultures
j.plantsci.2012.05.007

those grown in greenhouse (data not shown). Consequently, 245

this system is an easy protocol for the micropropagation of 246

L. divaricata (Fig. 1A–G). 247

 L. divaricata calli.

Percentage of explants forming shoots (%) No. of shoots/explant

27.3 ± 4.0a 2.36 ± 0.95a
34.6 ± 2.3a 2.54 ± 1.11a
53.3 ± 6.1b 5.98 ± 0.82b
88.0 ± 1.0c 8.43 ± 0.81c

0.0 0.0

t significantly different, according to Duncan’s multiple range test (P < 0.05).

dx.doi.org/10.1016/j.plantsci.2012.05.007
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Table  3
Effects of different combinations of growth regulator on phenolic compound contents of L. divaricata calli.

PGRa Growth Phenolic compounds

Auxins Cytokinins DW (mg)b NDGA (�g/g DW)  Quercetin (�g/g DW)
mg/l  mg/l

Pi 0.1 BAP 0.1 – – –
1 – – –
2 71.33 ± 9.12cc 165.32 ± 10.54dc 18.98 ± 1.98dc

Pi 1 BAP 0.1 70.43 ± 8.23c 2.87 ± 0.91a –
1  – – –
2  – – –

Pi  2 BAP 0.1 110.72 ± 12.21d 14.89 ± 0.89b 1.76 ± 0.87a
1 41.21 ± 4.42b 25.32 ± 2.79c 3.98 ± 0.99b
2 – – –

2,4-D  0.1 BAP 0.1 – – –
1 82.73 ± 6.36c – –
2  – – –

2,4-D 1 BAP 0.1 36.76 ± 4.34b 13.34 ± 2.01b 4.78 ± 0.54b
1  – – –
2  39.90 ± 9.31b – –

2,4-D 2 BAP 0.1 73.71 ± 8.91c 15.52 ± 0.19b 5.12 ± 0.45b
1 344.69 ± 9.3h 29.21 ± 0.91c 10.55 ± 0.71c
2  – – –

2,4-D 0.1 KIN 0.1 21.3 ± 4.1a – –
1  38.8 ± 5.2b – –
2  43.9 ± 8.2b – –

2,4-D 1 KIN 0.1 210.3 ± 11.1f – –
1  84.7 ± 7.4c – –
2 104.9 ± 9.9d – –

2,4-D 2 KIN 0.1 291.3 ± 9.8g – –
1  156.5 ± 14.1e – –
2  70.5 ± 9.2c – –

a PGR, plant growth regulator; BAP, (N6-benzylaminopurine); KIN, kinetin; 2,4-D, 2,4 dichloroacetic acid; Pi, Picloran.
b DW,  dry weight.
c Organogenic calli.
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.3. In vitro phenolic compound production

The capacity of L. divaricata calli, cell suspension cultures,
lantlets and wild plants to produce the active metabolites: NDGA,
-coumaric acid, cinnamic acid, ferulic acid, caffeic acid, sinapic
cid, sinapyl alcohol, coniferyl alcohol, quercetin and kaemferol
glycones was evaluated.

It has been previously established that manipulation of sec-
ndary product formation in medicinal plants is possible by varying
he culture conditions, including the growth regulator type and
oncentration [32,37,38].  Table 3 shows the levels of the lignan
DGA and the flavanoid quercetin that were found in the calli.
he type and concentration of auxin or cytokinin as well as the
uxin/cytokinin ratio modified the pattern and concentration of
econdary metabolites in plant cells and tissue cultures.

A high ratio of 2,4-D/BAP and Pi/BAP in the culture media pro-
oted the production of phenolic compounds in non-organogenic

alli. The highest mean quercetin level was produced with 2 mg/l
,4-D:1 mg/l BAP medium, which was significantly greater than
ith the other media. The highest mean NDGA content was

btained with 2 mg/l 2,4-D:1 mg/l BAP and 2 mg/l Pi:1 mg/l BAP
edia. Our results also demonstrated that the substitution of KIN by

AP inhibited the synthesis of these phenolic compounds (Table 3),
hich callus grown at different concentrations of BAP and aux-
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ns (Pi or 2,4-D) having a selective ratio lignan (NDGA)/flavonoid
quercetin) accumulation response.

When the calli grown on 0.1 mg/l Pi and 2 mg/l BAP medium
howed a certain degree of redifferentiation (adventitious shoot
t significantly different, according to Duncan’s multiple range test (P < 0.05).

formation), the NDGA and quercetin accumulation increased more 

than in non-organogenic calli. Moreover NDGA and quercetin con- 

tent depended on the state of callus differentiation (Table 3). 

Plant cell suspension cultures presented a different phenolic 

compound pattern from the initial inoculum (calli grown on MS,  

2,4-D 2 mg/l and BAP 1 mg/l). These cell cultures were able to pro- 

duce four intracellular phenolic compounds: lignan NDGA and the 

phenylpropanoids p-coumaric acid, ferulic acid and sinapyl alcohol 

(Fig. 3). These phenylpropanoids are natural phenolic compounds 

that exhibit a wide range of biological effects against various 

diseases, including cancer, diabetes, cardiovascular and neurode- 

generative illnesses. In addition, ferulic acid has been approved in 

Japan as a food additive which prevents oxidation [39]. 

As stated above, these simple-structured metabolites are found 

in several plant families, but no such phenolic compounds have yet 

been isolated from wild plants of L. divaricata.  To date, ferulic acid 

has only been reported in the species of Larrea nitida [40]. In addi- 

tion, secondary metabolite patterns have been observed to change 

in other plant species under in vitro conditions [36,41]. 

While the accumulation of secondary product synthesis may  

depend upon the state of differentiation of the cell or organ, the 

maximum levels of NDGA found in the present study in cell sus- 

pension cultures (day 4) were significantly greater (9.9-fold) than in 

non-organogenic callus cultures (Fig. 4). Similar findings were also 
production in relation to differentiation in cell and tissue cultures
j.plantsci.2012.05.007

reported for asiaticoside in Centella asiatica [42] and, for isoflavone 299

in Genista tinctoria [41]. 300

The calli showing the highest formation of fully developed 301

adventitious shoots (grown on 4 mg/l BAP medium) were also 302
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ssessed for phenolic compound accumulation, which revealed
he three phenolic compounds NDGA, quercetin, and the phenyl-
ropanoid ferulic acid. Organogenic calli cultures produced much
igher levels of NDGA and quercetin than unorganized callus tissue,
uggesting that tissue differentiation directly influences product
ccumulation (Fig. 4). Our findings are consistent with the results
f Palazón et al. [43], who showed that a low amount of saponin was
roduced in undifferentiated tissues, but the production increased
hen the calli developed organogenesis. Sood and Chauhan [44]

lso reported that the production of Picroside-I in different types
f Picrorhiza kurroa tissue cultures increased with the degree of
orphological differentiation.
Plantlets of L. divaricata presented a greater capacity to syn-

hesize and accumulate NDGA and quercetin (Fig. 4). Another
etabolite detected in plantlets, although at a low level, was  ferulic

cid. On average, the NDGA and quercetin contents were 1.6-
imes and 1.2-times greater, respectively, in microplants than in
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alli, showing adventitious shoot formation (medium: 4 mg/l BAP).
hese results confirm the low capacity of the callus tissue and
uspension-cultured cells to produce these phenolic compounds,

ig. 4. Phenolic compound production in L. divaricata cultures with different
egrees of differentiation. Cell suspension, MS medium supplemented with 2 mg/l
,4-D and 1 mg/l BAP; non-organogenic calli, MS  medium supplemented with 2 mg/l
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i  and 2 mg/l BAP; organogenic calli with adventitious shoots, MS medium supple-
ented with 4 mg/l BAP; microplants, MS  medium supplemented with 2.5 �M AIA

nd  5% (w/v) sucrose. *N = 12 ± S.D. DW,  dry weight.
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and that organized structures are necessary if these compounds are 

to be synthesized at high amounts. Another metabolite detected in 

plantlets, although at a low level, was ferulic acid. However, it was 

not possible to find a correlation between its level and the degree of 

differentiation. The low ferulic acid biosynthetic capacity observed 

in plantlets may  be explained by a possible metabolization of this 

phenylpropanoid pathway intermediate to afford NDGA. 

NDGA and quercetin were also accumulated in five-year-old 

wild plants, and their contents were found to be 3.6- and 5.9-fold 

higher, respectively, than in in vitro plants (Fig. 4). In addition, it 

was possible to produce adventitious shoots with a high content of 

NDGA in a short period of only three months, which could be use- 

ful for pharmacological studies. Regarding the phenylpropanoids, 

none of these metabolites were found in the evaluated L. divaricata 

wild plants. 

Our data also indicated that the content of NDGA and quercetin
increased with differentiation; with NDGA being the major product
in all types of plant material. Thus, in L. divaricata,  NDGA may  be
considered to be a marker for differentiation. 

Taken as a whole, our results suggest that the aerial part of the
L. divaricata plant is important for the biosynthesis of NDGA and 

quercetin, and that the undifferentiated tissues have only a limited 

capacity to synthesize these compounds. The analyses performed 

showed a clear increase of NDGA and quercetin levels in parallel 

with an increase in differentiation. 

The two  major classes of phenolic compounds found in L. divar- 

icata tissue culture were lignan (NDGA) and flavonoid (quercetin). 

In the phenylpropanoid biosynthetic pathways, there were many 

branching points and the differential ratio of lignans/flavonoids 

could be controlled. The regulation of fluxes from cinnamic acid 

into lignan or flavonoid changed in response to the level of tissue 

differentiation. However, the cell suspension culture did not show 

the same phenolic compound pattern as callus cultures, in vitro or 

in wild plants, resulting in a lack of production of quercetin. In the 

callus cultures, a redistribution of the carbon flux between NDGA 

and quercetin production was observed, with the opening of a new 

pathway of quercetin apparently channeling the flux away from the 

NDGA branch, resulting in a considerable reduction of this lignan. 

In contrast, in the cultures with a higher degree of differentiation 

(organogenic calli and micropropagated plants) a higher level of the 

ratio NDGA/quercetin was  found, as in the case of the wild plant. 

Our studies showed that in cell culture systems, the production 

was lower than in intact plants. There also seemed to be a connec- 

tion between the various phenolic pathways, suggesting the need 

for further studies which may  reveal leads to future metabolic engi- 

neering of the pathways of interest. In addition, it might be possible 

to use external signals to activate certain pathways. At least for the 

present, however, biotechnology seems to be of great importance 

for breeding and growing via plant micropropagation. 
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