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For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable

property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices.

The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge,

Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis.

As a first step in analyzing this system of equations we study linear perturbations on a flat background. We

prove that the linear equations reduce to a very simple system of equations which provide, though the

mass formula, useful insight into the structure of the full system. However, the singular behavior of the

coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In

order to understand the behavior of the solutions, we study the numerical evolution of them. We provide

strong numerical evidence that the system is well-posed and that its solutions have the expected behavior.

Finally, this linear system allows us to formulate a model problem which is physically interesting in itself,

since it is connected with the linear stability of black hole solutions in axial symmetry. This model can

contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.
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I. INTRODUCTION

Axisymmetric spacetimes have been studied mainly for
two reasons. The first one is that they often appear in
astrophysical models like rotating stars and black holes.
The second is because in the presence of any symmetry
Einstein equations simplify considerably and hence these
spacetimes are useful as an intermediate step to understand
more complex problems. In particular, axially symmetric
gravitational waves in vacuum do not carry angular mo-
mentum; this represents an important simplification in the
dynamics. Also, axial symmetry is the only symmetry
compatible with asymptotic flatness and nontrivial gravi-
tational radiation [1]. From this perspective, axially sym-
metric gravitational waves are the simplest possible waves
emitted from isolated sources. And hence these waves
represent the natural candidates to study the strong field
dynamics of gravitational waves in Einstein equations.

However, axial symmetry presents a major difficulty. To
take advantage of the symmetry an adapted coordinate
system should be used in order to reduce the field equations
to a lower-dimensional system (there is a well-known
procedure to do this for any symmetry in a geometrical
way [2]; we review this result in Sec. III A). The difficulty
arises because the norm of the axial Killing vector vanishes
at the axis, and hence the reduced equations are formally
singular there.

This difficulty is so severe that until recently axially
symmetric spacetimes have not been studied in detail
even using numerical techniques (see chapter 10.4 in [3]
and references therein). In a number of recent articles [4–8]
these kinds of singular systems have been successfully
solved numerically. There is however no analytical study
of axial symmetry in the dynamical regime (see the review
article [9] for results for other kind of symmetries). In fact,
it can be argued that this singular behavior near the axis is
so complicated that the axially symmetric case is as hard as
the full general case from the analytical point of view.
There exists however a new ingredient that makes, in our

opinion, the problem worth studying. In the article [10] it
has been proved that there exists a gauge in axial symmetry
such that the total mass of the spacetime can be written as a
positive definite volume integral over the spacelike slices
of the foliation. Moreover, this integral is conserved along
the evolution. This conserved integral controls the norm of
the fields along the whole evolution. This is certainly a very
desirable property of this gauge which is not present in the
general, nonsymmetric, case. Also, this mass integral for-
mula appears to be connected with stability properties of
black holes in axial symmetry [11].
The gauge mentioned above is a combination of the

well-known maximal condition for the lapse and the choice
of isothermal coordinates (also called quasi isotropical) for
the shift. The later condition is only possible in axial
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symmetry. We call this gauge the maximal-isothermal
gauge. This gauge has been known for long time (see
[12,13]) but without noticing this property of the mass. It
is also important to emphasize that this gauge is the one
used in most of the recent numerical computations [4–7]
(examples of other gauge choices in axial symmetry are
given in [14,15]). That is, this gauge has not only desirable
analytical properties but it is also useful for numerical
studies.

The very basic question of well-posedness of the equa-
tions in this gauge is open. This question is rather subtle
because of the singular behavior mentioned above. The
standard theory in partial differential equations does not
seem to apply in a direct way. This is the problem we want
to study in this article. In order to do this, the first step is to
study the linearization of the equations around fixed solu-
tions. We choose Minkowski as a background for simplic-
ity. As we describe in the next section, we obtain a
remarkable simple system of linear equations together
with a conserved quantity which corresponds to the mass
of the spacetime up to second-order corrections. This
system allows us to formulate the problem of well-
posedness in a simplified setting which is nevertheless
relevant and physically interesting. Remarkably enough,
even for this linear system thewell-posedness appears to be
a nontrivial problem. In order to get insight into this
problem we numerically evolve these equations to provide
evidence that the system is in fact well-posed and that the
solutions have the expected behavior.

Being that the local existence problem is so complicated
in this gauge one can wonder what can be said about the
global behavior of the evolution, which is, of course, the
ultimate goal. However, many of the main complications of
this gauge are already present in the well-posedness prob-
lem because they are related to the local behavior of the
fields at the symmetry axis. If one can sort out the diffi-
culties for the linearized system in a satisfactory way there
is a good chance that the mass integral formula can be used
to control the global evolution in some way. Also, the well-
posedness of the linear equations is relevant in itself for the
following two reasons. First, the mass formula at the linear
level can in principle be used to prove linear stability in
axial symmetry of a background solution like a black hole.
Second, the well-posedness of the linear equations and the
mass formula give insight on appropriate boundary con-
ditions on a bounded domain. In particular, the mass
formula allows us to calculate the gravitational waves
that leave or enter a bounded domain.

The plan of the article is the following. In Sec. II we
summarize our main results. In Sec. III we review the
axially symmetric, vacuum, Einstein equations. Although
this is well known, the way we proceed to obtain the final
equations in the maximal-isothermal gauge is slightly dif-
ferent than the standard one used in the numerical works
mentioned above. In Sec. IV we derive our main linear

equations, and in Sec. V we describe their main properties.
In particular, in this section we discuss the mass conserva-
tion and boundary conditions on a bounded domain. In
Sec. VI we describe the numerical techniques used to
evolve these equations. And in Sec. VII we present the
numerical results. Finally, in Sec. VIII we conclude with a
discussion of the relevant open problems.

II. MAIN RESULTS

This article has two main results. The first one is to prove
that the linearized Einstein vacuum equations in the
maximal-isothermal gauge reduce to a very simple set of
equations together with a conserved quantity. This con-
served quantity is the mass up to second-order corrections
and it is written as a positive definite integral over a space-
like surface, which has a similar form to the energy of the
wave equation. This property of the mass, which only holds
in this gauge, is of course what distinguished this system of
equations from any other linearization.
The second result is the numerical study of these equa-

tions, together with the analysis of appropriate boundary
conditions on a finite grid.
Let us describe the first result. In axial symmetry, the

dynamical degrees of freedom of the vacuum gravitational
field are prescribed by two functions, which can be chosen
to be the norm and twist potential of the axial Killing
vector (see Sec. III). We make, for simplicity, the extra
assumption that the twist is zero (although we discuss the
full nonlinear equations with twist in Sec. III). This as-
sumption simplifies the equations, but it is by no means
essential. In the maximal-isothermal gauge, the linearized
Einstein equations with respect to a Minkowski back-
ground reduce to the following two equations for the
functions v and �� (the reason for the notation for the
last function is that it represents the � component of the
shift vector as we will see below):

€v ¼ �v� @�v

�
þ �@�

�
��

�

�
; (1)

��� ¼ 2

�

�
�v� @�v

�

�
: (2)

These equations are deduced in Sec. IV. We have chosen
cylindrical coordinates ðt; �; zÞ. The relevant domain for
these equations is the half plane � � 0, �1< z <1,
denoted by R2þ. A dot denotes the time derivative and �
is the flat Laplacian in two dimensions:

�v ¼ @2�vþ @2zv: (3)

The boundary conditions for Eqs. (1) and (2) arise from the
regularity of the spacetime metric at the axis and the
standard asymptotically flat falloff behavior at infinity.
We discuss this in detail in Sec. III D and V. Let us present
here a summary. Equation (2) is an elliptic equation for��;
we need to prescribe boundary conditions on R2þ. On the
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axis � ¼ 0 we require

��j�¼0 ¼ 0; (4)

and at infinity we impose

�� ¼ Oðr�1Þ; (5)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
. With these boundary conditions,

Eq. (2) has a unique solution. Equation (1) is a wave
equation for v; we need to prescribe initial conditions,
which are functions fð�; zÞ and gð�; zÞ such that

vjt¼0 ¼ f; _vjt¼0 ¼ g: (6)

The axis represents a timelike boundary for the wave
Eq. (1), and hence we need to prescribe also boundary
conditions there. This is the delicate part, because the
equations are singular at the axis and hence we are not
free to chose arbitrary boundary conditions there. From the
axial regularity of the spacetime metric we deduce that the
initial data f and g should vanish at the axis, namely

fj�¼0 ¼ 0; gj�¼0 ¼ 0: (7)

In Sec. V, using series expansions, we prove that conditions
(7) on the initial data imply that

vj�¼0 ¼ 0; @�vj�¼0 ¼ 0; (8)

for all times. Moreover, solutions v and �� of Eqs. (1) and
(2) satisfy parity conditions; namely v is an even function
of � and �� is an odd function of �. These parity con-
ditions imply that the spacetime metric is smooth at the
axis. It is important to emphasize that these conditions are
consequences of Eqs. (1) and (2) alone, without any extra
requirement.

In the numerical implementation, Eqs. (8) are used as
boundary conditions at the axis. There are various ways to
reexpress (1) and (2) in order write conditions (8) as proper
timelike boundary conditions (e.g. Dirichlet or Neumann).
For example, following [4], in Sec. VI we write them in
terms of the rescaled variable �v ¼ v=�.

We are interested in asymptotically flat solutions of (1)
and (2). We will argue in Sec. V, that the typical falloff
behavior as r ! 1 for this kind of solutions is

v ¼ Oðr�2Þ: (9)

That is, if we chose initial data f and g which satisfy (9)
then v will satisfy (9) for all times.

All the other components of the linear perturbation can
be calculated in terms of v and �� as follows. In our gauge
the four-dimensional coordinates are given by ðt; �; z; �Þ.
A general twist-free linear perturbation is written as fol-
lows:

� ¼ ð�þ 2qÞðd�2 þ dz2Þ þ 2��d�dtþ 2�zdzdt

þ �2�d�2; (10)

where the functions �, q, �� and �z depend only on

ðt; �; zÞ. The function �� is given by (2); the other func-
tions are calculated in terms of v as follows. The function q
is a time derivative of v:

q ¼ _v: (11)

The function � is determined by the following elliptic
equation:

ð3Þ�� ¼ �� _v; (12)

where ð3Þ� is defined as

ð3Þ�� ¼ ��þ @��

�
: (13)

This operator, which appears frequently in the rest of
the article, is the flat Laplace operator in three dimensions
written in cylindrical coordinates and acting on axially
symmetric functions. The boundary condition for
Eq. (12) at the axis is given by

@��j�¼0 ¼ 0; (14)

and at infinity we impose

� ¼ Oðr�1Þ: (15)

Equation (12) can be also viewed as an equation in R3. In
this case we do not need to prescribe any boundary condi-
tion at the axis. Condition (14) will be automatically
satisfied for any regular solution.
Finally, the other component of the shift vector is de-

termined by the following equation:

��z ¼ �2
@zv

�2
; (16)

with boundary condition at the axis

@��
zj�¼0 ¼ 0; (17)

and decay condition at infinity

�z ¼ Oðr�1Þ: (18)

The total mass of the system is given by the following
integral:

m ¼ 1

16

Z
R2

þ

�
4
j@vj2
�2

þ ð�vÞ2 þ j@�j2
�
�d�dz: (19)

Note that in order to compute the mass we need the
function �, which satisfies Eq. (12). This equation is un-
coupled with Eqs. (1) and (2). The integral (19) is con-
served. That is, for every solution of (1) and (2) which
satisfies the boundary conditions (4), (5), and (8) and decay
like (9) at infinity we have

_m ¼ 0: (20)

The conservation law (20) is deduced from a local conser-
vation formula which involves the integrand of the mass
formula (19). This local conservation law can be also used
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to compute the gravitational waves entering or leaving a
bounded domain. We discuss this in Sec. V.

The second main result of this article is the numerical
study of the system (1) and (2). We describe this in detail in
Sec. VII. Let us briefly summarize these results. The
system (1) and (2) appears, from the numerical evidences,
to be well-posed and out implementation numerically sta-
ble. In particular, this implies that the functions v and ��

remain bounded for all times by a constant that depends
only on the initial data. This is consistent with the linear
stability of Minkowski spacetime.

The numerical calculations are, of course, performed on
a finite grid. Hence, we need to prescribe boundary con-
ditions on a bounded domain. These conditions should be
compatible with asymptotical flatness in the following
sense. Assume we have a sequence of bounded domains
such that in the limit they cover the half plane R2þ. If we
solved the equations for this sequence of domains we
should recover in the limit the asymptotically flat solution
described above. There exists many different boundary
conditions that have this property: in particular, homoge-
neous Dirichlet conditions for �� and v. For each bounded
domain the mass is not conserved. However, as the size of
the domain increases we expect that the mass approaches a
time-independent constant. This is precisely what we ob-
serve in our numerical calculations.

For our present goal, this kind of asymptotically flat
boundary condition is all that we need. There is, however,
an interesting extra point here. To model an isolated system
on a finite grid it is important to prescribe boundary con-
ditions such that the gravitational radiation leaves the
domain. In general, this is a very difficult problem since
it is not even clear what we mean by gravitational radiation
at a finite distance. However, as we mention above, in our
gauge the mass formula allows us to compute gravitational
radiation on a bounded domain. Although it appears not to
be possible to prescribe boundary conditions such that the
gravitational waves always leave the domain, the mass
formula suggests a particular kind of boundary condition
that has this behavior in our numerical calculations. That
is, under these boundary conditions, the mass on a bounded
domain is monotonically decreasing with time for the
particular kind of initial data used in the computations.
We emphasize however that we have not been able to prove
this analytically. We explore this in detail in Secs. V and
VII.

III. AXISYMMETRIC VACUUM EINSTEIN
EQUATIONS

The purpose of this section is to write the vacuum
Einstein equations for axially symmetric spacetimes in
the maximal-isothermal gauge. This involves three clearly
distinguished steps. In the first one, described in Sec. III A,
we perform a symmetry reduction of Einstein equations to
obtain a set of geometrical equations in the three-

dimensional quotient manifold. These equations can be
viewed as three-dimensional Einstein equations coupled
with effective matter sources. In the second step
(Sec. III B) we chose an arbitrary spacelike foliation in
the quotient manifold and split the equations in time plus
space. In Sec. III C we fix the foliation and the coordinate
system. We also write the mass formula in this gauge.
Finally, in Sec. III D we discuss boundary conditions at
the axis and at infinity.

A. Symmetry reduction

In this section we perform the symmetry reduction of the
field equations. We follow [2,16]. See also [5,14].
Consider a vacuum solution of Einstein’s equations, i.e.,

a four-dimensional manifold M with metric g�� (with

signature ð� þþþÞ) such that the corresponding Ricci
tensor vanishes

ð4ÞR�� ¼ 0: (21)

Suppose, in addition, that the metric g�� admits a Killing

field ��; that is �� satisfies the equation

r̂ ð���Þ ¼ 0; (22)

where r̂� is the connection with respect to g��. Greek

indices �; �; � � � denote four-dimensional indices.
We define the square of the norm and the twist of ��,

respectively, by

� ¼ ����g��; !� ¼ 	��
��
�r̂
��: (23)

Using the field Eq. (21) it is possible to prove that

r̂ ½�!�� ¼ 0; (24)

and hence !� is locally the gradient of a scalar field !

!� ¼ r̂�!: (25)

Let N denote the collection of all trajectories of ��,
and assume that it is a differential 3-manifold. We define
the metric h�� on N by

�g�� ¼ h�� þ ����: (26)

The vacuum field Eqs. (21) can be written in the following
form on N :

h� ¼ 1

�
ðra�ra��ra!ra!Þ; (27)

h! ¼ 2

�
ra!ra�; (28)

ð3ÞRab ¼
1

2�2
ðra�rb�þra!rb!Þ; (29)

where ra and ð3ÞRab are the connection and the Ricci
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tensor of hab, we have defined h ¼ rara, and Latin
indices a; b . . . denote three-dimensional indices on N .

Note that the definition of the metric (26) involves a
conformal rescaling with respect to the canonical metric
~h�� defined by

g�� ¼ ~h�� þ ��1����: (30)

That is, we have

h�� ¼ �~h��: (31)

This rescaling simplifies considerably the field equations.
In particular, on the right-hand side of Eq. (29) there are no
second derivatives of the fields � and ! (compare, for
example, with Eq. (20) in [10]).

Finally, we note that Eq. (27) can be written in the
following form:

h� ¼ �ra!ra!

�2
; (32)

where we have defined

� ¼ log�: (33)

Up to this point, the only assumption we have made is
that the spacetime admits a Killing vector field �� and that
�� is not null, otherwise the metric hab is not defined. If
the Killing field is timelike (�< 0) then the metric hab is
Riemannian and the Eqs. (27)–(29) are the stationary
Einstein vacuum equations. On the other hand, when the
Killing vector is spacelike (�> 0), the metric hab is a is a
three-dimensional Lorenzian metric (we chose the signa-
ture ð� þþÞ). In axial symmetry, the Killing vector �� is
spacelike, and its norm vanishes at the axis of symmetry.
Hence, the equations are formally singular at the axis. This
singular behavior at the axis represents the main difficulty
in handling these equations.

In the Lorenzian case, Eq. (29) has the form of Einstein
equations in three dimensions, with effective matter
sources produced by � and !. The effective matter
Eqs. (27) and (28) imply that the energy-momentum tensor
defined in terms of � and ! by

Tab ¼ 1

2�2
ðra�rb�þra!rb!Þ

� 1

4�2
habðrc�rc�þrc!rc!Þ; (34)

is divergence free, i.e. raTab ¼ 0.
A particularly relevant special case is when ! ¼ 0. In

that case Eqs. (27) and (28) simplify considerably:

h� ¼ 0; (35)

ð3ÞRab ¼
1

2
ra�rb�: (36)

We have pointed out that the rescaling (31) simplifies the
equations and allows us to write them in a more geometric
form. This is the reason why this scaling is used in the case
of Uð1Þ cosmologies where the equations are locally the
same but the norm � never vanishes (see [17,18] and the
review article [19]). In our case the conformal scaling (31)
is singular at the axis. However, since the behavior of � at
the axis, as we will see in the next sections, is controlled a
priori this singular scaling does not seem to introduce any
extra difficulty in the equations. We also remark that in all
the numerical works mentioned above this conformal re-
scaling was not used, and the equations are written in terms

of the metric ~hab defined by (30).
Equations (27)–(29) are purely geometric with respect to

the metric hab. To solve these equations we need to pre-
scribe some gauge for the metric hab. This will be done in
the next two sections.

B. 2þ 1 decomposition

In order to formulate an initial value problem, we will
perform an standard 2þ 1 decomposition of Eqs. (27)–
(29). Note that this is completely analogous to the 3þ 1
decomposition of Einstein equations; in fact all the for-
mulas are formally identical because the dimension does
not appear explicitly in them (see, for example, [20], [21]).
Consider a foliation of spacelike, two-dimensional slices

S of the metric hab. Let t be an associated time function and
let na be the unit normal vector orthogonal to S with
respect to the metric hab. The intrinsic metric on S is
denoted by qab and is given by

hab ¼ �nanb þ qab: (37)

Define the density � by

� ¼ 2ð3ÞRabn
anb þ ð3ÞR; (38)

and the current Jb by

Jb ¼ �qcbn
að3ÞRca; (39)

where ð3ÞR ¼ ð3ÞRabh
ab denotes the trace of ð3ÞRab. Then,

using Eq. (29) we obtain

� ¼ 1

2�2
ð�02 þ!02 þ jD�j2 þ jD!j2Þ; (40)

JA ¼ � 1

2�2
ð�0DA�þ!0DA!Þ; (41)

where DA is the connection with respect to qAB. The prime
denotes directional derivative with respect to na, that is

�0 ¼ nara� ¼ 1

�
ð@t�� �ADA�Þ (42)

where � is the lapse and �A is the shift vector of the
foliation. The indices A; B; � � � denote two-dimensional
indices on S. The constraint equations corresponding to
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(29) are given by

ð2ÞR� �AB�AB þ �2 ¼ �; (43)

DA�AB �DB� ¼ JB; (44)

where ð2ÞR is the Ricci scalar of qAB, �AB is the second
fundamental form of S, and � its trace

� ¼ qAB�AB: (45)

We use the following sign convention for the definition of
�AB:

�ab ¼ �qcarcnb ¼ � 1

2
Lnqab; (46)

where L denotes Lie derivative. The evolution equations
are given by

@tqAB ¼ �2��AB þL�qAB; (47)

@t�AB ¼ L��AB �DADB�þ �AB; (48)

where

AB ¼ ��AB þ ð2ÞRAB � ð3ÞRAB � 2�AC�
C
B; (49)

and

ð3ÞRAB ¼ 1

2�2
ð@A�@B�þ @A!@B!Þ: (50)

The evolution Eqs. (47) and (48) and the constraint
Eqs. (43) and (44) constitute a complete 2þ 1 decompo-
sition of the three-dimensional Einstein Eq. (29). It re-
mains to decompose the effective matter Eqs. (27) and
(28). This can easily be obtained using the decomposition
formula (A11) for the wave operator h and the definition
of the metric qab given by (37). The result is the following:

� �00 þ �q�þDA�
DA�

�
þ�0� ¼ 1

�2
ð!02 � jD!j2Þ;

(51)

�!00 þ �q!þDA!
DA�

�
þ!0�

¼ 2

�2
ðDA!DA��!0�0Þ; (52)

where instead of (27) we have use (32), and �q is the

Laplacian with respect to qAB, i.e. �q ¼ DADA.

Finally, we mention that the line element of the metric
hab takes the standard form

h ¼ ��2dt2 þ qABðdxA þ �AdtÞðdxB þ �BdtÞ: (53)

C. Gauge

In this section we describe the maximal-isothermal
gauge. In particular we review the mass formula for this

gauge (see [10] for details). For the lapse, we impose the
maximal condition on the 2-surfaces

� ¼ 0: (54)

Note that we are not imposing that the surfaces are maxi-
mal in the three-dimensional picture as in [10]. The later
condition is the one generally used [5,6], but the difference
is only minor. In particular the mass formula is positive
definite for both conditions as we will see. The one used
here appears to be natural with respect to the rescaled
metric hab. Equation (54) implies the following well-
known equation for the lapse

�q� ¼ �ð�AB�AB þ�1Þ; (55)

where

�1 ¼ ð3ÞRabn
anb ¼ 1

2�2
ð�02 þ!02Þ: (56)

The maximal gauge (54) can be, of course, imposed in any
dimension, and it is not related at all with axial symmetry.
In contrast, the condition for the shift is peculiar for two
space dimensions. The shift vector is fixed by the require-
ment that the intrinsic metric qAB has the following form:

qAB ¼ e2u�AB; (57)

where �AB is a fixed (i.e. @t�AB ¼ 0) flat metric in two
dimensions. Then, using (54), we obtain that the trace-free
part of (47) is given by

2��AB ¼ ðLq�ÞAB; (58)

where Lq is the conformal Killing operator in two dimen-

sions with respect to the metric qAB defined in Eq. (A1).
Equation (58) is an elliptic first-order system of equations
for �A.
The elliptic Eqs. (55) and (58) determine lapse and shift

for the metric hab, and hence they fix completely the gauge
freedom in Eqs. (27)–(29). This gauge has associated a
natural cylindrical coordinate system ðt; �; zÞ for which the
metric �AB is given

� ¼ d�2 þ dz2; (59)

and the axis of symmetry is given by � ¼ 0. The slices S
are the half planes R2þ.
For the analysis of the equations it is of course important

to write them explicitly as partial differential equations in
these coordinates. We will do this in the remainder of this
section. In general, due to the complexity of Einstein
equations, the partial differential equations obtained in a
particular gauge can be quite involved. In our case, how-
ever, the geometric nature of the gauge plus the symmetry
reduction will provide a relatively simple set of equations.
We first present some useful definitions. We need to

subtract from � the part that vanishes at the axis. We define
the function � by
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� ¼ �2e�: (60)

Because of the rescaling (31), the lapse � vanishes also at
the axis, hence we define the normalized lapse �� by

� ¼ � ��: (61)

From the regularity conditions presented in the next section
we will see that it is useful to define the function q defined
by

u ¼ log�þ �þ q: (62)

We now proceed to write the equations. We begin with
the evolution equations for � and !. The evolution equa-
tion for� is given by (51). Using the definition (60) and the
conformal rescaling expression for the Laplacian (A6) we
obtain

� e2u�00 þ ð3Þ��þ @A�
@A ��

��
� 2e2uðlog�Þ00 þ 2

@� ��

���

¼ ð�e2uð!0Þ2 þ j@!j2Þ��4e�2�: (63)

In the same way, from (52) we get

� e2u!00 þ ð3Þ�!þ @A!
@A ��

��

¼ 2

�
ð�e2u!0�0 þ @A!@A�Þ; (64)

where @A denotes partial derivatives with respect to � and z
and all the indices are moved with respect to the flat metric
�AB. In these equations the lapse � and the shift �A appear
through the prime operator defined in (42).

The momentum constraint (44) is given by

@B�AB ¼ �JA; (65)

where �JA ¼ e2uJA; that is we have

�J A ¼ � e2u

2�2
ð�0@A�þ!0@A!Þ: (66)

To obtain (65) we have used the conformal rescaling of the
divergence in two dimensions given by (A8). The indices
in Eq. (65) and in the rest of the article are moved with the
flat metric �AB. To avoid confusion, it is useful to introduce
the following notation:

�̂ A ¼ �A�AB; �̂A
B ¼ �AC�CB;

�̂AB ¼ �AC�BD�CD:
(67)

That is, we want to distinguish between, say, the covector

�A ¼ �BqAB used in the previous section and �̂A (see the
discussion after Eq. (A10) in the Appendix).

The Hamiltonian constraint, Eq. (43), is given by

ð3Þ��þ�q ¼ � 	

4
; (68)

where

	 ¼ e2u

�2
ð�02 þ!02Þ þ j@�j2 þ j@!j2

�2
þ 2e�2u�̂AB�AB:

(69)

Let us consider the evolution equations for qAB and �AB.
The evolution equation for the metric qAB reduces to

2@tu ¼ @A�
A þ 2�A@Au: (70)

And the evolution equation for the second fundamental
form �AB is given by

@t�AB ¼ L��AB � FAB � �GAB � 2��AC�̂
C
B (71)

where FAB denotes the trace-free part (with respect to �AB)
of DADB�. Using Eq. (A4)) we obtain

FAB ¼ @A@B�� 1

2
�AB��� 2@ðA�@BÞuþ @C�@

Cu�AB:

(72)

And GAB denotes the trace-free part of ð3ÞRAB, namely

GAB ¼ ð3ÞRAB � 1

2
�AB

ð3ÞRCD�
CD; (73)

where ð3ÞRAB is given by (50).
The equation for the lapse is given by

�� ¼ �ðe�2u�̂AB�AB þ e2u�1Þ; (74)

and for the shift we have

ðL�ÞAB ¼ 2�e�2u�̂AB; (75)

where L is the flat conformal Killing operator defined by
(A2).
Using the identity (A3), we can transform the first-order

system of Eqs. (75) for the shift and for the momentum
constraint (65) in a pair of second-order uncoupled equa-
tions. For the shift, we take a divergence to Eq. (75) to
obtain

��A ¼ 2@Bð��̂ABe�2uÞ: (76)

For Eq. (65) we define the vector vA by

�AB ¼ LðvÞAB; (77)

and hence Eq. (75) transforms to

�vA ¼ �JA: (78)

The total Arnowitt-Deser-Misner mass of the spacetime
can be calculated as a volume integral on the half planeR2þ
of the positive definite effective energy density (66) (see
[10])

m ¼ 1

16

Z
R2

þ
	�d�dz: (79)

Finally, we mention that in the twist-free case (! ¼ 0)
the four-dimensional spacetime metric g�� has a simple

expression in these coordinates, namely
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g ¼ ��2

�2
e��dt2 þ e�þ2qððd�þ ��dtÞ2 þ ðdzþ �zdtÞ2Þ

þ �2e�d�2: (80)

D. Boundary conditions and axial regularity

The boundary conditions at the axis in axial symmetry
have been widely analyzed in the literature [4,5,7,14].
They involve parity conditions in the � dependence for
the different fields. That is, the relevant functions are either
even or odd functions of �. In order to use these results in
our setting, it is useful to write the relations of the quan-
tities with respect to the rescaled metric hab and the

canonical metric ~hab, since all the above-mentioned ar-

ticles work with the metric ~hab.
Using relation (31) we obtain for the two-dimensional

metric

qAB ¼ �~qAB; (81)

and for the second fundamental form

�AB ¼ ffiffiffiffi
�

p �
~�AB þ 1

2

�0

�
~qAB

�
; (82)

where quantities with a tilde are written with respect to the

metric ~hab. We also have

� ¼ ffiffiffiffi
�

p
~�; �A ¼ ~�A: (83)

Using these relations and the results mentioned above it is
straightforward to obtain the following behavior of the
relevant variables:

�;!; ��; u; q; �; ���; �
z are even functions of �; (84)

and

��z; �
� are odd functions of �: (85)

Note that odd functions vanish at the axis and the �
derivative of even functions vanishes at the axis. It follows
that one can impose homogeneous Dirichlet boundary
conditions at the axis for odd functions and homogeneous
Neumann boundary conditions for even functions. In addi-
tion, we have that the function q defined by (62) should
vanish at the axis

qj�¼0 ¼ 0: (86)

Since q is an even function, from (86) we deduce that q ¼
Oð�2Þ near the axis. Finally, there is an important regular-
ity condition which comes from the axial regularity of the
three-dimensional extrinsic curvature. Let us define the
following quantity:

w ¼ 1

�

�
��0

�
þ ���

�
: (87)

Then it follows that

w ¼ Oð�Þ; (88)

near the axis. This is the equivalent to the regularity
condition given in Eq. (50) in [14] adapted to our confor-
mally rescaled metric. See also [5,7].
The falloff conditions at infinity are the standard asymp-

totically flat ones. In particular we have

lim
r!1 �� ¼ 1; (89)

and

�;�A ¼ Oðr�1Þ; �AB ¼ Oðr�2Þ; (90)

as r ! 1.

IV. LINEARIZED EQUATIONS

In this section we make a linear expansion around
Minkowski of the Einstein equations in the maximal-
isothermal gauge described in the previous section. Note
that for Minkowski we have

� ¼ �2; (91)

and hence, due to the rescaling (31), the background metric
hab, given in coordinates by (53), is nonflat

h ¼ �2ð�dt2 þ d�2 þ dz2Þ: (92)

The other background quantities are given by

! ¼ 0; � ¼ �; �A ¼ 0; �AB ¼ 0; (93)

and

u ¼ ln�; q ¼ 0; � ¼ 0: (94)

The Hamiltonian constraint and the equation for the lapse
are nontrivial for the metric (92), namely

�� ¼ 0; �u ¼ 2

�2
: (95)

Let us proceed with the linearization. For simplicity we
will consider only the case ! ¼ 0. The first step is to
compute the lapse function. The right-hand side of
Eq. (74) is second order, then, using the boundary condi-
tion (89) we obtain

�� ¼ 1: (96)

That is, the maximal condition for the lapse is trivial at the
linearized level. On the contrary, as we will see, the equa-
tion for the shift plays a crucial role.
The next step is to compute the linearization of the wave

Eq. (63) for �; we obtain

� _pþ ð3Þ�� ¼ 0; (97)

where a dot means a partial derivative with respect to t and
we have defined
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p ¼ _�� 2��

�
: (98)

In order to close the system we need an equation for ��.
Using Eqs. (65) and (66) for the momentum we obtain

@A�AB ¼ �JA; (99)

with

�J A ¼ �p@A�: (100)

We define the vector field vA by Eq. (77) and then by
Eq. (78) we obtain

�vA ¼ �p@A�: (101)

From (100) we deduce Jz ¼ 0 and hence we get

�vz ¼ 0: (102)

By the falloff condition (90), we obtain

vz ¼ 0: (103)

In the following, to simplify the notation we set

v � v�: (104)

Equation (101) reads

�v ¼ �p: (105)

Using (77) we also obtain

��� ¼ @�v; ��z ¼ @zv: (106)

For the shift we have the equation

ðL�ÞAB ¼ 2
�̂AB

�
: (107)

Taking a divergence to this equation (or linearizing (76))
we obtain

��A ¼ 2@B

�
�̂AB

�

�
: (108)

Note that in (108) we get an equation for �� decoupled
from �z. Using Eqs. (99) and (100) from this equation we
get

��� ¼ � 2

�

�
pþ @�v

�

�
: (109)

Equation (109) together with (97) and (105) form a com-
plete system for the variables v, �, and ��. Alternatively,
using Eqs. (99) and (107) we can eliminate �AB and hence
also v. We get the following equation for �A:

@Bð�ðL�ÞABÞ ¼ �2p@A�: (110)

Equation (110) together with (97) and (105) form a com-
plete system for the variables �, ��, and �z.

There is however an important difficulty. The lineariza-
tion of the regularity condition (87) and (88) is given by

w ¼ � 1

�

�
pþ @�v

�

�
; w ¼ Oð�Þ; (111)

where we have used Eq. (106). From the set of equations
presented above, it is difficult to ensure that this condition
will be satisfied. To enforce this condition we will write the
equations in terms of different variables. In order to do that,
we need first to compute the remaining equations, namely,
the Hamiltonian constraint and the evolution equations for
the metric and second fundamental form. Since 	 defined
in (69) is second order, the Hamiltonian constraint (68) is
given by

�q ¼ �ð3Þ��: (112)

The evolution equation for q is obtained from (70)

_qþ _� ¼ 1

2
@A�

A þ
���

�
: (113)

The evolution equation for �AB is obtained linearizing (71)

_� AB ¼ 2@ðAq@BÞ�� �AB@�q: (114)

We can also write the evolution Eqs. (114) in components

_� �� ¼ @�q; _��z ¼ @zq: (115)

Using Eqs. (106) we deduce the important relation

_v ¼ q; (116)

which holds only in the twist-free case. This relation
simplifies the equations considerably. From Eq. (114) we
also deduce

@B _�AB ¼ �q@A�: (117)

With these equations we can compute the time derivative
of w

_w ¼ 1

�

�
�q� @�q

�

�
; (118)

and hence the evolution equation for q is given by

_q ¼ �wþ �@�

�
��

�

�
: (119)

As a consequence, q satisfies the following wave equation:

€q ¼ �q� @�q

�
þ �@�

� _��

�

�
: (120)

We also have

� _�� ¼ 2

�

�
�q� @�q

�

�
: (121)

Equations (120) and (121) form a complete system for the
variables q and ��. A similar choice of variable was used
by [4–6]. However, in our particular case (i.e. linear equa-
tion without twist) it is possible a further simplification,
namely to use Eq. (116) and hence replace q by vin these
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equations and then integrate in time. In this way we obtain
our main Eqs. (1) and (2). The advantage of using v as a
variable is that the mass integral has a simple expression in
terms of v given by (19). This formula for the mass is
obtained expanding up to second order the energy density
(69), using Eqs. (106) to replace �AB and Eq. (105) to
replace �0=�. We discuss this in more detail in the next
section.

The boundary conditions (4) and (5) for �� arise from
the axial regularity condition (85) and the asymptotically
flat falloff (90). Conditions (8) arise from the axial regu-
larity conditions for q given by (84) and (86). The main
advantage of Eqs. (1) and (2) is that they have built in the
regularity condition (111) as we will see in the next sec-
tion. Let us mention that the nontrivial regularity condition
(111) is written in terms of v as follows:

w ¼ 1

�

�
�v� @�v

�

�
; w ¼ Oð�Þ: (122)

The component �z, which does not appear in Eqs. (1)
and (2), can be calculated using

@��
� � @z�

z ¼ 2
@�v

�
; (123)

@z�
� þ @��

z ¼ 2
@zv

�
; (124)

or, alternatively, using Eq. (16) which is obtained taking a
derivative to Eqs. (123) and (124). Finally, the four-
dimensional perturbation (10) is obtained using the line
element (80) and the background values (91), (93), and
(94).

V. PROPERTIES OF THE LINEAR EQUATIONS

In this section we analyze some properties of our linear
Eqs. (1) and (2). We begin with the symmetries of these
equations. The first symmetry is given by translation in z.
This is to be expected since the gauge fixes the axis (and
hence there is no translation freedom in �), but we still
have the freedom to chose the origin in the z coordinate.
Then, if we have a solution v, ��; the derivative @zv, @z�

�

is also a solution, since @z commute with all the differential
operators because their coefficients depend only on �. The
same argument applies to time translations, which is the
second symmetry of the equations. The third symmetry is
scaling. Let s be a positive real number. For a given
solution vðt; �; zÞ we define the rescaled function as

vsðt̂; �̂; ẑÞ ¼ v

�
t

s
;
�

s
;
z

s

�
; (125)

where

t̂ ¼ t

s
; �̂ ¼ �

s
; ẑ ¼ z

s
; (126)

and the same for ��. Then, vs define also a solution in

terms of the rescaled coordinates. The mass rescales like

m ! sm: (127)

In order to understand the equations in a simple situ-
ation, let us first consider Eqs. (1) and (2) on a bounded
domain � which does not contain the axis. On � the
coefficient of Eqs. (1) and (2) are smooth. Equation (2) is
an elliptic equation for �� if we consider v as a given
function. Hence, in order to solve this equation we need to
prescribe elliptic boundary conditions for �� on @�, for
example, Dirichlet or Neumann boundary conditions.
Equation (1) is a wave equation for v if we consider ��

as a given function. To solve this wave equation we need to
prescribe initial data for v and _v at t ¼ 0 together with
compatible boundary conditions for v at @�. For example
Dirichlet, Neumann, or Sommerfeld boundary conditions
for v at @�. The equations are of course coupled, so it is
not obvious that the above procedure of fixing boundary
conditions is correct since v and �� are not ‘‘given func-
tions.’’ However, it is possible to prove that this is proce-
dure is in fact correct. Consider the following iteration
scheme:

€v nþ1 � �vnþ1 þ
@�vnþ1

�
¼ �@�

�
�

�
n

�

�
; (128)

���
nþ1 ¼

2

�

�
�vn �

@�vn

�

�
: (129)

In this iteration, the equations are not coupled, and hence
the boundary conditions mentioned above (which are kept
fixed) are correct. Following similar arguments to the one
presented in [22] (see also [23]) it is not difficult to see that
this iteration converges for some small time interval. And
hence we get well-posedness for the linear system (1) and
(2) under these boundary conditions on the domain�. The
reason why the iteration (128) and (129) converges is the
following. From Eq. (129), using standard elliptic, esti-
mates we obtain that �� is equivalent (in number of
derivatives) to v. Hence, the term containing �� in
Eq. (128) is equivalent to a first-order derivative of v,
and then it is not in the principal part of the wave equation.
This rough argument suggests that the combination of
elliptic estimates and energy estimates for the wave equa-
tions will close and hence the iteration will converge. This
is basically the argument presented in [22,23]. If the do-
main � is not bounded, this argument will still work if we
add appropriate falloff conditions at infinity. However, the
situation changes drastically when� includes the axis. Let
us analyze that case.
Since the axis is a singular boundary for the equations,

we are not free to chose an arbitrary boundary condition
there. In fact �� and @�v should vanish at the axis, other-

wise the equations become singular. If we use L’Hôpital
rule, we conclude that the term with �� in (1) contains in
fact two derivatives with respect to � at the axis. That is,
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due to the L’Hopital limit, to divide by � is equivalent as to
take a derivative with respect to � at the axis. But then,
using Eq. (2), we conclude that this term is equivalent to
second derivatives of v and hence it is in the principal part
of the wave equation. We ccannot conclude that the itera-
tion scheme (128) and (129) converges if we include the
axis in the domain. This is, roughly speaking, the main
difficulty to prove the well-posedness of the linear system
(1) and (2). It appears to be difficult to identify the princi-
pal part of the system at the axis and to construct an
appropriate iteration scheme.

Let us discuss in detail the boundary conditions at the
axis. We are interested in solutions v which vanish at the
axis; this comes from the regularity condition (86).
Moreover, we have seen in Sec. III D that the smoothness
of the spacetime metric at the axis implies that the func-
tions �� and v should satisfy the parity conditions (84) and
(85). Let us see heuristically how these conditions are
automatically implied by the equations provided we im-
pose the following standard boundary conditions. At the
axis we impose

��j�¼0 ¼ 0: (130)

For v we prescribe initial data

vjt¼0 ¼ f; _vjt¼0 ¼ g; (131)

such that

fj�¼0 ¼ 0; gj�¼0 ¼ 0: (132)

Note that we are not imposing any condition on v at the
axis for t > 0. We make a formal series expansion, namely,
let as assume that our solution is smooth at the axis and has
the form

v ¼ X1
n¼0

�nanðt; zÞ; �� ¼ X1
n¼0

�nbnðt; zÞ: (133)

Substituting these expansions in Eqs. (1) and (2) we obtain
the following recurrence relation for the coefficients:

€a n ¼ ðnþ 2Þnanþ2 þ @2zan þ nbnþ1; (134)

and

ðnþ 1Þnbnþ1 þ @2zbn�1 ¼ 2ðnþ 2Þnanþ2 þ @2zan:

(135)

These expressions are valid for all integer n, with the
convention that the coefficients bn and an vanished for n <
0. The first nontrivial n in Eq. (134) is n ¼ �1, which
gives the relation

a1 þ b0 ¼ 0: (136)

The term n ¼ 0 is given by

€a 0 ¼ @2za0: (137)

This is a wave equation in one dimension. From the

boundary conditions (130) we obtain

b0 ¼ 0: (138)

Hence we deduce from (136) that

a1 ¼ 0: (139)

From the initial data conditions (132) we have that

a0jt¼0 ¼ 0; _a0jt¼0 ¼ 0: (140)

These provides trivial initial data for the wave Eq. (137)
and hence we deduce

a0 ¼ 0: (141)

That is, we have deduced the behavior v ¼ Oð�2Þ only
from the boundary conditions (130) and the condition on
the initial data (131). We want to prove now that (138) and
(139) imply that all an with n odd and all bn with n even
are zero. We prove this by induction. Let us assume that for
some n (with n � 1) we have that

bn�1 ¼ 0; an ¼ 0: (142)

Using Eq. (135) we deduce

ðnþ 1Þbnþ1 ¼ 2ðnþ 2Þanþ2; (143)

and from (134) we have

ðnþ 2Þanþ2 ¼ �bnþ1: (144)

And then we have anþ2 ¼ bnþ1 ¼ 0. Since (142) is valid
for n ¼ 1 we have proven the desired result. That is, the
solutions v and �� satisfy the parity conditions (84) and
(85) respectively. Using that v is an even function of � and
that v ¼ Oð�2Þ it is straightforward to deduce that the
regularity condition (122) holds for all times.
We analyze now the falloff behavior of the solution v.

This behavior is completely determined by the initial data
f and g. Let us assume that the initial data have compact
support. In the case of the wave equation, the signal will
propagate with finite speed and hence the solution will
always have compact support for any finite time. In our
case, however, the coupling with the elliptic Eq. (2) pro-
duces a nonlocal behavior. Even if we start with compactly
supported data, the function�� will instantaneously spread
to all space. Let us perform a formal expansion in r to see
the typical behavior of v. We have that�� ¼ Oðr�1Þ for all
times; this is prescribed by the boundary conditions. In [10]
it has been proven that this implies that ��=� ¼ Oðr�2Þ,
and hence the terms containing �� in (1) areOðr�2Þ. Then,
at t ¼ 0 we obtain that €v ¼ Oðr�2Þ. If we take time
derivatives of the equations and repeat this argument, we
get that all time derivatives of v are Oðr�2Þ. Then, we
conclude that the typical falloff behavior for asymptoti-
cally flat solutions is given by (9), in the sense that we
cannot expect a faster decay in general. Instead of com-
pactly supported data we can begin with initial data for v
such that they are Oðr�2Þ at infinity.
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Let us discuss now the most important property of
Eqs. (1) and (2), namely, the mass conservation. As usual,
the mass appears as a second-order quantity that can be
calculated in terms of squares of first-order quantities. The
density (69) up to this order is given

	 ¼ 4
j@vj2
�2

þ ð�vÞ2 þ j@�j2: (145)

The total mass is calculated by the integral (79). The mass
integral is conserved for the full nonlinear equations in this
gauge (see [10]) and hence it is conserved at the linearized
level. It is however important to compute explicitly this
conservation formula using only the linear Eqs. (1) and (2).
Note that the function � appears in the mass and this
function should be calculated from v using Eq. (12). To
compute the time derivative of m we need first to calculate
the time derivative of �. Using the evolution Eq. (1) only,
we compute

ð3Þ�
�
��vþ 2

��

�

�
¼ �� €vþ 1

�
@�½�ð��� � 2LðvÞÞ�;

(146)

where we have defined

LðvÞ ¼ @A
�
@Av

�

�
¼ 1

�

�
�v� @�v

�

�
: (147)

Then, using (2) and the time derivative of (12) we get

ð3Þ�
�
��vþ 2

��

�
� _�

�
¼ 0: (148)

If we are solving in the whole half plane R2þ then, by the
falloff conditions, we deduce that the only possible solu-
tion of this equation is the trivial one, and hence

_� ¼ ��vþ 2
��

�
: (149)

We have proven that Eqs. (1) and (2) together with (12)
imply Eq. (149). We can also formulate the system in a
different way. We can take (1) and (2) and Eq. (149),
instead of (12), as an evolution equation for �. If we take

the Laplacian ð3Þ� to both sides of Eq. (146) and use the
identity (142) together with Eq. (2) we obtain

ð3Þ� _� ¼ �� €v: (150)

Hence, if we chose initial condition for � such that

ð3Þ��jt¼0 ¼ �� _vjt¼0; (151)

Equation (150) implies (12). This two different ways of
calculating� correspond to a constrained system and a free
system (using the terminology defined in [7]). The previous
calculation is nothing but the propagation of the
Hamiltonian constraint at the linearized level. For the full
Einstein equations, the difference of constrained and free
evolution schemes involves different set of evolutions

equations. In our linear system the evolution equations
are the same (namely, (1) and (2)), the difference is the
way the function � (and hence the mass) is calculated.
These two ways are of course completely equivalent when
the domain is the whole half planeR2þ, however, as we will
see, they are not equivalent for a bounded domain.
Using Eqs. (1), (2), (12), and (149) we obtain the follow-

ing local conservation law for the density 	 defined by
(145):

� _	 ¼ @A	
A; (152)

where

	A ¼ 8
@Av

�
_vþ 2� _�@A�þ 4��@A _v� 4 _v@A�

�: (153)

The vector 	A can be interpreted as the energy flow of the
gravitational field. If we integrate Eq. (152) in R2þ we have
that the boundary terms vanish both at the axis (by the axial
regularity) and at infinity (by the falloff conditions). Then
we have

_m ¼ 0: (154)

We can also integrate Eq. (152) on a bounded domain �,
namely, we define the mass contained in � by

m� ¼
Z
�
	�d�dz; (155)

and then we have

_m� ¼
I
@�

	AnA; (156)

where nA is the unit normal of @�. The quantity 	AnA
measures how much energy is leaving or entering the
domain. The local conservation formula (152) can be
generalized for the nonlinear equations [24].
Using the conservation of the mass (154) we can prove

uniqueness of solutions of the system. Let us say we have
two different solutions with the same initial data. We take
the difference between the two solutions. The difference
satisfies the same equation with zero initial data. In par-
ticular � on the initial surface is zero. And hence the mass
is zero. Since it is conserved the mass is zero for all times,
which implies that the solution is zero.
In the case of hyperbolic equations (the wave equation,

for example) the conservation of the energy gives also local
properties of the solution, namely, finite speed propagation
of signals. However this is not the case here; the elliptic
equation implies a nonlocal behavior of the solution.
The discussion above applies for the domain R2þ, which

is the relevant domain for the equations. However, in
numerical computation we need to solve the equations on
a finite grid and hence it is necessary to impose boundary
conditions on a bounded domain. A typical domain for the
numerics is shown in Fig. 1. As we mention in Sec. II, for
our present purpose we only need to prescribe some bound-
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ary conditions compatible with asymptotic flatness. For
example, homogeneous Dirichlet boundary conditions for
v and ��. However, the mass formula raises an interesting
point here. On a bounded domain, to calculate � we have
two possibilities. First, we can determine � as the unique
solution of the elliptic Eq. (12) with some boundary con-
ditions. If we do so, then we again deduce Eq. (148).
However, from this equation we cannot deduce (149). In
effect, we have

_�þ�v� 2
��

�
¼ H; (157)

where H satisfies

ð3Þ�H ¼ 0: (158)

We cannot conclude that H is zero from this equation,
because H will have a nontrivial boundary condition.
Namely, let us assume that we prescribe some boundary
condition for �. We cannot control the boundary value of
�v, and hence we cannot ensure that H vanishes at the
boundary. In fact, the function H is fixed as the unique
solution of (158) with boundary values

Hj@� ¼
�
_�þ�v� 2

��

�

���������@�
: (159)

Then, if we compute the time derivative of the density 	we
get

� _	 ¼ @A	
A þ �H� _v: (160)

That is, we do not get a conservation law; there is a volume
term given by H. There seems to be no boundary condi-
tions for � that can ensure H vanishes.

The other possibility is to compute� using the evolution
Eq. (149) with initial condition (151). From (149), in the
same way as we mentioned above we deduce (150), since
in this deduction the boundary conditions play no role.
Using the initial data condition (151), from (150) we
deduce (12). That is, we are in the same situation as the
whole domain. Hence, in this case we recover (152), where
	A is given by the same expression (153). From this point

of view, this evolution scheme appears to be better than the
previous one.
In this scheme, we are free to chose any elliptic bound-

ary condition for �� and any boundary condition for v
compatible with the wave equation. For � we do not have
any freedom, and hence we cannot prescribe the boundary
value of this function.
A natural choice of boundary conditions would be to

force the boundary integral in (156) to have a definite sign.
These conditions would have the interpretation of radiative
boundary conditions, in the sense that the energy is leaving
the domain. To prescribe such conditions seems not to be
possible (at least for generic data) since we do not have any
control on the term with �. However, we can do something
intermediate. Namely, if we impose Sommerfeld boundary
condition for v

_v ¼ �nA@Av; (161)

and homogeneous Dirichlet conditions for �� we have that
the first term in (163) has negative sign, and the third term
is zero. For the second and fourth term we have no control
a priori. But we can expect that the influence of these terms
is small at least for some class of initial data. If this is true,
then we get

_m� � 0: (162)

This is what we observe in our numerical simulations
described in the next sections.

VI. NUMERICAL IMPLEMENTATION

In this section we want to study numerically the initial-
boundary value problem (IBVP) for Eqs. (1) and (2). In this
problem the symmetry axis, � ¼ 0, becomes a boundary of
our domain. Notice then, that working with the variable v
poses an inconvenience as regards the boundary condition
at � ¼ 0 since, according to (8), this function satisfies both
the homogeneous Dirichlet boundary condition and homo-
geneous Neumann boundary condition. It is then conve-
nient to rewrite the equations in terms of a new variable for
which the smoothness properties at the symmetry axis
define a unique, equivalent, boundary condition. We define
�v ¼ v=�. This new variable vanishes linearly with � and
the correct boundary condition is simply a homogeneous
Dirichlet at � ¼ 0.
The equation for �vð�; z; tÞ, with � 2 ½0; R�, z 2 ½0; L�,

and t � 0, is

€�v ¼ � �vþ @�

�
�v

�

�
þ @�

�
��

�

�
; (163)

where ��ð�; z; tÞ is determined by the elliptic equation

��� ¼ 2

�
� �vþ @�

�
�v

�

��
; (164)

with homogeneous Dirichlet boundary conditions,

L

z

ρ
R

FIG. 1. The bounded domain � for the numerical evolution.
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��ð0; z; tÞ ¼ ��ðR; z; tÞ ¼ 0; z 2 ½0; L�;
��ð�; 0; tÞ ¼ ��ð�; L; tÞ ¼ 0; � 2 ½0; R�;

(165)

for all t 2 ½0;1Þ.
The boundary condition for �v at the symmetry axis is

�vð0; z; tÞ ¼ 0; (166)

while at the outer boundaries we study two possibilities,
homogeneous Dirichlet,

�vðR; z; tÞ ¼ �vð�; 0; tÞ ¼ �vð�; L; tÞ ¼ 0; (167)

or Sommerfeld (outgoing waves)

_�vðR; z; tÞ ¼ �@� �vðR; z; tÞ;
_�vð�; 0; tÞ ¼ �vzð�; 0; tÞ;
_�vð�; L; tÞ ¼ � �vzð�; L; tÞ:

(168)

The initial data are

�vð�; z; 0Þ ¼ �v0ð�; zÞ; _�vð�; z; 0Þ ¼ �v0tð�; zÞ; (169)

where �v0 and �v0t are C
1 functions with compact support in

ð0; RÞ � ð0; LÞ so that the compatibility of the boundary
and initial data is not an issue.

The Eqs. (163)–(169) constitute the IBVP we approxi-
mate with our finite difference scheme.

We want to emphasize here an important difference
between our numerical approach with the usual approaches
in the area (see for example [5]). We solve the IBVP for
(163) as a second-order equation just as it is written above,
i.e. we do not reduce (163) to a first-order system of
equations. The treatment of evolution equations as
second-order equations as opposed to first-order systems
of equations has several advantages. For example, the
number of dynamical fields, and then the number of equa-
tions, is not increased. This facilitates the treatment of the
boundary conditions. There are also numerical accuracy
advantages. In the context of general relativity, this has
been stressed in [25]. In particular the simplest proofs of
well-posedness for general initial-boundary value prob-
lems for Einstein’s equations have been found recently
using second-order systems of equations [26,27].

a. The Implementation. In our numerical experiments we
always consider square domains, i.e., R ¼ L. To define the
numerical grid let N be a positive integer and h ¼ L=N the
space stepsize. We define our grid to be half a stepsize
displaced from all the boundaries. We think of our grid as a
uniformly distributed set of points each of which is at the
center of one of the N2 square cells covering the domain.
The coordinates of the gridpoint at the site ði; kÞ are then

�i ¼ hði� 3=2Þ; i ¼ 0; 1; 2; . . .N þ 3; (170)

zk ¼ hðk� 3=2Þ; k ¼ 0; 1; 2; . . .N þ 3: (171)

The sites ði; kÞ with 2 � i, k � N þ 1 are within the do-
main, while the sites with i ¼ 0, 1, N þ 2, N þ 3 and k ¼

0, 1, N þ 2, N þ 3 are ‘‘ghost points’’ used to ease the
implementation of the boundary conditions [7]. Time is
discretized as

tn ¼ n�t; n ¼ 0; 1; 2; 3; . . . (172)

We use capital Latin letters to denote the grid functions
associated to the dynamical variables. Also, we use sub-
indices to denote the space-site indices and a superindex to
denote the time step. This is,

Vn
i;k corresponds to �vð�i; zk; tnÞ;

Bn
i;k corresponds to ��ð�i; zk; tnÞ:

(173)

Besides the uniform grid we introduce the extra grid-
points placed at the physical boundary

ð� ¼ L; zkÞ; ð�i; z ¼ 0Þ; ð�i; z ¼ LÞ
and denote the values of �v at these points as

�V n
L;i; �Vn

i;0;
�Vn
i;L; (174)

respectively.
In our difference scheme we approximate space deriva-

tives by the standard fourth-order accurate centered differ-
ence operators given by [28]

D :¼ D0

�
I � h

6
DþD�

�
;

D2 :¼ DþD�
�
I � h2

12
DþD�

�
;

(175)

and add a subindex � or z to indicate what coordinate the
operator is acting on. For example @2z �vð�i; zk; tnÞ is ap-
proximated by

D2
zV

n
i;k ¼

�Vn
i;k�2 þ 16Vn

i;k�1 � 30Vn
i;k þ 16Vn

i;kþ1 �Vn
i;kþ2

12h2
:

At every time step we need to solve the elliptic Eq. (164)
which we approximate by

ðD2
� þD2

zÞBn
i;k ¼ 2

�
ðD2

� þD2
zÞVn

i;k þD�

�
Vn
i;k

�i

��
;

i; k ¼ 2; 3; . . .N þ 1: (176)

We solve this difference equation iteratively using the
Gauss-Seidel iteration scheme, and stop the iteration
when the difference between both sides in (176) is smaller,
in maximum norm, than a given small tolerance ". We then
extend the solution to the ghost points—so that the homo-
geneous boundary condition is satisfied—as follows:

Bn
0;k ¼ �Bn

3;k; Bn
1;k ¼ �Bn

2;k; Bn
Nþ2;k ¼ �Bn

Nþ1;k;

Bn
Nþ3;k ¼ �Bn

N;k; Bn
i;0 ¼ �Bn

i;3; Bn
i;1 ¼ �Bn

i;2;

Bn
i;Nþ2 ¼ �Bn

i;Nþ1; Bn
i;Nþ3 ¼ �Bn

i;N:

We now describe how we approximate (163) using
fourth-order accurate difference approximations in space;

SERGIO DAIN AND OMAR E. ORTIZ PHYSICAL REVIEW D 81, 044040 (2010)

044040-14



to use second-order accurate approximations instead, we
just need to change D and D2 in what follows by D0 and
DþD� respectively.

t ¼ 0. We set

V0
i;k ¼ �v0ð�i; zkÞ; i; k ¼ 2; 3; . . .N þ 1 (177)

and extend the solution to vanish at all ghost points and
boundary points since the initial data has compact support.
Then we compute B0

i;k by solving (176) as explained above.

t ¼ �t (first step). We do, for i, k ¼ 2; 3; . . .N þ 1,

V1
i;k ¼ V0

i;k þ �t �v0tð�i; zkÞ þ 1

2
ð�tÞ2ððD2

� þD2
zÞV0

i;k

þD�ðV0
i;k=�iÞ þD�ðB0

i;k=�iÞÞ: (178)

Now, if working with boundary condition (166) and (167),
we define the solution at the boundary points to vanish

�V 1
L;k ¼ �V1

i;0 ¼ �V1
i;L ¼ 0; (179)

while if working with boundary condition (166) and (168)
we evolve the boundary points by integrating the boundary
condition using an explicit Euler scheme. For example for
the boundary � ¼ L

�V 1
L;k ¼ �V0

L;k � �t ~D� �V0
L;k; (180)

where

~D� �V0
L;k ¼

27ðV0
Nþ2;k � V0

Nþ1;kÞ � ðV0
Nþ3;k � V0

N;kÞ
24h

is a fourth-order accurate approximation of the normal first
derivative at the border � ¼ L. We now extend the solution
to the ghost points as

V1
0;k ¼ �V1

3;k; V1
1;k ¼ �V1

2;k

V1
Nþ2;k ¼ 2 �V1

L;k � V1
Nþ1;k; V1

Nþ3;k ¼ 2 �V1
L;k � V1

N;k

V1
i;0 ¼ 2 �V1

i;0 � V1
i;3; V1

i;1 ¼ 2 �V1
i;0 � V1

i;2

V1
i;Nþ2 ¼ 2 �V1

i;L � V1
i;Nþ1; V1

i;Nþ3 ¼ 2 �V1
i;L � V1

i;N:

Finally, we compute B1
i;k as explained above.

At t ¼ n�t. With n ¼ 2; 3; . . . we evolve the solution
with the two-step method

Vn
i;k ¼ 2Vn�1

i;k � Vn�2
i;k þ ð�tÞ2ððD2

� þD2
zÞVn�1

i;k

þD�ðVn�1
i;k =�iÞ þD�ðBn�1

i;k =�iÞÞ (181)

for i, k ¼ 2; 3; . . .N þ 1. Then we impose the boundary
conditions exactly as done in the first step. Finally we
compute Bn

ik as explained above.

We notice that the second derivative in time is approxi-
mated by DþD� which is second-order accurate. The time
step we use in all our runs is �t ¼ h=10. The ratio �t=h ¼
0:1 satisfies the Courant condition, and we see from our
runs that the whole method turns out to be numerically
stable.

Besides the solution Vn
i;k and Bn

i;k, an essential quantity

we want to compute is the mass m�ðtÞ, defined by (145)
and (155), during the whole evolution. To this end we need
to compute �ðtÞ on the physical domain at all times. Given
the approximations of �v and �, we compute �ðtÞ by
integrating (149)—rewritten in terms of �v, as an ordinary
differential equation (ODE) at each gridpoint. The initial
data for these ODEs is computed by solving the elliptic
Eq. (151), also rewritten in terms of �v, only once at initial
time with homogeneous Dirichlet boundary conditions and
using the same technique we use to compute �. The first
time step to integrate (149) is carried out with explicit
Euler method, and from there on with the two-step,
second-order accurate, Leap-Frog method. We evaluate
the integral in (155) with the midpoint rule.

VII. TESTS, RUNS AND NUMERICAL RESULTS

The numerical calculations we carry out in this work
pursue two main objectives. The first objective is to make
plausible that the initial-boundary value problem for (163)
and (164) is well-posed. If we were simulating an IBVP
that is not well-posed, the expectation would be that almost
any consistent numerical simulation of the problem would
fail to pass convergence tests, numerical stability tests, or
both. We show below that both kinds of numerical tests are
passed satisfactorily by our numerical approximation. The
second objective is to study the behavior of the mass in
these initial-boundary value problems. In particular, we
will show that for fixed initial data, the larger the domain
used in our calculation is, the longer and better the mass
approaches a constant value.
We use in our runs two kinds of initial data which are

smooth and strongly decaying outside a small region
(Gaussian functions). The first is

�v 0ð�; zÞ ¼ exp

�ð�� 1=2Þ2 þ ðz� L=2Þ2
0:12

�
;

�v0tð�; zÞ ¼ 0;

(182)

which decays very fast as ð�; zÞ get away from ð1=2; L=2Þ
and so approximate very well a compact support data on
the domains we use. The second is the same kind of
function but for �v0t instead of �v0, namely

�v0ð�; zÞ ¼ 0;

�v0tð�; zÞ ¼ 50 exp

�ð�� 1=2Þ2 þ ðz� L=2Þ2
0:12

�
:

(183)

Linearity of the problem tells us that the runs with �v0 � 0,
or �v0t � 0 can be performed separately. A solution with
general initial data is the superposition of two solutions,
one with each kind of data.
b. Elliptic Solver Tolerance. We need to determine the

value of " to use in our runs. To this end we perform runs
for six different values of " with all other parameters fixed
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to typical values in our runs. In these tests runs we use
initial data given by (182) and Sommerfeld boundary con-
ditions (166) and (168). We then analyze the different
values of the mass obtained for the six solutions. By
comparing the variations ofm�ðtÞwith respect to the initial
value ofm�, we see that our runs show that the evolution is
not very sensitive to the tolerance ". Figure 2 shows that
the plot for the different computed masses superimpose
when plotted in the full mass scale. The detail in the figure
shows convergence of m� as " ! 0.

In Table I we show the maximum absolute difference
between the computed masses with respect to the most
accurate one (corresponding to " ¼ 10�6) and the time of
occurrence.

Based on this test we choose to use " ¼ 10�3 in our
further runs, which gives more the necessary accuracy for
our discussion (around 10�6 relative error).

c. Convergence Tests. To study convergence of the nu-
merical solution we perform two series of runs in a unitary
square domain with the initial data (182). In the first series

we use homogeneous Dirichlet boundary conditions and in
the second Sommerfeld boundary conditions.
Each series consists of four runs. In the successive runs

we use h ¼ 1=N with N ¼ 50; 100; 200; 400. In all runs
�t ¼ h=10. Thus, in the second, third, and fourth runs both
h and �t are divided by 2 with respect to the previous run.

Let us call VðhÞðtÞ the solution computed using mesh-size h.
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FIG. 2. Evolution of the mass for six different values of the
tolerance ". The upper plot shows the six runs in full mass scale.
In this scale the six curves look superimposed. The lower plot
shows a detail of the initial ‘‘flat’’ region in amplified scale.

TABLE I. Values of �m� ¼ maxtjm�"ðtÞ �m�10�6 ðtÞj and
time of occurrence for different values of the tolerance ".
Initial mass is m�0 ¼ 10:7083.

" �m� tmax �m�=m�0

10�1 1:27� 10�3 0.390 1:19� 10�4

10�2 1:81� 10�4 0.406 1:69� 10�5

10�3 1:45� 10�5 0.481 1:36� 10�6

10�4 1:08� 10�6 0.503 1:01� 10�7

10�5 8:19� 10�8 0.509 7:65� 10�9
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FIG. 3. Mass as function of time for evolution with homoge-
neous Dirichlet boundary conditions. In the upper plot, in full
mass scale, the four curves look almost superimposed. In the
lower plot a detail in expanded mass scale shows that the curves
converge to a limit curve when h and �t diminish.

SERGIO DAIN AND OMAR E. ORTIZ PHYSICAL REVIEW D 81, 044040 (2010)

044040-16



The first, simplest and indirect, convergence test is to
plot the masses for each run as a function of time and
check, graphically, whether they converge as the value of h
diminishes. Figures 3 and 4 show that this is in fact the
case.

A second more strict convergence and accuracy test is as
follows. We compute the L2 norm of the difference be-
tween two successive runs. A simple analysis shows that,
when the method is convergent and the mesh and time-step
sizes are small enough, the quotient

QhðtnÞ ¼
kVðhÞðtnÞ � Vðh=2ÞðtnÞkL2

kVðh=2ÞðtnÞ � Vðh=4ÞðtnÞkL2

; (184)

approaches the value 2p where p is the accuracy order of
the method. Our method is fourth-order accurate in space
and second-order in time. Therefore the expectation is that
we obtain values of Qh that are close to 4 at most times.

To compute the L2-norms we use the midpoint rule to
approximate the integration on the coarsest grid of the two
solutions being subtracted. Notice that the coarse grid is
not a subgrid of the fine one, as they are displaced from the
domain boundaries by different amounts. Then, to evaluate
the finest solution on the coarse grid we need to interpolate
this solution. To do this we use bilinear interpolation.
The results of this analysis are shown in Tables II and III.

The test is passed satisfactorily.
d. Stability Tests. Numerical stability means that the

solution to the IBVP stays bounded during time evolution.
Typical signs of instability are the appearance of artifacts
in the plot of the solution as a consequence of evolution
and in most cases, after a while, the complete breakdown of
the solution. If an instability has its root on the ill-
posedness of the analytic problem underneath, the expec-
tation is that some high frequency modes of the solution
explode exponentially fast and are detected at very short
times of the numerical evolution. For some more benign
ill-posed problems (like weakly hyperbolic problems) the
growing of instabilities is only polynomial and it may take
longer to detect them.
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FIG. 4. Mass as function of time for evolution with
Sommerfeld boundary conditions. In the upper plot, in full
mass scale, the four curves look almost superimposed. In the
lower plot a detail in expanded mass scale shows that the curves
converge to a limit curve when h and �t diminish.

TABLE II. Convergence and accuracy quotient for solutions
with homogeneous Dirichlet boundary condition. On the coars-
est grid h ¼ 10�2.

t kVð2Þ � Vð3ÞkL2
kVð3Þ � Vð4ÞkL2

QhðtÞ
0.05 5:2744� 10�5 1:3214� 10�5 3.9913

0.10 8:2053� 10�5 2:0665� 10�5 3.9706

0.15 9:2690� 10�5 2:3339� 10�5 3.9715

0.20 9:8158� 10�5 2:4938� 10�5 3.9360

0.25 1:1260� 10�4 2:8857� 10�5 3.9020

0.30 1:3325� 10�4 3:4668� 10�5 3.8436

0.35 1:6185� 10�4 4:4464� 10�5 3.6401

0.40 1:8421� 10�4 4:9874� 10�5 3.6934

0.45 2:2492� 10�4 6:9417� 10�5 3.2402

0.50 2:9719� 10�4 6:9240� 10�5 4.2923

TABLE III. Convergence and accuracy quotient for solutions
with Sommerfeld boundary condition. On the coarsest grid h ¼
10�2.

t kVð2Þ � Vð3ÞkL2
kVð3Þ � Vð4ÞkL2

QhðtÞ
0.04 6:6922� 10�5 1:6703� 10�5 4.0067

0.08 6:2007� 10�5 1:5756� 10�5 3.9355

0.12 9:1495� 10�5 2:2958� 10�5 3.9854

0.16 9:2694� 10�5 2:3357� 10�5 3.9686

0.20 9:8226� 10�5 2:4911� 10�5 3.9431

0.24 1:0935� 10�4 2:7940� 10�5 3.9138

0.28 1:2407� 10�4 3:2083� 10�5 3.8671

0.32 1:4427� 10�4 3:8153� 10�5 3.7813

0.36 1:6740� 10�4 4:6440� 10�5 3.6047

0.40 1:8389� 10�4 5:0471� 10�5 3.6434
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We performed several series of runs using both kinds of
boundary conditions (166) and (167) or (166) and (168)
and both kinds of initial data (182) or (183) on different
domains and during several time intervals. We studied the
plots of the solutions in all cases and they always look
smooth, agreement with the boundary conditions imposed,
and never showed any sort of strange artifact. Typical plots
for �vð�; z; tÞ are shown in Fig. 5. We have also studied the
plots of �ð�; z; tÞ in these runs and no sign of instability
showed.
A second, physically meaningful, test for stability is

provided by the study of the mass m� which in this prob-
lem is a sort of incomplete H2 Sobolev norm of the
solution. As explained in Sec. V the mass is conserved
for the Cauchy problem in the whole space. On bounded
domains this is no longer true, but we expect that it stays
bounded when using homogeneous Dirichlet boundary
conditions, and that it goes to zero when using
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FIG. 5. Plots of the solution �vðtÞ. Both plots of solutions
computed on a grid with 128� 128 gridpoints and initial data
given by (182). Upper plot is the solution with homogeneous
Dirichlet boundary conditions at time t ¼ 3:0, while lower plot is
the solution with Sommerfeld boundary conditions at time t ¼
1:25.
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and the same initial data but on domains of different size. In the
upper right corner each curve is associated to the corresponding
domain.
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FIG. 7. Evolution of the mass m� as a function of time for
three solutions with Sommerfeld boundary conditions, the same
initial data but on domains of different size. In the upper right
corner each curve is associated to the corresponding domain.
The lower plot shows in amplified scale that the flat region
presents very small variations of around 0.03%.
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Sommerfeld boundary conditions. We analyze the behav-
ior of the mass below.

e. Behavior of the Mass. As explained before the mass,
defined by (145) and (155), is a conserved quantity when
the Cauchy problem is considered in the whole space (i.e.,
� is R2þ). In our numerical tests we solve the initial-
boundary value problem on compact domains where no
known boundary conditions imply mass conservation.
However, an interesting study for the mass evolution can
be done as follows. We solve the IBVP on domains of
different size but use, in all runs, the same initial data, at
the same distance from the symmetry axis. The initial data
are chosen to decay exponentially fast outside a region
which is small compared to the smallest of the domains we
use. Clearly, the expectation is that the larger the domain is
the closest to constant the mass stays during evolution.

We do a series of runs for homogeneous Dirichlet
boundary conditions and for Sommerfeld (outgoing waves)
boundary conditions. The plots for the Dirichlet case are
shown in Fig. 6. Observe that the plot is not on full mass
scale. The three curves show an almost constant initial
region and then variations of small relative amplitude.
After an initial peak immediately after the constant region
the amplitude of the variations is, roughly speaking, 2% for
the 1:28� 1:28 domain, 1% for the 2:56� 2:56 domain,
and 0.6% for the 5:12� 5:12 domain. The amplitude
clearly diminishes when the domain increases size. For
the case of Sommerfeld boundary conditions, the plots of
the mass evolution can be seen in Fig. 7. This series of three
runs is totally analogous to the previous case. The only
change is the boundary condition used. As can be inferred
from the plot in full mass scale, the energy leaks though the
boundary as expected.

VIII. FINAL COMMENTS

In this article we have deduced the linear system (1) and
(2) and we have analyzed some of its properties. Among
them, the most relevant are the mass conservation and the
numerical stability. The main open problem is to prove that
this system is well-posed. Remarkably enough, there
seems to be not much literature on this class of linear
systems which are singular at the axis.

Once the well-posedness problem is solved, we believe
that the future research on the subject can be divided in two
parallel but complementary roads. The first one is to extend
the well-posedness from the linear system to the full
Einstein equations in the maximal-isothermal gauge. The
nonlinear lower-order terms introduce extra difficulties
(see [6]). There are many possible evolution schemes
(see the discussion in [7]). It is very likely that few of
them (or may be only one) are well-posed. If this is the
case, the resolution of the well-posedness question will
lead us to select (or even discover) the correct evolution
scheme. After the local problem is solved, the next step is
to use the global conservation of the mass to control the full

nonlinear evolution in this gauge. A natural first example
would be to recover the nonlinear stability of Minkowski
[29] in this gauge. The expectation is that the mass formula
will provide a simpler (and different) kind of approach to
this problem; although, of course, always restricted to axial
symmetry. The ultimate and difficult goal is to say some-
thing, in this gauge, about the nonlinear stability of a black
hole in axial symmetry.
The second road is the study of axially symmetric per-

turbations but with a black hole as background solution.
Linear stability of the Kerr black hole is a relevant open
problem which is currently intensively studied (see the
review articles [30,31] and references therein). The expec-
tation is that the mass formula can help to prove linear
stability under axially symmetric perturbations of the Kerr
black hole.

ACKNOWLEDGMENTS
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APPENDIX: USEFUL FORMULAS

We collect in this appendix some useful formulas that
are used in the main part of this article. The conformal
Killing operator in two dimensions with respect to the
metric qAB is defined by

ðLq�ÞAB ¼ DA�B þDB�A � qABDC�
C: (A1)

For the particular case of a flat metric �AB this definition
reduces to

ðL�ÞAB ¼ @A�B þ @B�A � �AB@C�
C: (A2)

For this operator we have the following identity often used
in the article:

@BðL�ÞAB ¼ ��A: (A3)
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The Christofell symbols of the metric qAB defined by
(57) are given by

�C
AB ¼ �C

B@Auþ �C
A@Bu� @Cu�AB; (A4)

and the Ricci tensor is given by

ð2ÞRAB ¼ ��u�AB;
ð2ÞR ¼ �2e�2u�u: (A5)

Under the conformal rescaling (56) the diferential op-
erators relevant in this article transform as follows:

�qf ¼ e�2u�f; (A6)

L qð�ÞAB ¼ e2uLð�̂ÞAB; (A7)

DB�
AB ¼ e�4u@B�̂

AB; (A8)

where we have defined

�A ¼ e2u�̂A �AB ¼ e�4u�̂AB: (A9)

We follow the convention that the indices for hat quantities
are moved with the flat metric �AB and indices of nonhat
quantities with the metric qAB. Then, we have

�AB ¼ �̂AB; �A ¼ �̂A: (A10)

That is why we suppress the hat notation for the tensors

�̂AB and �̂A in the main part of this article.
Take an arbitrary spacelike foliation on ðN ; habÞ. The

2þ 1 decomposition of the wave operator is given by

hf ¼ �f00 þ�qfþDAf
DA�

�
þ f0�; (A11)

where have made use of the following useful formulas:

naranA ¼ @A�

�
; narant ¼ �A@A�

�
: (A12)
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Poincaré 2, 1007 (2001).
[18] Y. Choquet-Bruhat, in The Einstein Equations and The

Large Scale Behavior of Gravitational Fields, edited by
P. T. Chruściel and H. Friedrich (Birkhäuser, Basel, 2004),
pp. 251–298.

[19] L. Andersson, in The Einstein Equations and The Large
Scale Behavior of Gravitational Fields, edited by P. T.
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