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Abstract
In this paper we study static spherically symmetric Einstein–Vlasov shells,
made up of equal mass particles, where the angular momentum L of particles
takes values only on a discrete finite set. We consider first the case where
there is only one value of L, and prove their existence by constructing explicit
examples. Shells with either hollow or black hole interiors have finite thickness.
Of particular interest is the thin shell limit of these systems, and we study
its properties using both numerical and analytic arguments to compare with
known results. The general case of a set of values of L is also considered and
the particular case where L takes only two values is analyzed, and compared
with the corresponding thin shell limit already given in the literature, finding
good agreement in all cases.

PACS numbers: 04.50.+h, 04.20.−q, 04.70.−s, 04.30.−w

1. Introduction

Although sometimes sidestepped, it is a general requirement in studying nonvacuum
spacetimes in general relativity that the energy momentum tensor, that is, the matter (field)
contents, should have a clear, although possibly highly idealized, physical interpretation.
Among these choices, the case where matter is described as a large ensemble of particles
that interact only through the gravitational field that they themselves, at least partially, create,
is of particular interest, both because of their usefulness in modeling physical systems such
as star or galaxy clusters, and because of the possibility of a relatively detailed analysis, at
least in some restricted cases. As usual in theoretical treatments, one starts imposing as many
restrictions as compatible with the central idea, and then tries to generalize from these cases.
In this respect, the restriction to static spherically symmetric systems provides an important
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simplification, although even with this restriction the problem is far from trivial, and further
restrictions have been imposed in order to make significant advances. One of the first concrete
examples is that provided by the Einstein model [3], where the particles are restricted to moving
on circular orbits. This model is static, and it is not easy to generalize as such to include a
dynamical evolution of the system. This generalization can, however, be achieved if the
particle world lines are restricted to a shell of vanishing thickness (‘thin shell’), as considered
by Evans in [2]. The analysis in [2], although motivated by the Einstein model, considers
only shells where all the component particles have the same value of their (conserved) angular
momentum. In a recent study [1] of the dynamics of spherically symmetric thin shells of
counter rotating particles, of which [2] is an example, it was found that the analysis can be
extended to shells where the particles have angular momenta that take values on a discrete
(but possibly also continuous) set, and are not restricted to single values. It was also found
that in the nontrivial thin shell limit of a thick Einstein shell the angular momentum of the
particles acquires a unique continuous distribution, and, therefore, the models in [2] and [1]
are not approximations to the Einstein model. A relevant question then is what, if any, are
the (thick) shells that are approximated by those in [2] and [1]. In this paper we look for an
answer to this question by considering a generalization of the Einstein model where instead of
circular orbits we impose, at first, the restriction to a single value of the angular momentum.
The particle contents are described by a distribution function f in phase space, and, because
of the assumption of interaction only through the mean gravitational field, f must satisfy the
Einstein–Vlasov equations1. In the next section we set up the problem and show that it leads
to a well-defined set of equations. In section 3 we set up and analyze a particular model,
obtaining expansions for the metric functions at the boundary of the support of f , appropriate
for numerical analysis. Further properties are analyzed in section 4, where we show that all
these shells have finite mass and thickness. Section 5 contains numerical results for a generic
example. The ‘thin shell’ limit is considered in section 6, both through analytic arguments
and a concrete numerical example, with the results showing total agreement with the thin shell
results of [1]. A further comparison with [1] is carried out in section 7, where the stability
under ‘single particle evaporation’ of a shell approaching the thin shell limit is considered. The
generalization to more than one value of L is given in section 8, where we find that particles
with different values of L may be distributed on shells that overlap completely, or do so only
partially or not at all. Numerical examples and comparisons with [1] are finally developed in
section 9. Some comments and conclusions are given in section 10.

2. The static spherically symmetric Einstein–Vlasov system

The metric for a static spherically symmetric spacetime may be written in the form

ds2 = −B(r) dt2 + A(r) dr2 + h(r)2 d�2, (1)

where d�2 = dθ2 + sin2 θ dφ2 is the line element on the unit sphere and r � 0.
For a static, spherically symmetric system, the matter contents, in this case equal mass

collisionless particles, are microscopically described by a distribution function F(r, pj ), where
pj = (pr, pθ , pφ) are the components of the particle momentum, taken per unit mass. Then,
as a consequence of the assumption that the particles move along the geodesics of the spacetime
metric, the distribution function F satisfies the Vlasov equation, which, in this case, takes the
form

pr∂rF − �
j

abp
apb∂pj F = 0, (2)

1 For a recent review of the Einstein–Vlasov system and further references see, for example, [6].
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where a, b correspond to (t, r, θ, φ). It is understood in (2) that pt is to be computed using
gabp

apb = −1, so as to satisfy the ‘mass shell restriction’ μ = 1, where μ is the particles
mass. Therefore, in what follows we set

pt = 1√
B(r)

√
1 + A(r)(pr)2 + h(r)2[(pθ )2 + sin2 θ(pφ)2]. (3)

We also note that pt = dt/dτ , where τ is the proper time along the particle’s world line.
The Einstein equations for the system are

Gab := Rab − 1
2Rgab = 8πTab, (4)

with the energy momentum tensor given by

Tab = −
∫

Fpapb|g|1/2 dpr dpθ dpφ

pt

, (5)

where g is the determinant of gab, and pa = gabp
b. Equations (2), (4) and (5) define the

Einstein–Vlasov system restricted to a static spherically symmetric spacetime, with the metric
written in the form (1).

The assumption that the metric is static and spherically symmetric implies conservation
of the particle’s energy:

E = B(r)pt

=
√

B(r)
√

1 + A(r)(pr)2 + h(r)2[(pθ )2 + sin2 θ(pφ)2] (6)

and of the square of its angular momentum per unit mass,

L2 = h(r)4[(pθ )2 + sin2 θ(pφ)2]. (7)

It is easy to check that the Ansatz

F(r, pj ) = 	(E,L2), (8)

where E and L2 are functions of r and pj given by (6), (7) solves the Vlasov equation for an
arbitrary function 	.

To construct and solve explicit models based on (8) for metric (1), it is convenient to
change integration variables in (5). We set

pθ = 1

h(r)2
L cos χ

(9)
pφ = 1

h(r)2 sin θ
L sin χ

and write (5) in the form

Tab(r) = 1

h(r)2

√
A(r)

B(r)

∫
	(E,L2)papb

L dL dχ dpr

pt
(10)

where we should set

E =
√

B

(
1 + (pr)2A +

L2

h2

)
(11)

pt =
√

1

B

(
1 + (pr)2A +

L2

h2

)
.

Andreasson and Rein [7] have explored the properties of models where 	 takes the form

	(E,L2) = φ(E/E0)
(
L2 − L2

0

)�
. (12)
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In this paper we consider different types of models, based on the Ansatz

	(E,L2) = F(E) �(E0 − E) δ(L − L0), (13)

where �(x) is the Heaviside step function, and δ(x) is Dirac’s δ; namely, we assume that L
takes only the single value L0, and that there is an upper bound on E, given by E0. F(E) is
assumed to be a smooth function of E. We then have

Tt
t = −4πL0

√
A

h3

∫ pr
max

0
F(E)

√
h2 + L2

0 + (pr)2h2A dpr

Tr
r = 4πL0

√
A3

h

∫ pr
max

0

F(E)(pr)2√
h2 + L2

0 + (pr)2h2A

dpr

(14)

Tθ
θ = 2π(L0)

3
√

A

h3

∫ pr
max

0

F(E)√
h2 + L2

0 + (pr)2h2A

dpr

Tφ
φ = T θ

θ ,

where pr
max depends on r and is given by

pr
max =

√
1

A(r)

√
E2

0

B(r)
− 1 − L2

0

h(r)2
(15)

if E2
0 > B(r)

(
1 + L2

0

/
h2

)
, and pr

max = 0 otherwise. This simply states the fact that Tab �= 0
only in those regions where a (test) particle with energy E0 and angular momentum L0 can
actually move.

3. Particular models

We may now use the previous results to construct simple models and analyze their interpretation
for a range of possible parameters. This analysis may be carried out in a number of ways.
Here we choose the following: we first introduce in (1) a new function m(r) such that
A(r) = (1 − 2m(r)/r)−1, and change the coordinate r to r̃ = h(r). This amounts to setting

h(r) = r
(16)

A(r) = 1/(1 − 2m(r)/r)

in (1). Then, from the Einstein equations and the form (14) of Tab, we find two independent
equations for m(r) and B(r),

dm

dr
= 4πr2ρ(r)

(17)
dB

dr
= 2B(r)(m(r) + 4πr3p(r))

r(r − 2m(r))
,

where ρ(r) = −Tt
t is the energy density, and p(r) = Tr

r is the radial pressure, given by (14),
with h(r) = r . There is also an equation for pT (r) = Tθ

θ , but, as can be checked, this is not
independent of (17). Equations (17) are deceptively simple, because the explicit dependence
of ρ and p on m and B is in general quite complicated. Here we consider a simple example
and propose a method for constructing the solutions, which is illustrated by the example. We
recall that the main purpose of our analysis is to find examples of thick shells that have the
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thin shell limit used in [1]. A sufficiently simple yet nontrivial example is obtained with the
choice

F(E) = Q1E = Q1

√
B

(
1 + (pr)2A +

L2

r2

)
, (18)

where Q1 � 0 is a constant. With this choice we may perform the integrals in (14) explicitly
and, after some simplifications, we obtain

dm

dr
=

Q2
[
2
(
L2

0 + r2
)
B + r2E2

0

]√
r2E2

0 − (
L2

0 + r2
)
B

r3B
(19)

dB

dr
= 2mB

r(r − 2m)
+

2Q2
[
r2E2

0 − (
L2

0 + r2
)
B

]3/2

r3(r − 2m)
, (20)

where Q2 = 16π2L0Q1/3. We also find

ρ(r) =
Q2

[
2
(
L2

0 + r2
)
B + r2E2

0

]√
r2E2

0 − (
L2

0 + r2
)
B

4πr5B

p(r) = Q2
[
r2E2

0 − (
L2

0 + r2
)
B

]3/2

4πBr5
(21)

pT (r) =
3Q2L

2
0

√
r2E2

0 − (
L2

0 + r2
)
B

8πr5
.

Considering (19), (20), we find that it is a simple, but rather difficult to handle, system of
equations for m(r) and B(r). We have not found closed (analytical) solutions for the system,
and, therefore, we must resort to numerical methods. The application of these methods
requires, however, considering and solving several subtleties inherent in the system. As
indicated above, in all these equations ((19), (20) and (21)), the terms involving Q2 should be
set equal to zero if r2E2

0 �
(
L2

0 + r2
)
B. We note that for Q1 = Q2 = 0 we have m(r) = M ,

with M = constant, and B(r) = (1 − 2M/r)C0, where C0 is also a constant, corresponding
to the standard Schwarzschild solution. For a shell-type solution, these solutions correspond
to the inner and outer regions, to be matched to the region where Tab �= 0. When Q1 �= 0,
since we must have B(r) > 0, we must also have dm/dr � 0, but, even though ρ � 0 we
might end up with m(r) < 0, and still have all equations satisfied. This would be the case, for
instance, if in the inner region we have a Schwarzschild spacetime with negative mass (naked
singularity).

For shell like solutions, either with an empty interior or with a central mass (black hole),
a further difficulty can be seen considering that there should exist an ‘allowed region’ where
r2E2

0 �
(
L2

0 + r2
)
B, with r taking values in the interval ri � r � ro, where ri and ro are,

respectively, the inner and outer radii of the shell. We must impose continuity in both B(r)

and m(r) to avoid δ functions in Tab. This implies that r2E2
0 − (

L2
0 + r2

)
B is continuous in

ri � r � ro and approaches continuously the value zero at the boundaries. Therefore, both
dm/dr and dB/dr are also continuous inside and at the boundaries of this interval, and actually
we have dm/dr|r=ri

= 0. We also find that d2B/dr2 should be continuous, but d2m/dr2 must
be singular, and this makes the construction of numerical solutions where we try to fix from
the beginning the values of ri and ro rather difficult. Nevertheless, the above analysis indicates
that for r > ri , but r ∼ ri , we should have

B(r) = B0 + B1(r − ri) + B2(r − ri)
2 + RB

(22)
m(r) = M1 + Rm,

5
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where B0, B1 and M1 are constants and RB and Rm are functions of r that vanish respectively
faster than (r − ri)

2 and (r − ri) for r − ri → 0+. It is straightforward to extend this analysis
to a higher order by imposing consistency between the right- and left-hand sides of (19), (20)
as r − ri → 0+. We find

B(r) = B0 + B1(r − ri) + B2(r − ri)
2 + B3(r − ri)

5/2 + R̃B
(23)

m(r) = M1 + M2(r − ri)
3/2 + M3(r − ri)

5/2 + R̃m,

where B2, B3, M2 and M3 are constants, and R̃B and R̃m stand for higher order terms. The
constants appearing in (23) are not independent. They may be written, e.g., in terms of ri,
M1, L0, E0 and Q2. We note that M1 is the Schwarzschild mass for the region inside the shell
(r � ri). Moreover, the system (19), (20) is invariant under the the rescaling B → λB,
E0 → √

λE0 and Q2 → Q2/
√

λ. It will prove convenient to use this scaling invariance, and
the continuity of B(r) to set

B(ri) = 1 − 2M1

ri

(24)

so that the solution for r < ri takes the standard Schwarzschild form. On the other hand, the
condition that r = ri corresponds to the inner boundary of the shell implies

B0 = r2
i E2

0

r2
i + L2

0

(25)

and, therefore, we set

B0 = 1 − 2M1

ri (26)

E2
0 =

(
L2

0 + r2
i

)
(ri − 2M1)

r3
i

.

Similarly, we find

B1 = 2M1

r2
i

B2 = −2M1

r3
i (27)

B3 =
8
√

2Q2
[
(2ri − 3M1)L

2
0 + (ri − M1)r

2
i

]√
(ri − 3M1)L

2
0 − M1r

2
i

5(ri − 2M1)r
6
i

M2 =
2
√

2Q2
(
L2

0 + r2
i

)√
(ri − 3M1)L

2
0 − M1r

2
i

r4
i

.

The explicit expression for M3, as well as for higher order coefficients, is also easily obtained
but is rather long and will not be included here, although it was used in the numerical
computations described below.

The philosophy that we adopt here is to assume that the inner radius ri and inner mass M1

are given. Then, in accordance with (27), a nontrivial solution exists only if ri > 3M1. Next,
we assume that L0 is also given. Again, from (27), it must satisfy

L2
0 >

M1r
2
i

ri − 3M1
. (28)

Accordingly, given some fixed values of ri, M1 and L0 satisfying the above conditions, we may
construct families of solutions depending on the single parameter Q2 by solving the nontrivial
part of equations (19) and (20), with E0 given by (26). In the next section we explore some
properties of the resulting models.

6



Class. Quantum Grav. 27 (2010) 065008 R J Gleiser and M A Ramirez

4. Some general properties

An interesting question regarding the model of the previous section is related to the possible
values that the mass and thickness of the shells can attain. For the Ansatz (12) this problem
was analyzed in a series of papers by Rein, Rendall and Andreasson (see e.g. [4, 5], and
also [6] for a review and more extensive references). The general result is that under some
further (mild) restrictions on the form (12) such shells exist and have finite thickness and
finite mass. The rigorous proofs obtained by these authors are somewhat dependent on the
form assumed for the distribution function. In particular, the dependence on L assumed by
those authors does not appear to have a simple distributional limit of the form assumed here.
Nevertheless, the proofs can probably be extended to more general assumptions regarding this
function, for instance, to include our particular models with a distributional dependence on
the angular momentum. On this account, since we were interested in constructing particular
examples, rather than analyzing the more general case, we found it simpler to obtain their
general properties directly by studying the solutions of the system (19), (20), assuming that
initial data of the form described in the previous section are given. As shown below, although
the models constructed with our prescription may differ considerably in detail from those
obtained using (12), they also correspond to shells with finite mass and thickness, whose
interior can be empty space, a black hole or even a negative mass naked singularity.

As a starting point, we may show that m(r) must be bounded by r/2 as follows. First,
from (19), (20) we have that dB/dr > 0, dm/dr � 0, and, therefore, both m(r) and B(r) are
increasing functions of r. But also from these equations we have the bounds

r2
i E2

0

/(
L2

0 + r2
i

)
� B(r) � r2E2

0

/(
L2

0 + r2), (29)

where ri is the inner radius of the shell. This implies that dm/dr is finite, and, therefore, near
a point r = rs , where m(r) approaches rs/2, we should have

m(r) = 1
2 rs + m1(r − rs) + · · · , (30)

where m1 > 0 is finite and the dots indicate terms that vanish faster than r − rs as r → rs .
Replacing in (20) we find that dB/dr would diverge as (r − rs)

−1, and therefore, B(r) would
diverge as ln(rs − r), which is incompatible with the bounds (29) satisfied by B(r), and,
therefore, all the solutions must satisfy m(r) < r/2.

Similarly, we find that the shells must have finite thickness by considering the limit of the
solutions of the system (19), (20) as r → ∞, under the restriction that ρ �= 0, and the condition
just proved that r > 2m(r). The first, according to (19), (20) and (21), implies B(r) < E2

0 ,
and then, if the shell extends to r = ∞, we should have B∞ = limr→∞ B(r) � E2

0 . We
remark that dB/dr � 0. Therefore, B(r) must approach a finite value B∞ monotonically
from below. Consider first the case B∞ < E2

0 . Replacing in the first equation in (19), (20), for
large r we find that dm/dr approaches a constant value, and, therefore, m(r) grows linearly
with r. But then, replacing in the second equation in (19), (20), we find that dB/dr decreases
as 1/r , leading to a logarithmic growth in B(r), incompatible with the assumed conditions.
Therefore, any possible solution that extends to r = ∞ should have B∞ = E2

0 . Then, for
large r we should have

B(r) = E2
0r

2

L2
0 + r2

− B1(r) (31)

with B1(r) → 0, as r → ∞. Replacing now in (19), (20), to the leading order we find

dm

dr
� 3Q2

√
B1 (32)

7
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and this implies that m(r)/r → 0 as r → ∞. Then, using again (19), (20), we should have

dB1

dr
� −2E3

0Q2

r
(33)

and this implies that B1(r) � −2E3
0Q2 ln(r), which contradicts the assumption B1(r) → 0.

Thus, we conclude that the solution cannot be extended to r = ∞, and, therefore, the equation

E2
0r

2 − (
L2

0 + r2
)
B(r) = 0 (34)

must always be satisfied for some r = ro, where ro is finite and corresponds to the outer radius
of the shell, which, in turn, implies that the total mass M2 = m(ro) is bounded by the condition
M2 < ro/2. This result is in agreement with the general bounds found in [9] in the case of an
empty interior.

We thus conclude that all shells constructed in accordance with prescription (18) have
finite mass and finite thickness.

We nevertheless believe that this result is more general, and applies to all shells satisfying
Ansatz (13), although we do not have a complete proof of this statement.

5. Numerical results

As indicated, we do not have closed solutions of the equations for B(r) and m(r), even for
the simple model of the previous sections. Nevertheless, since (19), (20) is a first-order ODE
system, we can apply numerical methods to analyze it. We may use the expansions (23),
disregarding the terms in R̃B and R̃m, to obtain appropriate initial values for B(r) and m(r),
for r close to ri, in the nontrivial region r > ri .

We may illustrate this point with a particular example. We take ri = 7.0, M1 = 1.0,
L0 = 4, E0 = 1 and Q2 = 0.1. Using these values and (23) (truncated as indicated above), we
find B(7.0001) = 0.7538 . . ., and m(7.0001) = 1.0000 . . . (actually, the computations were
carried out to 30 digits, using a Runge–Kutta integrator). The numerical results are plotted in
figures 1 and 2.

6. Thin shells

One of the motivations for studying the type of shells considered in this paper is the possible
existence of a nontrivial ‘thin shell’ limit, where the thickness of the shell goes to zero, with
the restriction to a single or a finite set of values of L, and how this limit compares with the thin
shells considered in [2] and [1]. We remark that the existence of thin shell limits of Einstein–
Vlasov systems has already been analyzed in the literature [8], but with a different purpose in
mind. Here we are interested not only in the existence of this limit for our particular models,
but especially in the limiting values of the parameters characterizing our shells. Since this type
of analysis is not immediately included in, e.g, [8], we consider it relevant to provide an explicit
proof of the properties of our models in the thin shell limit. The construction will proceed in
two steps. First we assume some fixed values of ri, M1 and L0 are given. In accordance with
the arguments of section 4, for every choice of Q2 the shell has an outer boundary at some
finite ro > ri . If we look now at (19), (20), it is clear that for large Q2, the behavior of both
dB/dr and dm/dr is governed by that of the expression ξ(r) = E2

0r
2 − (

L2
0 + r2

)
B(r), which

8
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Figure 1. Plots of m(r) (dotted, upper curve), B(r) (solid, middle curve) and 15(dm/dr) (dashed,
lower curve), as functions of r for ri = 7.0, M1 = 1.0, L0 = 4, E0 = 1 and Q2 = 0.1. The end
point of the plot is at ro = 14.1098 . . . , with B(ro) = 0.9256 . . . and M2 = m(ro) = 1.2306 . . .

must satisfy ξ > 0 within the shell. For r > ri , but sufficiently near ri, we have

ξ(r) � 2(ri − 3M1)L
2
0 − M1r

2
i

r2
i

(r − ri) (35)

and, therefore, ξ(r) is an increasing function close to ri. We note, however, that for ξ �= 0,
equation (20) implies that dB/dr can be made arbitrarily large by taking Q2 appropriately
large. This implies that B(r) itself will also be increasing arbitrarily fast, and therefore we
should have that ξ(r) starts decreasing and approaches zero at an arbitrarily close distance
from ri. Here we have two possibilities. The first is that ξ(r) effectively becomes zero at some
r = rξ , with rξ → r+

i as Q2 → ∞, and therefore the thickness of the shell becomes arbitrarily
thin as Q2 → ∞. The second is that, in contrast, ξ(r) remains nonvanishing, but sufficiently
small so that dm/dr (controlled by Q2

√
ξ ), remains small, but nonvanishing. This implies

that we should have

B(r) = E2
0r

2

L2
0 + r2

− χ(r)2, (36)

where χ(r) = √
ξ(r) is small and decreases as Q2 increases. Now, we may solve (20) for

m(r), and replacing in (19) we obtain a second-order equation that contains only B(r), and
its first- and second-order derivatives. Replacing (36) in this equation, and expanding to the
lowest order in 1/Q2, we obtain

χ(r) =
(
3L2

0 − r2
)
r3L2

0

3Q2
(
L2

0 + r2
)
(3L2

0 + r2)
+ O

(
Q−2

2

)
. (37)

9
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Figure 2. Plots of ρ(r) (solid, upper curve), 4pT (r) (dashed, middle curve) and 40p(r) (dotted,
lower curve), as functions of r for ri = 7.0, M1 = 1.0, L0 = 4, E0 = 1 and Q2 = 0.1. The end
point of the plot is at ro = 14.1098 . . . , with B(ro) = 0.9256 . . . and M2 = m(ro) = 1.2306 . . .

Next we replace both (36) and (37) in (19), and in (20) solved for m(r). From these two
equations we find, respectively,

dm

dr
=

(
3L2

0 − r2
)
L2

0(
3L2

0 + r2
)2 +

1

Q2
2

φ1(r) + +O
(
Q−3

2

)
, (38)

where φ1(r) is a finite function of r, and

dm

dr
=

(
3L2

0 − r2
)
L2

0(
3L2

0 + r2
)2 +

1

Q2
2

φ2(r) + O
(
Q−3

2

)
, (39)

where φ2(r) is also a finite function of r, but with φ1(r) �= φ2(r). We must therefore conclude
that the behavior given by (36) is incompatible with the system (19, 20), and the thickness of
the shell must go to zero as Q2 → ∞. We remark that this behavior is clearly seen in the
numerical computations we have carried out. The foregoing result is qualitative, in the sense
that we do not obtain a quantitative relation between the parameters and the shell thickness
given, e.g., by ro − ri , but it proves that ro → ri as Q2 → ∞. This result is, nevertheless, all
that we need to find the relevant shell parameters in the limit Q2 → ∞.

We first recall that for a static thin shell constructed according to Evans’ prescriptions
[2], we have the following relation between the radius R, inner (M1) and outer (M2) mass, and
angular momentum L̃0 of the particles,

L̃2
0 = R − √

R − 2M1
√

R − 2M2

3
√

R − 2M1
√

R − 2M2 − R
. (40)

We may now prove that the nontrivial thin shell limits of the shells constructed according
to prescription (18) effectively coincide with the Evans shells of [2] as follows. We first take

10
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the r derivative of (20), and then use (19) and (20), to obtain

d2B

dr2
=

[
r(2E2r2 + (r2 + L2)B) dB

dr
+ 2(4E2r2 + (2L2 − r2)B)

]
r(E2r2 + 2(L2 + r2)B)(r − 2m)

dm

dr

− 4

r2(r − 2m)

[
r(r − 2m)

dB

dr
− mB

]
. (41)

Next let ri and ro be, respectively, the inner and outer radii of the shell, and M1 = m(ri)

and M2 = m(ro) the corresponding masses inside and outside the shell. Then, for ri � r � ro

we have dB/dr > 0, and

dB

dr

∣∣∣∣
r=ri

= 2M1B(ri)

ri(ri − 2M1)
; dB

dr

∣∣∣∣
r=ro

= 2M2B(ro)

ro(ro − 2M2)
. (42)

The idea now is to use the fact that∫ ro

ri

d2B

dr2
dr = dB

dr

∣∣∣∣
r=ro

− dB

dr

∣∣∣∣
r=ri

= 2M2B(ro)

ro(ro − 2M2)
− 2M1B(ri)

ri(ri − 2M1)
;

(43)∫ ro

ri

dm

dr
dr = M2 − M1.

On this account we rewrite (41) in the form

1

r − 2m

dm

dr
= r(E2r2 + 2B(L2 + r2))[

r(2E2 + (r2 + L2)B) dB
dr

+ 2(4E2r2 + (2L2 − r2)B)
] d2B

dr2

+
4(E2r2 + 2B(L2 + r2))

[
r(r − 2m) dB

dr
− mB

]
r(r − 2m)

[
r(2E2 + (r2 + L2)B) dB

dr
+ 2(4E2r2 + (2L2 − r2)B)

] (44)

and integrate both sides from r = ri to r = ro. But now we notice that while both m(r) and
dB/dr are rapidly changing but bounded in ri � r � ro, the change of B(r), and r in that
interval is only of order ro − ri . We may then choose a point r = R, with ri < R < ro, and
set B(r) = B(R) = B0, and r = R, except in the arguments of m(r), dm/dr , dB(r)/dr and
d2B(r)/dr2, in (44), as this introduces errors at most of order ro − ri , in the factors of dm/dr ,
and d2B(r)/dr2, and in the last term on the right-hand side of (44). Similarly, we may set
E2 = (L2 + R2)Bo/R

2 in (44), to obtain, up to terms of order ro − ri,

1

R − 2m(r)

dm

dr
= R(L2 + R2))

R(R2 + L2)) dB
dr

+ 2(R2 + 2L2)B0

d2B

dr2

+
4((L2 + R2))

[
R(R − 2m) dB

dr
− mB0

]
R(R − 2m)

[
R(R2 + L2) dB

dr
+ 2(R2 + 2L2)B0

] (45)

and, again, we note that the last term on the right-hand side of (45) gives a contribution of
order ro − ri . We then conclude that

lim
ro→ri

∫ ro

ri

1

R − 2m(r)

dm

dr
dr = lim

ro→ri

∫ ro

ri

R(L2 + R2))

R(R2 + L2)) dB
dr

+ 2(R2 + 2L2)B0

d2B

dr2
dr. (46)

The integration of the terms in dm/dr , and d2B(r)/dr2, is now straightforward. We use next
(42) and the fact that in this limit B(ri) = B0 = B(ro) and ri = R = ro, to obtain

√
R − 2M1√
R − 2M2

= (R − 2M1)(R
3 + 2RL2 − 3M2L

2 − M2R
2)

(R − 2M2)(R3 + 2RL2 − 3M1L2 − M1R2)
. (47)

11
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Figure 3. Plots of m(r) (dotted, upper curve), B(r) (solid, middle curve) and 10ρ (dashed, lower
curve), as functions of r for ri = 7.0, M1 = 1.0, L0 = 4, E0 = 1 and Q2 = 800. The end point
of the plot is at ro = 7.0155 . . . , with B(ro) = 0.7546 . . . and M2 = m(ro) = 1.2999 . . .

Solving this equation for L2, we finally find

L2 = R2(R − √
R − 2M1

√
R − 2M2)

3
√

R − 2M1
√

R − 2M2 − R
, (48)

which is, precisely, the relation satisfied by the parameters of the shells of (40).
We can also check this result, and, in turn, the accuracy of numerical codes, by directly

considering initial data for the numerical integration that effectively lead to shells where the
thickness is a small fraction of the radius.

A particular example is given in figure 3, where the values of the initial data are also
indicated. We can see that the mass increases by about 30%, while the thickness of the shell
is less than 0.3% of the shell radius. We can check that these results are in agreement with
(40). Solving this for M2,

M2 = R
[
2(R − 3M1)R

2L̃2
0 + (4R − 9M1)L̃

4
0 − M1R

4
]

(R − 2M1)
(
R2 + 3L̃2

0

)2 , (49)

and replacing L̃0 = 4, M1 = 1 and R = 7, we find M2 = 1.2997 . . . in very good agreement
with the numerical results quoted in figure 3.

7. Stability under ‘single particle evaporation’

A complete analysis of the stability of the shells is out of the scope of the present research.
Nevertheless, we may rather easily analyze their stability under ‘single particle evaporation’.
This refers to the possibility that a particle approaching the boundary of the shell becomes

12
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eventually unbounded and leaves the shell. Some examples of this behavior for thin shells
were analyzed in [1]. In our case we consider a shell approaching the thin shell limit. We
restrict to the case of vanishing inner mass M1 = 0. If ri and ro are, respectively the inner and
outer boundaries of the shell, the matching conditions in the absence of singular shells at ri

and ro imply that both m(r) and B(r) and their first derivatives should be continuous at both
r = ri and r = ro. The form (1) of the metric with choice (16) implies that for 0 � r � ri we
have

ds2 = −Bi dt2 + dr2 + r2 d�2, (50)

where Bi > 0 is a constant. Then, at r = ri we have

Bi = r2
i E2

0

L2
0 + r2

i

. (51)

For r � ro, the metric takes the form

ds2 = − (r − 2M2)ro

(ro − 2M2)r
Bo dt2 +

r

r − 2M2
dr2 + r2 d�2, (52)

where Bo > 0 is another constant satisfying

Bo = r2
oE2

0

L2
0 + r2

o

. (53)

Consider now a test particle moving along a geodesic of the shell spacetime, with 4-
velocity Uμ(τ) = (dt/dτ, dr/dτ, dtθ/dτ, dφ/dτ), with UμUμ = −1. Without loss of
generality we may choose dθ/dτ = 0. Then we have the constants of the motion:

E = B(r)
dt

dτ
, L = r2 dφ

dτ
(54)

and the normalization of Uμ implies(
dr

dτ

)2

= E2

B(r)

(
1 − 2m(r)

r

)
−

(
1 +

L2

r2

) (
1 − 2m(r)

r

)
. (55)

Therefore, for r � ro we have(
dr

dτ

)2

= E2

Bo

(
1 − 2M2

ro

)
−

(
1 +

L2

r2

) (
1 − 2M2

r

)
(56)

and the particle radial acceleration is given by

d2r

dτ 2
= L2

r3
− (3L2 + r2)M2

r4
. (57)

If we assume now that the shell is close to the thin shell limit, with angular momentum L0,
radius R (with ri < R < ro) and mass M2, then we should have

L2
0 = (

√
R − √

R − 2M2)R
2

3
√

R − 2M2 − √
R

. (58)

Then, for L � L0, and r � R � ro we find

d2r

dτ 2
∼ −2

√
R − 2M2(

√
R − √

R − 2M2)

R3/2(3
√

R − 2M2 − √
R)

< 0. (59)

Similarly, in the region 0 � r � ri , for r ∼ ri ∼ R we find

d2r

dτ 2
∼ 2(

√
R − √

R − 2M2)

R(3
√

R − 2M2 − √
R)

> 0 (60)

13
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and, therefore, all these shells are stable under ‘single particle evaporation’, in total agreement
with the results of [1].

A different problem is that of the dynamical stability of the shell as a whole. A numerical
investigation of this problem is given in [10]. A different approach, applicable only to
‘thin’ shells, was also analyzed in [1]. In this case the motion is described by ordinary
differential equations for the shell radius R as a function, e.g., of proper time on the shell,
which allows for a significant simplification of the treatment of small departures from the
equilibrium configurations. Unfortunately, the corresponding equations of motion for the
shells considered here would be considerably more complicated and their analysis completely
out of the scope of the present research. We, nevertheless, expect that such treatment, if
appropriately carried out, would also agree with the results found in [1] as the ‘thin shell’ limit
is approached.

8. Shells with two or more values of the angular momentum

It is rather simple to extend the analysis of the previous sections to the case where the angular
momentum of the particles takes on a discrete, finite set of values. Instead of (13), we have

	(E,L2) =
∑

i

Fi(E) �(Ei − E) δ(L − Li), (61)

where the functions Fi � 0 are arbitrary, with i = 1, 2, . . . , N , and N finite. We will restrict
to the case of two separate values (N = 2), since, as will be clear from the treatment, the
extension to a larger number of components is straightforward. We are actually interested in
the behavior of these shells as they approach a common thin shell limit. Therefore, we will
further simplify our Ansatz to the form

Fi(E) = QiE = Qi

√
B

(
1 + (pr)2A +

L2
i

r2

)
, (62)

where Qi � 0 are constants. With this choice we may perform the integrals in (14) explicitly
and, after some simplifications, we obtain

dm

dr
=

C1
[
2
(
L2

1 + r2
)
B + r2E2

1

]√
r2E2

1 − (
L2

1 + r2
)
B

r3B

+
C2

[
2
(
L2

2 + r2
)
B + r2E2

2

] √
r2E2

2 − (
L2

2 + r2
)
B

r3B

dB

dr
= 2mB

r(r − 2m)
+

2C1
[
r2E2

1 − (
L2

1 + r2
)
B

]3/2

r3(r − 2m)
+

2C2
[
r2E2

2 − (
L2

2 + r2
)
B

]3/2

r3(r − 2m)
, (63)

where Ci = 16π2LiQi/3, i = 1, 2. We also find

ρ(r) =
C1

[
2
(
L2

1 + r2
)
B + r2E2

1

]√
r2E2

1 − (
L2

1 + r2
)
B

4πr5B

+
C2

[
2
(
L2

2 + r2
)
B + r2E2

2

] √
r2E2

2 − (
L2

2 + r2
)
B

4πr5B

p(r) = C1
[
r2E2

1 − (
L2

1 + r2
)
B

]3/2

4πBr5
+

C2
[
r2E2

2 − (
L2

2 + r2
)
B

]3/2

4πBr5

pT (r) =
3C1L

2
1

√
r2E2

1 − (
L2

1 + r2
)
B

8πr5
+

3C2L
2
2

√
r2E2

2 − (
L2

2 + r2
)
B

8πr5
. (64)
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It is clear that we recover the results of the previous sections if we set either C1 or C2

equal to zero.
It will be convenient to define separate contributions to the density, ρ1 and ρ2, for the

particles with L1 and L2:

ρ1(r) =
C1

[
2
(
L2

1 + r2
)
B + r2E2

1

]√
r2E2

1 − (
L2

1 + r2
)
B

4πr5B (65)

ρ2(r) =
C2

[
2
(
L2

2 + r2
)
B + r2E2

2

]√
r2E2

2 − (
L2

2 + r2
)
B

4πr5B
.

Then, provided the integrations cover the supports of both ρ1 and ρ2, we have

M2 − M1 = �M = �m1 + �m2, (66)

where

�m1 =
∫

4πr2ρ1 dr, �m2 =
∫

4πr2ρ2 dr. (67)

These expressions may be considered as the contributions to the mass from each class of
particles. This will be used in the next section to compare numerical results with the thin shell
limit.

Equations (63) may be numerically solved for appropriate values of the constants Ci,
Ei and Li, and initial values, i.e. for some r, of m(r) and B(r). We remark that, as in the

previous sections, it is understood in (63), and also in (64), that both
√

r2E2
i − (

L2
i + r2

)
B

and
[
r2E2

i − (
L2

i + r2
)
B

]3/2
must be set equal to zero for r2E2

i �
(
L2

i + r2
)
B. In this general

case, it is clear that the shells (where by a ‘shell’ we mean here the set of particles having the
same angular momentum Li) may be completely separated or they may overlap only partially.
We are particularly interested in the limit of a common thin shell for the chosen values of
Li. One way of ensuring that at least one of the shells completely overlaps the other is the
following. We choose an inner mass M1 and an inner radius ri. This implies m(ri) = M1,
while B(ri) = Bi is arbitrary. If we choose now arbitrary values for L1 and L2, the density ρ

will vanish at r = ri if we choose

E2
1 = Bi

(
L2

1 + r2
i

)
r2
i (68)

E2
2 = Bi

(
L2

2 + r2
i

)
r2
i

.

Actually we also need to impose

L2
1 >

r2
i M1

ri − 3M1 (69)

L2
2 >

r2
i M1

ri − 3M1

to make sure that r = ri is the inner and not the outer boundary of the shells. We shall assume
from now on that L2 > L1. Since, using the same arguments as in the single shell case, the
shells have finite extension, it follows that one of the shells will be completely contained in
the other.

In the next section we display some numerical results, both for thick shells that overlap
partially, and for shells approaching the thin shell limit. We again find that the limit is
associated with large values of Ci, and that the parameters describing the shells approach the
thin shell values found in [1].
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Figure 4. Plots of ρ(r) (curve a, solid), ρ1(r) (curve c, dotted) and ρ2(r) (curve b, dashed), as
functions of r for ri = 7.0, M1 = 1.0, L1 = 5, L2 = 6.5, E2

1 = 1.51 . . . , E2
2 = 1.86 . . . and

C1 = 5, C2 = 3. The end point of the plot is at ro = 7.4764 . . . , with B(ro) = 1.0606 . . . and
M2 = m(ro) = 2.1338 . . . .

9. Numerical results for two component systems

As a first example we take L1 = 5, L2 = 6.5, ri = 7 and M1 = 1. We also set B(ri) = 1,
for simplicity. Then, from (68), we set E2

1 = 1.510 . . . , E2
2 = 1.862 . . . . Finally, we choose

C1 = 5, C2 = 3, and carry out the numerical integration. The results obtained indicate that the
particles with L1 = 5 are contained in the region 7.0 � r � 7.2682 . . . , while for L2 = 6.5
the corresponding range is 7.0 � r � 7.4764 . . . . The resulting value of the external mass in
M2 = 2.1338 . . . . In figure 4 we display the total density ρ as a function of r (solid curve), as
well as the contributions ρ1 and ρ2 to the density from the particles with respectively L1 = 5
(dashed curve) and with L2 = 6.5 (dotted curve).

As an illustration of the approach to the thin shell configuration we considered again the
previous values L1 = 5, L2 = 6.5, ri = 7, M1 = 1, B(ri) = 1, but chose C1 = 800, C2 = 240,
and carried out the numerical integration. Figure 5 displays the functions ρ(r) (solid curve),
ρ1(r) (dashed curve) and ρ2(r) (dotted curve). We see that now the shell extends only to the
region ri = 7.0 � r � ro = 7.020 . . . , i.e. its thickness is less than 1% of its radius. The
mass, on the other hand, increases by roughly a factor of 2, since M2 = m(ro) = 2.022 . . . .

We may compare these results with those of the thin shell limit of [1] as follows. It can be
seen from (29) and (31) in [1] that for a thin shell of radius R, inner mass M1 and outer mass
M2, with two components with angular momenta L1 and L2, the ratio of the contributions of
each component to the total mass is given by

�m2

�m1
=

(
L̃2

0 − L2
1

)(
R2 + L2

2

)
(
L2

2 − L̃2
0

)(
R2 + L2

1

) , (70)

where L̃0 is given by (40). The numerical integration gives �m1 = 0.4545 . . . , �m2 =
0.5708 . . . . If we now take R = 7 and solve (70) for L̃0 we find L̃0 = 5.8079 . . . , while
replacement in (40) gives L̃0 = 5.8386 . . . , which we consider as a good agreement, with a
discrepancy of the order of the ratio of thickness to radius.
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Figure 5. Plots of ρ(r) (curve a, solid), ρ1(r) (curve c, dotted) and ρ2(r) (curve b, dashed), as
functions of r for ri = 7.0, M1 = 1.0, L1 = 5, L2 = 6.5, E2

1 = 1.51 . . . , E2
2 = 1.86 . . . and

C1 = 800, C2 = 240. The end point of the plot is at ro = 7.020 . . . , with B(ro) = 1.0026 . . . and
M2 = m(ro) = 2.022 . . . .

10. Final comments and conclusions

The general conclusion from this work is that one can effectively construct a wide variety of
models satisfying the restriction that L takes only a finite set of values, and that they do seem
to contain the models used in [1] as appropriate thin shell limits. We also remark that the
starting point for our construction is a variant of the Ansatz used in [7], where f is factored in
E- (the particle energy) and L-dependent terms. The possibility of multi-peaked structure in
the case of more than one value of L obtained here is also in correspondence with the general
results obtained in [7].
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