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a b s t r a c t

Different physical features of an organism are often measured concurrently, because their correlations

can be used as predictors of longevity, future health, or adaptability to an ecological niche. Since, in

general, we do not know a priori if the temporal variations in the measured quantities are causally

related, it may be useful to have a method that could help us to identify possible correlations and to

obtain parameters that may vary from population to population. In this paper we develop a procedure

that may detect underlying relationships. We do this by generalizing the recently introduced concept of

phenomenological universalities to the complex field. In this generalization, allometric growth is

described by a complex function, whose real and imaginary parts represent two phenotypic traits of

the same organism. As particular solutions of the resulting problem, we obtain generalizations of the

Gompertz and the von Bertalanffy–West growth equations. We then apply the procedure to two

biological systems in order to show how to determine the existence of mutual interference between

trait variations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The vast experimental and modeling literature on ontogenetic
growth is being continuously enriched by new extensions (Bajzer,
1999; Banavar et al., 1999; West et al., 2001; Damuth, 2001;
Dodds et al., 2001; Kokshenev, 2003; Santillán, 2003; Makarieva
et al., 2004; Bouvet et al., 2005; de Vladar, 2006; West and Brown,
2005; Dingli and Pacheco, 2007; Clauset and Erwin, 2008). These
studies are not immune from controversy (Makarieva et al., 2009;
Sousa et al., 2009; Zuo et al., 2009). Although equations such as
those of Gompertz and von Bertalanffy have been used for many
decades to obtain empirical fits to experimental results, it has
been cogently argued that there are general biological mechan-
isms that are responsible for ontogenetic growth (West and
Brown, 2005). These mechanisms appear to be at work in most
living systems, including tumors (Guiot et al., 2003; Delsanto
et al., 2004). More recently, Delsanto et al. generated a classifica-
tion scheme for what they called phenomenological universalities

(PUNs) (Castorina et al., 2006; see also Delsanto et al., 2008).
In this classification, the Malthusian, Gompertzian, and von
ll rights reserved.

arberis),

ozzi@polito.it (A.S. Gliozzi),
Bertalanffy–West equations emerge naturally as elements in a
hierarchy of PUN classes, called UN (Delsanto et al., 2008; Pugno
et al., 2008; Delsanto et al., 2009; Gliozzi et al., 2009).

Much less theoretical work has been devoted to investigate the
correlations between simultaneous changes in two or more
phenotypic features of a given specimen. Simultaneous measure-
ments are performed and their correlations are often analyzed in
order to predict the future of an organism or class of organisms.
For instance, weight and intraocular pressure were measured to
determine the possible correlation between obesity and glaucoma
(Mori et al., 2000), height and circumference of eucalyptus trees
were measured to investigate if the trees’ plasticity for growth
traits and form is under genetic control (Bouvet et al., 2005), head
width and tail lengths were measured in salamander larvae to
assess their phenotypic plasticity in response to predators
(Michimae and Hangui, 2008), waist and hip circumferences were
measured to be used as indexes of body fat distribution and
studied to determine the effects of smoking (Shimokata et al.,
1989b), height and weight were simultaneously determined to
obtain the body-mass index (Canessa, 2007), etc.

In this work we extend the formalism of Castorina et al. (2006)
to investigate the simultaneous temporal evolution of two
possibly correlated physical features. The quantities representing
these features are introduced as the real and imaginary parts of a
complex function. This function evolves in time according to the
UN formalism and permits a simultaneous fit to the two traits
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considered. Although the approach we study here will involve
first order time derivatives and two interacting functions, we
remark that these functions should not be interpreted as
populations, since, as we shall see, the genesis of the model
implies a common underlying growth force.

The details of the extended formalism, which we dub complex
phenomenological universalities (CUNs), are presented in Section
2. In Section 3 we apply the CUNs to analyze two of the sets of
simultaneous measurements mentioned above, i.e., the temporal
variations of body fat distribution in humans (Shimokata et al.,
1989b) and the height and circumference of eucalyptus trees
(Bouvet et al., 2005). In the first case, the UN classes do not give a
suitable description, while the new CUNs lead to good fits,
suggesting that there is a correlation between variations in the
amount of fat in different body parts. In the second case,
application of the CUNs does not significantly improve upon the
fits generated by the UNs. This implies that the mutual influences
between variations in the considered traits are either nonexistent
or weak. This result, which could not have been obtained a priori,
is confirmed by the small size of the parameters characterizing
trait correlation. Finally, in Appendix A we test the robustness of
our approach using simulated data sets.
2. The model

We wish to investigate the simultaneous evolution of two
phenotypic features of an individual. The quantities describing
these features will be represented by the real and imaginary parts
of the complex function Y(t)=y1(t)+ iy2(t). We postulate that the
evolution of Y(t) is determined by a generalization of the UN
growth equation (Castorina et al., 2006; Delsanto et al., 2008) to
the complex field,

dY

dt
¼ A½YðtÞ�YðtÞ: ð1Þ

Following the UN formalism, we assume that the evolution rate _A
of the complex dynamic functional A[Y(t)] can be expressed in
terms of a power series of A itself,

_A ¼
X1
n ¼ 1

fnAn; ð2Þ

where the coefficients fn are generally complex. If an adequate fit
is obtained by truncating the expansion at the N-th power of A,
then we say that the underlying phenomenology belongs to the
CUN universality class.

2.1. CU1—generalizing Gompertz

The class CU1 is obtained by truncating the expansion in Eq.
(2) to the lowest order (N=1):

_A ¼ f1A� ða1þ ia2ÞA; ð3Þ

where a� ða1þ ia2Þ ¼ f1. Integrating Eq. (1), we get,

YðtÞ ¼ Yð0Þexp �
A0

a
ð1�expðatÞÞ

� �
ð4Þ

Here A0=A01+ iA02=A(0) and Y(0)=y01+ iy02 give the initial values
of the dynamic functional and of the phenotypic quantities of
interest, respectively. By differentiating Eq. (4) we obtain the
complex Gompertz differential equation,

dYðtÞ

dt
¼ aYðtÞln

YðtÞ

Yð1Þ

� �
; ð5Þ

whose asymptotic steady state is given by Yð1Þ ¼ Yð0ÞexpðA0=aÞ.
To investigate the time dependence of the real and imaginary
parts of the solution, we introduce the parameter
k=k1+ ik2��A0/a, and define the time-dependent auxiliary
functions,

y1ðtÞ ¼ k1½1�expða1tÞcosa2t�þk2 expða1tÞsina2t ð6aÞ

y2ðtÞ ¼ k2½1�expða1tÞcosa2t��k1 expða1tÞsina2t ð6bÞ

The real and imaginary parts of Eq. (4) can now be expressed as

y1ðtÞ ¼ expðy1Þ½y01 cosy2�y02 sin y2� ð7aÞ

and

y2ðtÞ ¼ expðy1Þ½y01 sin y2þy02 cosy2� ð7bÞ

Eqs. (7) represent generalized, correlated Gompertz growth
functions. The phase plane trajectory is generated by a combina-
tion of a time-dependent stretching, determined by Eq. (6a), and a
rotation at a time-dependent rate, determined by Eq. (6b).

From Eqs. (6) we see that a2 characterizes oscillations with a
period 2p/|a2|, while for a1o0, as in the usual Gompertz
approach, ja1j

�1 determines the time scale over which these
oscillations are attenuated. If a1=0, both solutions are periodic
functions of the time and the trajectory in the y1–y2 phase plane is
a closed loop.

Since the coupling between y1 and y2 is given by the imaginary
parts of the parameters a and k, we may call a2 and k2 the
coupling parameters of the system. By taking a2=k2=0, we readily
verify that both functions become uncoupled and recover
conventional Gompertzian dynamics:

yiðtÞ ¼ y0i expfk1½1�expða1tÞ�g; ð8Þ

for i=1,2. If a1o0, the parameter k1 determines the asymptotic
values of the functions yi(t). The trajectory in the (y1,y2)—phase
plane is a straight segment whose slope is y02/y01.

The complex dimensionless parameter k=�A0/a is a measure
of the initial value of the dynamic functional in terms of
characteristic times. In particular, if a1o0, the asymptotic values
of both components are,

y1ð1Þ ¼ ek1 ðcosk2y01�sink2y02Þ ð9aÞ

y2ð1Þ ¼ ek1 ðsink2y01þcosk2y02Þ ð9bÞ

The final state (y1(N),y2(N)) can thus be obtained by combining
the stretching (or compression) of the initial vector (y01,y02) by a
factor of exp(k1) and a rotation by an angle k2. The parameter k2

determines the overall component admixture, which is maximal
for k2=p/2 and zero for k2=0. Therefore, a2 and k2 can be used as
parameters that characterize the correlation strength.

A different perspective ensues if we look at the real and
imaginary parts of the differential equation. If we define,

c1ðtÞ ¼ A01 cosa2t�A02 sina2t ð10aÞ

c2ðtÞ ¼ A01 sina2tþA02 cosa2t ð10bÞ

we easily obtain:

dy1

dt
¼ expða1tÞ½c1y1�c2y2� ð11aÞ

dy2

dt
¼ expða1tÞ½c2y1þc1y2� ð11bÞ

Evidently, this antisymmetric equation system yields a rich set of
solutions, which will be analyzed in detail elsewhere. Here we
just remark that, for instance, for those time stretches for which
both c140 and c240, both traits are self-activating, while y1

cross-activates y2 and y2 cross-inhibits y1.
Eqs. (11) are linear equations with time-dependent coeffi-

cients. These coefficients couple the evolution of the two traits
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already at the linear level. The CUN equations are therefore
fundamentally different from those obtained from population
models. In these models the coefficients are usually time
independent and, with a few exceptions, such as the Eberhardt
model, the interactions emerge only in the nonlinear terms
(Turchin, 2003).

The robustness of our method is explored in Appendix A,
where two artificial data sets, constructed for strong and weak
interactions, respectively, are used to study the applicability of
the procedure to systems having large experimental errors. There
we show that the method is indeed very robust, and thus we can
calculate the model parameters with high accuracy.

2.2. CU2—generalizing von Bertalanffy–West

Next, we truncate the expansion in Eq. (2) to the second order
(N=2):

_A ¼ f1Aþ f2A2 � aAþgA2: ð12Þ

Here a=a1+ ia2 and g=g1+ ig2. Integrating, we find,

AðtÞ ¼
aA0eat

aþgA0ð1�eatÞ
: ð13Þ

Eq. (1) can now be integrated, yielding

YðtÞ ¼ Yð0Þ 1þ
gA0

a ð1�expðatÞÞ

� ��1=g
: ð14Þ

Eq. (14) solves the generalized complex von Bertalanffy–West
equation,

dYðtÞ

dt
¼ aY1þgðtÞ 1�

YðtÞ

Yð1Þ

� ��g� �
ð15Þ

Here a¼ ½Yð0Þ��g½A0þa=g� and the steady state is given by

Yð1Þ ¼ Yð0Þ 1þ
gA0

a

� ��1=g
ð16Þ

It is convenient to rewrite Eq. (14) using polar coordinates,

YðtÞ ¼ Yð0Þ½rðtÞeiYðtÞ��1=g: ð17Þ

By defining the parameter k=k1+ ik2=gA0/a, we obtain the
following expressions for the amplitude r(t) and the phase Y(t):

r¼ fð1þk1Þ
2
þk2

2þ2ea1t½k2 sina2t�k1 cosa2t

�ðk2
1þk2

2Þcosa2t�þe2a1tðk2
1þk2

2Þg
1=2 ð18Þ

Y¼ arctg
k2�ea1tðk2 cosa2tþk1 sina2tÞ

1þk1þea1tðk2 sina2t�k1 cosa2tÞ

� �
: ð19Þ

Defining the auxiliary function

xðtÞ ¼
g2 ln r�g1Y
g2

1þg2
2

; ð20Þ

we can write the real and imaginary parts of the solution as,

y1ðtÞ ¼ exp �
g1 ln rþg2Y

g2
1þg2

2

 !
ðy01 cosx�y02 sinxÞ ð21aÞ

y2ðtÞ ¼ exp �
g1 ln rþg2Y

g2
1þg2

2

 !
ðy01 sinxþy02 cosxÞ ð22bÞ

If a1o0, both species reach a steady state, for which,

rs ¼ ½ð1þk1Þ
2
þk2

2�
1=2; Ys ¼ arctg

k2

1þk1

� �
ð23Þ

If g2=a2=A02=0, then k1=gA01/a1 and k2=0. Therefore, from Eqs.
(19) and (20), Y=x=0 and we recover the usual U2 result
(West et al., 2001; Castorina et al., 2006):

yjðtÞ ¼ ½1þk1ð1�eb1tÞ��1=g1 y0j; j¼ 1;2 ð24Þ

In this case, both components evolve independently, following the
conventional von Bertalanffy–West law.

The parameters a1 and a2 have the same meaning as in CU1.
The coupling between y1 and y2 is given by the imaginary parts of
the parameters a, k, and g. In the conventional von Bertalanffy–
West problem, the parameter g is associated with the energy
absorption mode. For instance, g=1/4 corresponds to a fractal
resource distribution, which has been proposed to be responsible
for growth in many organisms (West et al., 2001) and g=1/3
corresponds to a diffusive energy flux, which has been suggested
to be rate-determining in the growth of multicellular tumor
spheroids (Menchón and Condat, 2006). Here, we can ascribe a
similar meaning to g1, although the interpretation of g2 is likely to
depend on the particular problem under scrutiny. The influence of
the parameters k1 and k2 is similar to that of k1 and k2 in CU1,
although the trajectories in the phase plane are more complicated
and will be discussed elsewhere.
3. Two applications

Growth-related quantities are frequently fitted using either
the Gompertz or the von Bertalanffy–West functions, which arise
naturally from the ordinary UN formalism. But there are some
growth-related time-dependent quantities that do not obey these
laws. We have found that there are instances in which these
apparent deviations from universality can be explained by using a
CUN approach. In these circumstances, we suggest that the
presence of an underlying CUN-like behavior is a strong indication
of the existence of correlations between the modifications in the
corresponding traits. More precisely, the CUN formalism can be
directly used to quantify the intensity of the mutual influence
between traits. In this Section we discuss the results of two sets of
experiments in which it is impossible to establish a priori whether
such an interaction is present or relevant. In the first example we
find a strong interaction between the traits, while in the second
example we show that the mutual influence is either weak or
nonexistent.

3.1. Distribution of body fat in humans

Since the pattern of body fat distribution is known to be
related to a number of clinically relevant variables, Shimokata
et al. (1989a) studied five anthropometric ratios (waist–arm ratio,
waist–hip ratio, etc.) for 1179 men and women, and organized
their results according to their subjects’ ages. Here we analyze the
data for the simultaneous measurements of waist and arm
circumference in men. In Fig. 1 we present three sets of fits to
averages of Shimokata’s measurements of the arm circumference.
A priori we can argue that the nonmonotonicity of the data would
make it impossible for either a Gompertz or a von Bertalanffy–
West function to provide an adequate description. This is
confirmed by the unsatisfactory fits generated by U1 (solid line)
and U2 (not shown). Using the CU1 functions, on the other hand,
we obtain a suitable simultaneous fit to both the arm (dot-dashed
line) and the waist circumferences in terms of the generalized
Gompertz functions. CU2 yields an even better fit (dashed line).

The simultaneous arm and waist fits obtained by means of CU1
and CU2 are displayed in Figs. 2a and b, respectively. The
importance of the correlation is indicated by the presence of
sizable correlation parameters a2 and k2, and, in the case of CU2,
g2 (see caption). To allow for uncertainties in the initial values, y01

and y02 (corresponding to 20-year-old males) have been treated
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respectively, to CU1 and CU2 fits, where the companion trait (not shown) is the

waist circumference. U1 fails to describe the observed behavior. The U1

parameters are a=�2.03 (1/year) and k=0.0482. CU1 and CU2 parameters are

given in the caption to Fig. 2. The values of the coefficient of determination R2

are specified in the figure.

20 30 40 50 60 70 80
30

40

50

60

70

80

90

100

Time [Years]

Le
ng

ht
 [c

m
]

Waist

CU1

20 30 40 50 60 70 80
30

40

50

60

70

80

90

100

Time [Years]

Le
ng

ht
 [c

m
]

CU2

R2
A = 0.79034

Arm

R2
W = 0.95722

Waist
R2

A = 0.90652
Arm

R2
W = 0.96722

Fig. 2. (a) Simultaneous CU1 fits to the Shimokata et al. (1989a) data on the

temporal variation of human male waist and arm circumferences. Parameters are:

a1=�0.0714 (1/year), a2=0.0358 (1/year), k1=0.121, k2=0.0378, y01=30.8 cm, and

y02=79.1 cm. (b) CU2 fits to the same data. Here a1=�0.0229 (1/year),
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as adjustable parameters. However, the results of the
optimization are very close to the data corresponding to t=20
years, confirming the consistency of the fits. The CU2 fit (Fig. 2b)
is better than its CU1 counterpart, but at the expense of
introducing two new parameters.

In simple biological problems, growth rates are usually taken to
be constant. From Eq. (1) and A=A1+iA2 we find that we can identify
two growth rate components in the CUNs. In the CU1 description, a
simple computation shows that at short times (a2t51) the real
component A1(t) represents the ‘‘intrinsic’’ growth rate, i.e., the rate
at which each trait would evolve if there were no correlations, while
the imaginary component A2(t) indicates the evolution of the mutual
influence between traits. Later on, due to the relatively large value of
a2, both components contain a substantial admixture of intrinsic and
crossed contributions. At long times, both components decrease
exponentially, with a time constant |a1|�1, which would eventually
lead to change cessation (in this example, beyond human life
expectancy).
3.2. Allometry of tropical eucalyptus trees

As an example of noninteracting traits, we investigate the data
of Bouvet et al. (2005). These authors carried out experiments
with two types of tropical eucalyptus hybrids, measuring their
height and circumference in order to assess the influence of tree
density and to decide if the phenotypic plasticity for growth traits
in this species is under genetic control. In Fig. 3 we show
independent U1 fits for height and circumference of trees in an
experiment (what we call series t6 in Table 1). The results
obtained using CU1 and CU2 are visually indistinguishable from
those for U1 and we do not show them (the R2 values
corresponding to U1, CU1 and CU2 are almost the same). The
parameters obtained with U1 and CU1 are given in the upper row
of Table 1. The CU1 coupling constants, a2 and k2, are in all cases
very small in comparison with the corresponding real parts,
suggesting that circumference and height modifications are very
weakly related, if at all. By looking at the table, we also find that
a1 (CU1) has the same value as aH (U1), while the value of k1

(CU1) is very close to that of kH (U1), corresponding to height
(we remind the reader that in the limit a2, k2-0 the CU1
formalism yields a U1 Gompertzian with parameters a1 and k1).
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Fig. 3. Two independent U1 (Gompertzian) fits to the Bouvet et al. (2005) data on

eucalyptus growth. The data correspond to series t6 in table 1. Both the fits to the

tree height and to its circumference are very good, with coefficients of

determination R2
C ¼ 0:997 and R2

H ¼ 0:991 for the circumference and height,

respectively. The superimposed small oscillations are probably due to environ-

mental fluctuations and, as such, cannot be described by either the UN or the CUN

procedures. CU1 and CU2 fits do not exhibit any significant improvements. The

initial values are y0C=22.25 cm and y0H=720 cm. For the other parameter values

see Table 1.
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Table 1
Parameters obtained by fitting four species of eucalyptus (coded by t,r,x and c) growing under different environmental conditions (coded by 6, 11 and 25) using U1 and CU1.

Series code CU1 U1

a1 a2 k1 k2 Height Circumference

aH kH aC kC

t6 �0.0571 �0.000096 1.2202 0.0079 �0.0571 1.2024 �0.0543 0.9043

t11 �0.0400 0.000145 1.2547 0.0063 �0.0400 1.2549 �0.0492 0.9922

t25 �0.0359 �0.000083 1.1333 0.0070 �0.0359 1.1334 �0.0374 0.8163

r6 �0.0512 �0.000142 1.3092 0.0079 �0.0512 1.3094 �0.0503 1.0574

r11 �0.0403 0.000205 1.1984 0.0038 �0.0030 1.1985 �0.0446 0.9318

r25 �0.0424 �0.000095 0.8743 0.0035 �0.0434 0.0874 �0.0368 0.7037

x6 �0.0530 �0.000104 1.2589 0.0038 �0.0530 1.2590 �0.0423 1.1203

x11 �0.0348 �0.000009 1.2155 0.0036 �0.0395 1.2156 �0.0351 1.0618

x25 �0.0338 �0.000056 0.9342 0.0029 �0.0394 0.9343 �0.0364 0.7865

c6 �0.0557 0.000011 1.2256 0.0075 �0.0559 1.2258 �0.0602 0.9149

c11 �0.0492 0.000033 0.0940 0.0058 �0.0492 0.9400 �0.0557 0.6709

c25 �0.3860 �0.000050 0.7894 0.0047 �0.0386 0.7896 �0.0377 0.5475

Note the similitude between a1 (CU1) and aC and aH (U1). The parameter k1 is very close to kH (which characterizes height variations); due to the influence of the small but

nonvanishing k2 (CU1) we obtain a lower value of kC than that predicted in the limit (a2,k2)-0.
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We do not have data for the values of y1 and y2 at the planting
time, but a U1 extrapolation gives very reasonable results:
height=2.4 m and circumference=0.11 m.

Table 1, which exhibits the data corresponding to four species
of eucalyptus growing under different conditions, confirms the
robustness of our results. In all cases the U1 parameters aH and aC,
characterizing height and circumference growth, respectively, are
numerically very close to each other, suggesting the existence of
an underlying growth mechanism that affects similarly height and
circumference. We also remark that these values (especially aH)
are very close to the CU1 parameter a1. The same considerations
apply to the intrinsic parameters kH and kC (U1), and k1 (CU1).
The correlation parameters a2 and k2 are always very small,
confirming that both traits evolve independently from each other.
The initial values y0H and y0C (corresponding to 12 month-old
trees) obtained from the fit coincide to three significant figures
with the experimental data.

Since a2t51 over the whole length of the experiment, A1(t)
and A2(t) represent, respectively, the direct growth and the (weak)
mutual influence between traits over the whole time range.
Specifically, the smallness of A2 means that length growth is not
correlated to circumference growth.

Despite having more available parameters, fits carried out
using U2 or CU2 yield similar values of the coefficient R2 to those
obtained from their U1 and CU1 counterparts, which indicates
that eucalyptus growth is indeed Gompertzian.
0 10 20 30 40 50 60 70 80
0

0.01

Time [Months]

Fig. 4. Time dependence of the activation functions c1 and c2 for (a) fat

distribution in human males and (b) eucalyptus perimeter and height. The

relatively large values of c2 in Fig. 4a are responsible for a strong trait interaction

in the first case, which is absent in the latter.
4. Discussion

The temporal changes in two traits of the same individual may
be either completely independent or correlated. The CUNs
introduced in this paper are adequate tools to investigate
correlated growth processes, which cannot be described by the
ordinary (UN) growth laws. We have illustrated the formalism
with two applications. In the case of the eucalyptus trees we have
shown that the dynamics of two growth indicators (circumference
and height) can be described by usual Gompertz functions, their
correlations being very weak. This means that there is a separate
underlying growth mechanism responsible for the variations in
both traits. The examples analyzed here correspond to trees that
exhibit phenotypic plasticity. We are currently studying the
possible dependence of phenotypic plasticity on the strength of
the correlation between trait variations. In the case of human
body fat, on the other hand, separate growth equations are
inadequate and we must resort to the CUNs to obtain a
satisfactory description, which suggests that the corresponding
trait variations are strongly correlated.

The examples discussed in this paper are further clarified by an
application of Eqs. (11). The functions c1 and c2, which we plot in
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Fig. 4, determine the influence that each trait has on the other. For
human body fat (panel a), both traits have intrinsic activation
(c140), except for the latest stages (468 years), while, since c240
(except at the very beginning), y2 (waist) has a negative influence on
y1 (arm). This influence is responsible for the observed decrease in
arm circumference after the age of 50 years. The arm perimeter, y1,
on the other hand, has a positive influence on y2. At long times,
the decaying exponential prefactor in Eqs. (11) is responsible for the
disappearance of changes in the observed traits. The situation
depicted in panel (b), which corresponds to eucalyptus growth, is
quite different. The almost constant, positive c1 means that
variations in both circumference and height are controlled by the
exponential prefactor. The small size of c2 is responsible for the very
weak correlation between the measured eucalyptus traits.
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Appendix A. Robustness of the numerical approach

In many biological and biomedical applications the experi-
mental errors may be rather large. The question then arises of the
applicability of the approach in such a case. To answer this
question we propose the following numerical experiment: we
consider two datasets, generated by means of Eq. (7) for the
Gompertzian evolution of two correlated quantities y1 and y2

(called in the following the ‘‘exact’’ values). Conforming to the two
applications discussed in the paper, the two datasets will refer,
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Fig. 5. (a) and (b) plots of R2, as defined in Eq. (A1), vs. the amplitude B (in % of the corre

k1=0.5, k2=0.3, a1=�0.1, a2=�0.4; (b) k1=1.2, k2=0.3, a1=�0.05, a2=�0.005. In all cas

CU1 curves, ~y1ðtÞ and ~y2ðtÞ, which are virtually indistinguishable from the correspondi
respectively, to large and small interferences between the main
variables.

We then assume a variable amplitude B for the error bar and
call ‘‘experimental’’ data the values of y1(t) and y2(t) obtained by
adding, at each time t, an amount rB to the ‘‘exact’’ values, where r

represents a random Gaussian-distributed number with mean
value 0 and standard deviation 1. Finally, we call ‘‘theoretical’’
results the values of y1(t) and y2(t) obtained by applying the CU1
procedure to the ‘‘experimental’’ data.

A frequently adopted criterion to evaluate the quality of a
fitting procedure is the so-called R2, defined, in the case of a single
variable y, as

R2 ¼ 1�

PP
p ¼ 1ðyp� ~ypÞ

2PP
p ¼ 1ðyp�ypÞ

2
; ðA:1Þ

where y ¼ P�1
PP

p ¼ 1 yp, P is the number of experimental points
included in the dataset, yp are the ‘‘experimental’’ values of the
variable y, and ~yp the corresponding values obtained by the fitting
procedure.

Ideally, R2 should be equal to one. Its value, however,
decreases, for two reasons:
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ng ‘
~yðtÞ is not the best fitting function;

�
 the experimental error bars introduce in the numerator in

Eq. (A.1) terms such as ðyp� ~ypÞa0, which lower R2 down to a
value R2

E .

Obviously, the procedure must be, in the present situation,
generalized to the case of two interacting variables.
In Figs. 5a and b we plot the behavior of R2 vs. B for the two
cases considered (large and small interference between y1 and y2).
It can be easily seen that even for not too large values of B, R2

decreases quite fast: e.g. for B=10% of the corresponding yi,
R2E0.75 for y1 and o0.6 for y2. These low values of R2 can
be, however, attributed completely to the building up of
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‘exact’’ curves y1(t) and y2(t).
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experimental errors in R2
E (second reason above). In fact, if we plot

the values ~y1 and ~y2 vs. time obtained by means of the CU1
procedure (see Figs. 5c and d), the resulting values are almost
completely identical with the corresponding exact values. Indeed,
in the plot they cannot be distinguished. To conclude, from a
numerical point of view, the procedure presented in this paper is
remarkably robust, even for rather large values of the error bars.
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