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a b s t r a c t

This paper presents a formulation for analysis of thin elastic membranes using a rotation-free shell

element within an explicit time integration strategy. The applications presented are isotropic/

anisotropic rectangular membranes under shear forces and fabric drapes falling over a pedestal.

Results are compared with other numerical results existing in the literature.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The design of membranes for different applications like thin
films, solar sails or many textile applications relies strongly
on computer simulations. Thin films and textile fabrics easily
wrinkle or fold in the presence of low compressive stresses due to
the low bending stiffness.

Traditionally the wrinkling phenomena are analyzed with
tension field theory and modeled with membrane elements
endowed with a special kinematic or constitutive law that
precludes compression. The main limitation of these approaches
is that they do not provide the detailed wrinkled configuration. A
comprehensive overview of the work carried out on tension field
theory until 1990 can be found in [1] and references cited therein.
There are a large number of papers in the literature using
different techniques to introduce the non-compression behavior
in membranes elements. To mention just a few recent papers,
Raible et al. [2] developed a wrinkling algorithm for orthotropic
membrane materials based on a split of the deformation tensor.
Akita et al. [3] presented a projection technique to obtain a
modified plane stress elasticity matrix. This later model was
extended in Ref. [4] exploiting the elasto-plasticity concept
making it also applicable for both isotropic and orthotropic

materials. Pagitz and Abdalla presented a multi-grid approach
including an in-plane rotational DOF that defines wrinkle direc-
tion [5]. Wrinkling of inelastic membranes has been considered
by Mosler and Cirak [6]. To capture the detailed geometry of
wrinkles Weinberg and Neff [7] proposed a geometrically exact
thin membrane model including rotational DOFS and introducing
an artificial viscosity.

In general if the detailed configuration is desired, the simula-
tion must account for both membrane and bending effects, i.e.
shell elements are necessary. Besides that, due to a low elastic
shear modulus a full non-linear kinematic model for moderate
strains (including anisotropic behavior for fabrics) must be used.
The main aspects of the problem at hand may be summarized as
follows (see also Ref. [8] for fundamental aspects of thin shell
analysis including many examples):

� Kirchhoff–Love hypothesis for shell analysis are reasonable.
� Bending stiffness is very low but necessary to obtain: (a) size

and number of wrinkles and (b) detailed deformed 3D shapes.
� Fine discretizations may be needed.
� Large displacements and rotations must be considered.
� Anisotropic behavior with moderate strains must be

accounted for.

The use of standard shell elements, i.e. based on C1 continuity
requirements, may have problems due to the transverse shear
approaches commonly used. In the last decade an important number
of elements based on classical shell theory (i.e. neglecting transverse
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Finite Elements in Analysis and Design 47 (2011) 982–990



Author's personal copy

shear strains) have been proposed. All these approximations are non-
conforming and do not include rotation degrees of freedom (DOFs).
Most of the approximations compute the curvatures resorting to a
patch of elements and can be seen as a finite difference generalization
on an arbitrary triangular mesh, see for example [9–12]. These
elements have been extended in different ways including branching
shells [13], orthotropic materials [14,15] and textile composites [16].
Other approaches include the use of subdivision surfaces [17] or
discontinuous Galerkin methods [18]. Three of the main advantages
of rotation-free elements over standard elements are (a) as rotation
DOFs are not included, the total number of degrees of freedom is
drastically reduced (typically to 50% or 60%) with important savings
in both storage and CPU time, (b) problems associated with rotation
vectors or local triads (non-symmetric matrices for instance) that are
in general costly and difficult to parameterize and update do not
appear, and (c) no special techniques are necessary to deal with
problems appearing in the thin shell limit (e.g. shear locking). Some
drawbacks also exist, we can mention: (a) sensitivity to irregular
nodes (a regular node is one shared by six elements), (b) a direct
combination with other finite elements, like beam or solid elements,
is not straightforward and (c) coding may be more involved.

The large displacement static analysis of very thin shells
(pseudo-membranes) requires special techniques as the problem
is numerically sensitive. The main aspects to be considered and
the problems that commonly appear in these simulations are
(for implicit solvers):

� ill-conditioned stiffness matrix;
� special strategies may be needed due to null/negative stiffness

(membrane and bending);
� large number of DOFs leading to large storage capacity needs;
� shear locking (when using a degenerated-solid approach or

Mindlin-type elements);
� inclusion of geometric imperfections may be necessary to

trigger buckling;
� contact and self-contact may be present (low order elements

must be used);
� short steps and continuous reformulation of the stiffness

matrix are needed;
� non-symmetric matrices may appear due to: (a) contact with

friction and (b) local triads.

To circumvent some of the drawbacks listed above the finite
element considered here is a ‘‘non-conforming’’ (both membrane
and bending) rotation-free linear strain shell triangle resorting to
a four-element patch to compute the membrane and bending
strains [13]. Instead of using an implicit solver, pseudo-static
solutions are obtained using an explicit integration of the damped

momentum equations [19]. This strategy is similar to relaxation
techniques, see for example [20,21]. This approach allows to
easily dealing with the important instabilities associated with
wrinkle formation. Geometric imperfections and initial stress
states, typically introduced in implicit static solutions, are
avoided. Self-weight or an initial velocity is introduced instead
to trigger normal displacements.

The main targets of this paper are (a) to show that the linear
strains rotation-free shell triangle presented is very adequate for
analysis of thin membranes under a variety of conditions, (b) to
show that very accurate solutions are obtained for complex
wrinkling problems with rather coarse meshes, and (c) to demon-
strate that explicit integrators do not require special strategies to
deal with the low bending stiffness and the strong instabilities of
membranes.

2. The enhanced basic shell triangle (EBST)

In this section, for the sake of completeness, a brief summary of
the rotation-free shell triangle used in this work. More details can be
found in the original references [10,13,22]. The starting point of
the rotation-free so-called basic shell triangle (BST) is to discretize
the shell surface with a standard three-node triangular mesh. The
difference with a standard finite element method is that, for
the computation of strains within an element, the configuration of
the three adjacent triangular elements is also used. Then, at each
triangle a, four-element-patch formed by the central triangle and
the three adjacent ones is considered (see Fig. 1a).

In the original rotation-free BST element the displacement
field was linearly interpolated from the nodal values within each
triangle [9] leading to a constant membrane field. The curvature
field over each triangular element was computed using informa-
tion from the displacements of the three adjacent triangles [10].
In this work we use the enhanced basic shell triangle (EBST)
formulation as described in [13]. The displacement field in the
EBST element is interpreted quadratic for the nodal displacement
values at the six nodes of the four-element patch of Fig. 1.

2.1. Membrane strains computation

We use a standard quadratic approximation of the shell
geometry over the six-node patch of triangle (Fig. 1) as

u¼
X6

i ¼ 1

Liui ¼
X6

i ¼ 1

Liðui
0þuiÞ ð1aÞ

where ui ¼ ½xi
1,xi

2,xi
3�

T is the position vector of node i, ui
0 is the

position vector at the initial configuration, ui ¼ ½ui
1,ui

2,ui
3�

T is the
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Fig. 1. Patch of triangles for computation of strains in the EBST element M.
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displacement vector and

L1 ¼ Z1þZ2Z3 L2 ¼ Z2þZ3Z1 L3 ¼ Z3þZ1Z2

L4 ¼
Z1

2
ðZ1�1Þ L5 ¼

Z2

2
ðZ2�1Þ L6 ¼

Z3

2
ðZ3�1Þ ð1bÞ

with Z1 and Z2 the natural coordinates (also area coordinates) in
the parametric space (see Fig. 1b) and Z3 ¼ 1�Z1�Z2.

Note in Fig. 1 that, as usual, for the numeration of the sides and
the adjacent elements the opposite local node is used, and
naturally the same numeration is used for the mid-side points
G. Note also that the numeration of the rest of the nodes in the
patch begins with the node opposite to local node 1, then each
extra node and each mid-side point can be easily referenced.

From Eq. (1a) the gradient at each mid-side G point of the
central triangle M with respect to a local in-plane Cartesian
system (x1�x2) can be written as:

u01
u02

" #ðIÞ
¼

L1
01 L2

01 L3
01 LIþ3

01

L1
02 L2

02 L3
02 LIþ3

02

" #ðIÞ u1

u2

u3

uIþ3

2
66664

3
77775 ð2Þ

Note that the gradient depends on the three nodes of the main
element and (only) on the extra node (Iþ3), associated to the side
(I). This fact implies that a unique value will be obtained for the
gradient when it is evaluated from any of the two neighbor
elements. In Eq. (2) the super index surrounded by brackets
indicate evaluated at the center of side I, while the super index
on nodal shape functions and nodal coordinates indicate the node.

Defining the metric tensor at each mid-side point:

gðIÞab ¼uðIÞ0a �u
ðIÞ
0b ð3Þ

a linear interpolation can be defined over the element as

gðgÞ ¼ ð1�2Z1Þgð1Þ þð1�2Z2Þgð2Þ þð1�2Z3Þgð3Þ ð4Þ

and any convenient Lagrangian strain measure E can be computed
from it

E¼ f ðgÞ ð5Þ

We note that the definition of g in Eq. (4) is equivalent to using
a linear ‘‘assumed strain’’ approach [10,22].

In our case a unique point is used at the element center with
the average of the metric tensors computed at mid-side points.
This is equivalent to using one point quadrature for the assumed
strain field:

gðgÞ ¼
1

3
ðgð1Þ þgð2Þ þgð3ÞÞ ð6Þ

The element is then non-conforming. However, it satisfies the
‘‘patch test’’, and the approach can be used for large displacement
problems [10].

2.2. Computation of curvatures

Curvatures will be assumed to be constant within each
element. An averaging of the curvatures kab is made over the
element in a mean integral sense as

kab ¼
�1

A

Z
A

t3 �u0ba dA ð7Þ

Integrating by parts the right hand side of previous equation
gives

kab ¼
1

A

I
G

na t3 �u0b dG ð8Þ

k11

k22

2k12

2
64

3
75¼ �1

A

I
G

n1 0

0 n2

n2 n1

2
64

3
75 t3 �u01

t3 �u02

" #
dG ð9Þ

Adopting one-point integration on each side and using the
standard area coordinates (Zi) derivatives we have

k11

k22

2k12

2
64

3
75¼�2

X3

I ¼ 1

ZI
01 0

0 ZI
02

ZI
02 ZI

01

2
64

3
75 u01 � t3

u02 � t3

" #ðIÞ
ð10Þ

where A is the element area and t3 is the average normal for the
element, used as a reference direction. In this case t3 is simply
taken as the normal to the central triangle M. The gradient u0a at
each mid-side point G is computed from Eq. (2). Other alter-
natives for computing u0a are possible as discussed in [10]. For
future use it is convenient to introduce the vectors:

hab ¼
X3

I ¼ 1

ðZI
0au
ðIÞ
0b þZ

I
0bu
ðIÞ
0a Þ ð11Þ

The stretching of the shell in the normal direction is defined by
a parameter l as

l¼
h

h0
¼

A0

A
ð12Þ

where h and h0 are the actual and original thickness, respectively.
The second equality assumes that the deformation is isochoric

(and elastic). The assumption that the fiber originally normal to
the surface in the reference configuration is also normal to the
surface in the current configuration (Kirchhoff hypothesis) is
adopted herein.

2.3. Nodal force computation

The element is formulated for inelastic problems in the large
strain range, but the applications shown below are all elastic and
mainly in the small strain range. For completeness some details
will be given regarding the computation of equivalent nodal
forces under the hypothesis of small elastic strains. This allows
considering separately membrane and bending stresses.

For membrane forces the Green–Lagrange strain tensor on the
middle surface is used. This can be readily obtained from Eqs. (2),
(3) and (6):

EGL ¼
1

2

g11�1 g12

g12 g22�1

" #
ð13Þ

The membrane forces at the element center are computed
using a linear orthotropic stress-strain relation in material coor-
dinates (in Voigt’s notation):

N¼

N11

N22

N12

2
64

3
75¼

Dm
11 Dm

12 Dm
13

Dm
22 Dm

23

symm: Dm
33

2
64

3
75

E11

E22

2E12

2
64

3
75¼DmE ð14Þ

The membrane strains variation is

d

E11

E22

2E12

2
64

3
75¼ 1

3

X3

I ¼ 1

X4

J ¼ 1

LJðIÞ
01 jðIÞ

01 � duJ

LJðIÞ
02 uðIÞ

02 � duJ

LJðIÞ
02 uðIÞ

01 � duJþLJðIÞ
01 uðIÞ

02 � duJ

2
664

3
775¼ Bmdap ð15Þ

where for each mid-side point (G¼ I) there are contributions from
the four nodes (J). In Eq. (15) Bm is the membrane strain-
displacement matrix and ap is the patch displacement vector.
The form of Bm can be found in [10,22].
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For bending stresses a similar relation is written between
moments and curvatures as

M¼

M11

M22

M12

2
64

3
75¼

Db
11 Db

12 Db
13

Db
22 Db

23

symm: Db
33

2
664

3
775

k11

k22

2k12

2
64

3
75¼Dbj ð16Þ

Curvature-displacement variations are more involved. The
resulting expression is (see [10,22] for details)

dj¼ d

k11

k22

2k12

2
64

3
75¼ 2

X3

I ¼ 1

ZI
01 0

0 ZI
02

Z1
02 ZI

01

2
64

3
75X4

J ¼ 1

LJðIÞ
01 ðt3 � duJÞ

LJðIÞ
02 ðt3 � duJÞ

2
4

3
5

�2
X3

I ¼ 1

ðZI
01r1

11þZI
02r2

11Þ

ðZI
01r1

22þZI
02r2

22Þ

ðZI
01r1

12þZI
02r2

12Þ

2
64

3
75ðt3 � duIÞ ¼ Bbdap ð17Þ

where the projections of the vectors hab over the contravariant
base vectors ~u 0a have been included:

rd
ab ¼ hab � ~u 0d ð18Þ

The form of the bending strain matrix Bb can be found in
[10,22].

Finally, the equivalent nodal forces at element level (re) can be
computed as:

re ¼ Ae½BT
m,BT

b �
N

M

� �
�

Z
A

LT f dA ð19Þ

where Ae is the element area, L is the shape function matrix and f
is the uniformly distributed loading vector.

The linear constitutive behavior of Eqs. (14) and (16) is only
valid for initially flat shells and small strains. For large strains or
non - linear constitutive models a numerical integration across
the thickness is performed as detailed in [10].

3. Solution strategy

An adequate solution strategy is crucial for problems that present
instabilities or negative stiffness along parts or the entire equili-
brium path. Flat membranes under shear present typically a stable
symmetrical bifurcation point with a strongly non - linear post-
critical behavior where the number of wrinkles increases with shear.
The final state also includes two boundary zones in a slack state.
Fabric drape undergoes large displacements, rotations and shear
strains. Simulations must deal with large free-hanging lengths,
extensive folds and fabric-to-solid contact. The strategy adopted
here is a sort of dynamic relaxation and the main aspects are:

� An explicit time integrator is used [Box 1]. This approach
allows to easily dealing with the important instabilities asso-
ciated to wrinkling.

� A strong damping is introduced to obtain a pseudo - static
solution
� When necessary, self-weight (or an initial velocity field) is

introduced to trigger normal displacements, or to avoid a
completely slack state over parts of the membrane.

4. Examples

The formulation presented has been implemented in the
explicit dynamic finite element code STAMPACK used for the
computations [19]. Results have been obtained with an Intel Core
Duo E6550 (2.33 GHz) CPU under Windows XP operating system.
As no stiffness matrices are necessary the memory requirements
are quite low. CPU times are given for reference to show the
excellent performance of the proposed strategy.

4.1. Square thin film under in-plane shear

This example has been previously analyzed in [23] using a
commercial code [24]. Experimental data is also available [25].
The problem consists of a square membrane (see Fig. 2) with side
a¼229 mm made of a thin film of Mylar with thickness
h¼0.0762 mm and density d¼ 1000 kg=m3. The Mylar mechan-
ical properties are E¼ 3790 N=mm2 and n¼ 0:38. The top and
bottom edges are clamped and the lateral edges are free. The top
edge is subjected to a uniform horizontal displacement D¼ 1 mm
along the edge.

The geometry, material properties and boundary conditions
have been taken from [23]. The action of gravity has been
included along the (negative) z-direction with two aims: (1) to
avoid the inclusion of geometric imperfections (or initial velo-
cities) and (2) to induce negative displacements on the free edges.

Three uniform structured meshes were considered with
26�26, 51�51 and 101�101 nodes with 1250, 5000 and

Box 1–Explicit time integration scheme [22]

At each time step n where displacements have been computed:
1. Compute the internal forces rn.
2. Compute the accelerations at time tn: €un ¼M�1

d ½rn�Cd _un�1=2�
where Md is the diagonal (lumped) matrix and Cd is a damping matrix (taken proportional to Md).

3. Compute the velocities at time tnþ1=2 ¼ tnþ1
2Dt: _unþ1=2 ¼ _un�1=2þ €unDt

4. Compute the displacements at time tnþ1 ¼ tnþDt: unþ1 ¼ unþ _unþ1=2Dt
5. Update the shell geometry
6. Check frictional contact conditions

a

a

Δ=1

x

y

Fig. 2. Square thin film under in-plane shear.
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20 000 EBST elements, respectively. In the sequel these meshes
will be referenced as mesh 25, 50 and 100, associated to the
number of subdivisions along each side.

Fig. 4 plots the out-of-plane displacements for the coarsest mesh
25 for the two possible mesh orientations (see Fig. 3). The plot on
the left corresponds with the tensile orientation for the present

W
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0.3
-0.1
-0.5
-0.9
-1.3
-1.7
-2.1
-2.5
-2.9
-3.3

W
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0.7
0.3
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-0.9
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-2.5
-2.9
-3.3

Fig. 4. Square thin film under in-plane shear. Out-of-plane displacement for the coarsest mesh: (a) tensile orientation and (b) compression orientation.
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Fig. 5. Square thin film under in-plane shear. Out-of-plane displacement profiles along the square center: (a) y¼ a and (b) x¼ a=2.

Fig. 3. Square thin film under in-plane shear. Possible orientations of the 26�26 mesh (coarsest mesh): (a) along tensile orientation and (b) along the compressed

diagonal.
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problem, where each square is divided in two triangles along the
tensile diagonal. Clearly this mesh orientation behaves more
flexible and converges faster to the solution. For that reason only
this orientation will be considered in the sequel. It is important to
remark that the meshes with the orientation along the compressed
diagonal also converge to the solution but for finer meshes.

Fig. 5 plots two out-of-plane displacement profiles along the
center of the square in both Cartesian directions. The plot on the left
corresponds to y¼114.5 [mm] while the plot on the right corre-
sponds to x¼114.5 [mm]. The results for the three meshes defined
above are included. These deformed configurations are similar to the
experimental evidence [25] and also coincide with the numerical

results presented in Ref. [23] obtained with a commercial code [24]
using the S4R5 quadrilateral element. In that work mesh 100 was
used and reported as the minimum acceptable mesh according to
their convergence studies. From the plots in Fig. 5 it can be seen that
meshes 50 and 100 give almost identical results, while the differ-
ences with mesh 25 are quite small. For practical purposes the
coarsest mesh seems to be enough to obtain the details of the final
deformed shape. This is due to the (assumed strain) improved
membrane behavior of the EBST element that is notably superior
to the bi-linear quadrilateral.

Finally, Fig. 6 shows the deformed configurations for the
coarse and fine meshes used. A magnification factor of five for

X

Y

Z

X

Y

Z

Fig. 6. Square thin film under in-plane shear. Perspective view of the deformed configuration (5X in Z): (a) coarse mesh 25 and (b) fine mesh 100.
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Fig. 7. Anisotropic rectangular membrane: (a) geometry and (b) final deformed configuration (2X for Z).
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Fig. 8. Orthotropic rectangular membrane: (a) critical displacement vs. number of DOFs and (b) profile of critical mode for the different meshes.
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the normal displacement has been chosen. It can be observed the
excellent results obtained with the coarsest mesh that involves
only 1872 DOFs compared with the mesh used in [23] that has
over 50.000 DOFs. The CPU times for the simulations are 32, 260
and 2080 s, respectively, for each of the three meshes considered.

4.2. Anisotropic rectangular membrane under shear

This example has been studied in [25] using solid elements as a
reference solution to assess an algorithm for wrinkling prediction.
Fig. 7a shows the geometry of the rectangular domain. The mem-
brane is clamped at the longest sides and free at the shortest side.

The membrane is first stretched in the shortest direction
(uy¼1 mm) and is then sheared moving the upper edge
(ux¼10 mm). The membrane thickness is h¼0.2 mm and the
constituent material has orthotropic properties. The linear rela-
tion (plane stress) between stresses and strain (in principal

directions of the material) is given by:

s11

s22

s12

2
64

3
75¼

112:375 25:480 0:000

25:480 112:375 0:000

0:000 0:000 11:32

2
64

3
75

e11

e22

2e12

2
64

3
75MPa ð20Þ

For the present example, the angle between the global x�y

direction and the orthotropic principal direction is a¼ 303. Self-
weight (density d¼ 1000 kg=m3) is assumed to act along the
negative direction of the global z-axis.

Five different structured meshes with the same coordinate incre-
ment in both in-plane directions and with the triangles oriented
along the tensile diagonal have been considered. The meshes are
identified with the number of divisions per side (e.g. 24�12).

For reference (and not as part of the strategy proposed) an initial
buckling analysis is performed (with an implicit code) to compute
the displacement ux for which wrinkling starts and the buckling
mode appears. Fig. 8a plots the critical displacement ux as a function
of the discretization (number of DOFs). Fig. 8b shows the profiles of
the buckling mode along the x direction at the coordinate y¼50 mm
for the different meshes considered. Clearly, the coarsest mesh is
insufficient but the rest give similar profiles, showing the excellent
convergence properties of the EBST element.

Fig. 9 shows the displacement profiles for the final shear displace-
ment of ux¼10 mm. Note that in contrast with the buckling mode,
where the displacements are almost null at the central part (Fig. 8),
the whole membrane is wrinkled for this level of shear. The
displacements corresponding to the two finest meshes are practically
coincident and have minor differences near the free edges. Fig. 7b
shows a view of the final deformation. The vertical displacements
have been amplified twice for visualization purposes. The results
shown are similar to those presented in [2] where the number of
DOFs used is one order of magnitude higher (120 000 DOFs).

For the 72�36 mesh the CPU time amounted to almost 4 min.

4.3. Circular fabric draped over a circular pedestal

This example simulates a circular (diameter 25.4 cm) wool fabric
laid over a circular (diameter 12.7 cm) pedestal. Owing to symmetry,
only a quarter of the fabric is modeled with the symmetric boundary
conditions prescribed. To simplify the simulations the nodes on the
pedestal are all assumed fixed (contact could have been considered
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36x18
48x24
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96x48

Fig. 9. Anisotropic rectangular membrane. Deformed configuration for ux¼10 mm.

Displacement profiles for different meshes.
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Z

Fig. 10. Circular fabric over a circular pedestal. Final deformed configurations for two different loading histories.
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instead). Gravity is the only action. The mechanical properties of the
fabric are those indicated in Ref. [26] and are defined by

Nxx ¼ 1096exx

Nyy ¼ 744:3eyy

Nxy ¼ 40:96gxy

2
64

3
75½N=m�

Mxx ¼ 8142� 10�9kxx

Myy ¼ 6174� 10�9kyy

Mxy ¼ 0

2
664

3
775½Nm=m�

with thickness t¼0.593 mm and surface density d¼ 0:1898 kg=m2.
This type of problems does not have a unique solution and is strongly
dependent on the initial conditions or the loading history. Fig. 10
shows two possible final configurations for two slightly different
loading histories. The simulation corresponding to the figure on the
right includes a point load at the center of the external circle directed
downwards. This load begins with value 0.002 N and goes down
linearly to zero at half the simulation time. Note that as only one
quarter of the circle has been discretized, the number of possible
solutions might have been reduced. However, due to the orthotropic
properties of the material this does not seem very probable. Besides
the final deformed configuration with one (right) and two (left)
waves shown in Fig. 10 there exist other possible solutions with
different number of waves, for example a final configuration with
1.5 waves can be easily obtained. Note that a higher number of waves
implies a larger bending energy and the configuration may be rather
unstable.

Two meshes were considered to assess convergence, a coarse
mesh with 600 regular triangular elements and a fine mesh with
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Fig. 12. Square fabric over a pedestal: (a) intermediate configurations and (b) final configuration.
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2400 triangular elements (as shown in Fig. 10). The first mesh is
intermediate from the two meshes used in the reference with 100
and 400 quadrilaterals equivalent to 200 and 800 triangles,
respectively. Results obtained with both meshes are almost
identical and compare well with the numerical results presented
in [26] (indicated in Fig. 11 as ‘‘SL’’).

4.4. Square fabric over a square pedestal

This example, also taken also from Ref. [26], is a square (side
80 cm) wool fabric over a square (side 40 cm) pedestal. Owing to
symmetry, only a quarter of the fabric is modeled with the
symmetric boundary conditions prescribed. The same material
properties as in the previous example were used. The nodes on
the pedestal are all fixed. The fabric has an internal cut at 451 that
requires a special meshing strategy when using quadrilaterals but
is straightforward when using triangles. Gravity is again the only
action. The results shown in Fig. 12b agree with those in [26]
where numerical and experimental results are presented. The
time needed to complete the simulation was 143 s. Fig. 12a shows
two intermediate configurations before the fabric stops moving.

5. Conclusions

The enhanced membrane behavior of the rotation-free EBST
element is crucial to obtain accurate solutions with rather coarse
meshes. Two advantages of the shell triangle used (superior to
any bi-linear quad) are that in its explicit form it can be used in
contact problems without major problems and that it adapts
easily to complex geometries.

Explicit integrators also do not require special strategies to
deal with the low bending stiffness and the strong instabilities of
membranes. This has important consequences for the analyst who
does not need to devote time for finding the adequate strategy
(buckling mode imperfection or adequate continuation para-
meters) necessary to arrive to the final correct result.

Other successful application of the rotation-free EBST triangle
to the analysis of membranes can be found in [10,22,15,14].
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[22] E. Oñate, F. Flores, Advances in the formulation of the rotation-free basic shell

triangle, Computer Methods in Applied Mechanics and Engineering 194

(2005) 2406–2443.
[23] A. Tessler, D. Sleight, J. Wang, Effective modeling and nonlinear shell analysis

of thin membranes exhibiting structural wrinkling, AIAA Journal of Space-

crafts and Rockets 42 (2005) 287–298.
[24] ABAQUS/Standard, User’s Manual, version 6.3.1, Hibbit, Karlson and Sorensen

Inc., Pawtucket, EE.UU, 2002 /www.abaqus.comS.
[25] J. Leifer, J. Black, W. Belvin, V. Behun, Evaluation of shear compliant boarders

for wrinkle reduction in thin film membrane structures, in: Forty Fourth

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference, Norfolk, Virginia, USA, 2003, pp. 5324–5330.
[26] K. Sze, X. Liu, Fabric drape simulation by solid-shell finite element method,

Finite Elements in Analysis and Design 43 (2007) 819–838.
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