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This work is devoted to furthering the understanding of few- and many-body inhomogeneous sys-
tems in the framework of the statistical mechanics of fluids. The three-body system consisting in
three hard spheres (HS) confined in a spherical cavity at constant temperature is studied. Its canon-
ical ensemble partition function and thermodynamic properties (such as the free energy, pressures,
and fluid-substrate surface tension) are analytically obtained as a function of the cavity radius. This
is the first time that a three-body fluid-like system is exactly solved. Symmetry relations between
this system and its dual system composed of three HS surrounding a hard spherical object are ana-
lyzed. They allow to analytically obtain the canonical partition function of the dual system and its
thermodynamic properties. Finally, the behavior of the many-body system of HS in contact with a
hard spherical wall in the low density limit, is studied, focusing on the curvature dependence of the
fluid-substrate surface tension and finding exact expressions for the Tolman’s length and the second
order term in curvature. © 2011 American Institute of Physics. [doi:10.1063/1.3609796]

I. INTRODUCTION

The exact study of few-body systems played an impor-
tant role in the development of several branches of the phys-
ical science. Some examples are the two-body mutually or-
biting system in classical and relativistic mechanics, as well
as the one electron atom in quantum mechanics. On the con-
trary, the few-body systems were largely ignored in statisti-
cal mechanics. Recently, the statistical mechanical properties
of several two-body systems of simple particles were exactly
determined.1–4 These works analytically evaluate the parti-
tion function of two confined particles and trace the path to
the thermodynamic interpretation of its properties in an ex-
act framework. The novel thermodynamic approach enables
the exact evaluation of the thermodynamic properties without
claiming the usual thermodynamic limit that only applies to
systems of many particles in large volumes.3 In the first in-
stance such a treatment was focused on hard potentials but
later it was extended to more realistic interactions.4

The present work is part of a series of papers whose main
goal is to advance in the understanding of the statistical me-
chanics and thermodynamic properties of fluid-like small in-
homogeneous systems of confined particles. In particular, this
work is devoted to obtain the exact solution of the three-body
system of hard spheres (HS) confined in a hard wall spherical
cavity (HSC), the 3-HS-HSC system, and also to establish a
connection between this and other systems.

The structure of the paper is as follows: Sec. II is de-
voted to analytically obtain the canonical ensemble partition
function of the 3-HS-HSC system over all density ranges go-
ing from the smallest radius, or caging limit, to R → ∞. The
canonical partition function for its dual, or conjugated, system
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composed of 3-HS outside a hard spherical object is also pre-
sented. In Sec. III, the thermodynamic properties of both sys-
tems and the symmetries between them are analyzed. There
the exact curvature dependence of their fluid-substrate sur-
face tension is derived. In addition, the HS many-body sys-
tem in contact with hard spherical substrates is studied in the
low density limit, both for the concave and convex curved sur-
faces. An interesting result presented in this section is the ex-
act dependence of the (fluid-substrate) Tolman’s length up to
the first order in density. Finally, the main conclusions are
summarized in Sec. IV.

II. PARTITION FUNCTION

I consider a system composed of N = 3 particles con-
fined in some region of the space by the action of an external
potential ϕ = ∑

ϕ(ri ). Each pair of particles interacts via a
two-body potential φ(ri j ), which produces an interaction po-
tential between particles φ = ∑

φ(ri j ) . The classical canon-
ical partition function of such a system is given by

Q = �−3DI3 Z3, (1)

Z3 =
∫ ∫ ∫

eAeBeCeABeBCeAC drAdrBdrC , (2)

where Z3 is the configuration integral (CI), �

= h/(2πm kB T )1/2 is the thermal de Broglie wavelength,
T denotes the temperature, β = (kB T )−1 is the inverse
temperature, kB is the Boltzmann constant, h is the Planck’s
constant, and D is the dimension of the space. I3 in
Eq. (1) is a constant factor equal to 1/3! or 1 for the case
of identical indistinguishable particles or distinguishable
particles, respectively. In Eq. (2) ei j = exp[−βφ(ri j )],
ei = exp[−βϕ(ri )], with ei = 0 if the i-particle is outside
of the confinement region and the domain of the integrals is
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the complete space. This convention about the integration
domain is adopted for all the spatial integrals in the present
work. The thermodynamic connection is established by relat-
ing in the usual way the partition function to the Helmholtz
free-energy,

F = −β−1 ln(Q). (3)

The CI of an N-particles system can be expressed in terms of
the CI of the k-particles system with 1 ≤ k ≤ N . Thus, for
three particles is

Z3 = −2Z3
1 + 3Z1 Z2 + τ3, (4)

Z2 = Z2
1 + τ2, (5)

where the τk are the cumulants or semi-invariants of Thiele
[also called Ursell functions5, (p. 135)]. τk is an integral over
the available configuration space of k-particles5 (p. 126). In
the theory of real gases it is assumed that τk ≡ k!V bk , where
V represents the volume of the system. In particular, for ho-
mogeneous systems in a large enough V the k-th-cluster inte-
gral bk = bk(∞) is a pure function of T (independent of both
V and the shape of the vessel). In this work it is used the no-
tation τk ≡ k!Z1bk(p) to emphasize that bk(p) and τk depend
on the characteristics of the vessel that confines the system,
herefrom the pore. This dependence is produced by the exter-
nal potential and implicitly contains the geometrical attributes
associated with the shape of the pore.

Now I will consider the CI of 3-HS confined by a hard
wall potential in a physical region � ⊂ E, where E = R3 is
the euclidean space and � is its subset. Particularly, I will
focus on a spherical cavity given by � = �sph, which defines
the 3-HS-HSC system. To keep a simple notation I fix the
hard repulsion distance between particles σ as the unit length
(σ = 1). Therefore, the radius of the empty cavity is R + 1/2,
being R the effective radius. For this system one can write

ei (r) =
{

1, if r ∈ �sph

0, if r /∈ �sph .
(6)

It is a unit-step in-function, being ei = 1 if the i-particle is in
the spherical pore and zero otherwise. On the other hand, ei j

is a unit-step out-function, for which ei j = 1 if the j-particle
is outside of the hard-core of the i-particle and zero other-
wise. For the HS-HSC system Z1(R) and Z2(R) are known
functions.2 Equation (4) shows that the knowledge of τ3 al-
low obtaining the analytic expression for Z3(R). The graph
representation of the CI given in Eq. (2) is

Z3 =
A

BP

C

, (7)

where the continuous lines indicate the in-bonds, while the
dashed lines are used to mark the out-bonds. The cumulant τ3

is obtained from Eq. (7) by replacing

e = 1 + f, (8)

for each ei j -bond and taking only the ABC connected graphs,
or ABC-clusters, which consist of graphs that are at least

simply connected by fi j -bonds. Since each topologically dif-
ferent labeled ABC-cluster appears once time in τ3,

τ3 = 3 +
P B

A C

P

A C

B

,

=
∫ ∫ ∫

eAeBeC(3 fBC fAC + fAB fBC fAC) drAdrBdrC,

(9)

where the factor 3 results from the three different clusters
with the same value. Note that − fi j is an in-function and I
have adopted a convention in which each fi j -bond involves
an implicit −1 factor. Hence, the left hand side graph in
Eq. (9) is positive, but the right hand side one is negative. This
latter graph, the fully connected or star graph of four vertex,
is the most difficult integral to be analytically solved. In the
last years, the term B[1]

4 (s) one of the three parts of the fourth
virial coefficient for a HS binary fluid mixture (with hard re-
pulsion diameters σ1 = 1 and σ2 = s) was analytically evalu-
ated. The expression for B[1]

4 (s) was first obtained by Blaak6

for 0 ≤ s ≤ 2/
√

3 − 1. Recently, Labík and Kolafa presented
the expression for B[1]

4 (s) in the range s ≥ 2/
√

3 − 1 (see
Eqs. (6) and (32) in Refs. 7 and 8). B[1]

4 (s) relates to the
3-HS-HSC system through the replacement s = 2R − 1 and
the relation7

8B
[1]
4 (R) = − 3 + 3− 3 +

P

A C

BP

A C

B P

A C

BP B

A C

.

(10)
From Eqs. (9) and (10) it follows that

τ3 = 8B
[1]
4 (R) +3 +3

P

A C

BP B

A C

. (11)

The analytical expression for all the non-star graphs that ap-
pear in Eqs. (9)–(11) were already calculated and are summa-
rized in Appendix.6 From Eqs. (4), (10), and (11) it is possible
to obtain the analytical expressions for τ3, the star-graph, and
Z3. By introducing the minimum pore radius Rmin = 1/

√
3 ,

Z3 can be written as

Z3 =
⎧⎨
⎩

h, if R ≥ 1
h + 
τ3, if Rmin ≤ R < 1
0, if 0 ≤ R < Rmin,

(12)

h = π2

70

[
1

9
q(65 + 183R2 − 342R4 + 240R6)

− 9

2
p1(5 + 12R2) + p2 R(105 − 280R2 + 840R4

− 1152R6 + 640R8)

]
, (13)

q =
√

3R2 − 1, p1 = arctan (2q) , p2 = arctan (q/R) ,

(14)
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τ3 = 64

945
π3(−10 + 81R2 − 105R3

+ 105R6 − 81R7 + 10R9),

= −128

189
π3(1 − R)5

(
1 + 5R + 69

10
R2 + 5R3 + R4

)
,

(15)

where for 0 ≤ R < Rmin the three particles do not fit in the
pore and in consequence Z3(R) = 0. Equation (12) shows that
Z3(R) is a continuous non-analytic function with two non-
analytic points at R = Rmin and R = 1. For the case R = 1

there is a discontinuity in its fifth-order derivative. The an-
alytic behavior of Z3 in the caging limit R → Rmin (with
R � Rmin) is given by

Z3 = 9216 33/4
√

2

385
π2

(
R − 1√

3

)11/2[
1 − 3

4 ∗ 13

×
(

R − 1√
3

)]
+ O

[(
R − 1√

3

)15/2]
, (16)

that is discontinuous in its sixth-order derivative at R = Rmin.
On the other hand, the expression of τ3 is

τ3 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2π3

945

(
320 − 2592R2 + 3465R3 − 1890R5

+ 2592R7 − 1440R9
) + h + 
τ3 �(1 − R), if R ≥ Rmin

2π3

27 R3
(
3 − 54R2 + 96R3 − 32R6

)
, if 1

2 ≤ R < Rmin

128π3

27 R9, if 0 ≤ R < 1
2 ,

(17)

where �(R) is the Heaviside unit-step function and τ3(R) is
a continuous non-analytic function with three non-analytic
points at R = 1/2, Rmin and R = 1. The dependence of the
star-graph on R is presented in Appendix.

The one-body density distribution ρ(r) develops a homo-
geneous density central plateau for R > 2, which extends in
the region 0 ≤ r ≤ R − 2. This homogeneous density is given
by

ρh(r ) = 3Z−1
3 Z2(R, l = R − 1), (18)

where Z2(R, l) corresponds to the CI of the 2-HS-HSC with
a central hard core with radius l.9 Equation (18) also gives for
R > 1 the density at the center of the pore, ρ0(R), which is
zero for Rmin < R < 1. The density plateau is superimposed
on a constant pressure plateau. It is interesting to mention that
in a region of constant density the several different definitions
for the pressure tensor converge to a unique and well defined
scalar pressure. Indeed, for systems of two confined HS it was
demonstrated that the scalar pressure in the plateau region is
equal to the thermodynamic pressure.3 Other important char-
acteristic of ρ(r) is its contact value ρc = ρ(r = R), which is
related to Z3 by9

ρc = 3−1
(
4π R2

)−1
Z−1

3 ∂ Z3/∂ R. (19)

A. The dual system

In the paragraphs above it was solved the CI of 3-HS
confined in a spherical cavity, that is in a region where �

= �sph. However, the analysis developed in Eqs. (1)–(9) can
also be successfully applied to non-spherical cavities and un-
bounded regions of the space. Here, I consider 3-HS confined

in the complement set of �sph defined as � = �̄sph = E\�sph

(note that for physical purposes the inclusion of the common
boundary in �sph or �̄sph has not relevance). This � region
corresponds to the exterior of a hard spherical object (HSO)
and thus defines the 3-HS-HSO system. In order to establish
the relationship between the CI functions associated with the
3-HS-HSC and the 3-HS-HSO systems, I introduce the nota-
tion Z̃ N for the CI of an N-particles system confined in �̄sph

and τ̃i for its i-th order cumulant. Therefore, for the 3-HS-
HSO it follows that

Z̃3 = −2Z̃3
1 + 3Z̃1 Z̃2 + τ̃3. (20)

Note that, if ei given in Eq. (6) were re-defined as: ei (r)
= 1 if r ∈ � and zero otherwise, all the graph notation in
Eqs. (7)–(11) would be still valid for the �̄sph-constrained sys-
tem. However, I keep Eq. (6) unmodified to relate all the graph
description to the �sph region. Thus, the CI of the 3-HS-HSO
system is

Z̃3 = −
A

BP

C

, (21)

where each dashed line between the pore and a particle is
an fi -bond that corresponds to the fi function. The func-
tions fi and ei are related to each other by Eq. (8). It is
evident that − fi is an out-function ( fi (r) = −1 if r /∈ �sph

and zero otherwise). In this context, Eq. (9) for 3-HS-HSO
is

τ̃3 = −−3
P B

A C

P

A C

B

. (22)
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Using Eq. (8) each fi -bond is replaced to obtain

τ̃3 = −8B
[1]
4

− − 6 + 6 2 −3 −
P B

A C A C

BP P B

A C

P B

A C

P

A C

B

, (23)

where B[1]
4 is the same term that appears in Eq. (10). The graphs in Eq. (23) are reducible because they have articulation nodes.5

The irreducible graphs in terms of which these reducible graphs can be factorized are summarized in the Appendix. The obtained
expression for τ̃3 is

τ̃3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9π2

2 V∞ + π3

3780

(
1345 − 23652R2 − 27720R3

+15120R5 − 20736R7 + 11520R9
) − h �(R − Rmin), if R ≥ 1

2

9π2

2 V∞ + 2π3

27

(−243R3 + 192R6 − 64R9
)
, if 0 ≤ R < 1

2 ,

(24)

where V∞ is the volume of R3. Thus, given that Z̃1 and Z̃2 are
known2, 3 Eq. (20) provides the exact analytical expression for
Z̃3 in the range R > 0. The complete expression for Z̃3 due
to its extension is not presented.

III. THERMODYNAMICS

In Refs. 3 and 4 it was developed a thermodynamic ap-
proach suitable to study the properties of few-body inhomo-
geneous systems in the case that its partition function (and
therefore its free energy, F) is analytically known. Here, I
briefly present the procedure followed in those works and ap-
ply it to study the 3-HS spherically confined system.

Basically, the thermodynamic description for both few-
and many-body inhomogeneous systems in a unified approach
is done by introducing a set of thermodynamic measures M.
These measures are generalizations of the concept of exten-
sive variables, which characterize the spatial region where the
fluid is confined. Typically, M includes the measures of vol-
ume and area although the surfaces curvature, edges length
and some length parameters characterizing the geometry of
the confinement cavity can be also taken into consideration.
To implement this thermodynamic approach it is necessary to
unambiguously define each measure that belongs to M. Ad-
ditionally, it is necessary to introduce a decomposition rule in
order to identify the dependence of the free energy on the el-
ements of M. It must be noted that the definition of both M
and the decomposition rule are not innocuous to the obtained
thermodynamic properties.

To study the fluid-like system under spherically symmet-
ric conditions I analyze two different sets of thermodynamic
measures. In the first case I select M = {V, A, J, K, R}
where V , A, J, and K represent the measures of the
volume, area, and the mean and Gaussian extensive-like
curvatures, respectively. The adopted definitions and their
values for the region � = �sph are V ≡ Z1 = 4π R3/3, A
≡ ∫ |∇eA(r)| dr = 4π R2, J = −4π

∫
r2j(r )∂r eAdr = 8π R,

and K = 1
2 4π

∫
r2k(r )|∂r eA|dr = 4π with j(r ) = 2r−1 and

k(r ) = r−2. The same definitions were also utilized in the
study of a few-body spherically inhomogeneous system of
interacting particles.4 The set M is complemented with a
decomposition rule, which identifies the components of each
measure in τi . I adopt the rule

τi/ i! = Z1bi (p) = V bi − A ai + J ci,J + K ci,K + Si (R−1),

(25)

where {bi , ai , ci,J, ci,K} are constant coefficients and Si (R−1)
is a series in positive powers of R−1. This first approach
focus on the extensive-like thermodynamic variables used to
describe curved interfaces.10, 11 Using Eqs. (4), (17), and (25)
I obtain for the 3-HS-HSC system with R > 1,

Z3 = V 3 + 6V 2b2 + 6Vb3−6VA a2 + 6V J c2,J+6V K c2,K

− 6A a3 + 6J c3,J+6K c3,K+6V S2(R−1) + 6S3(R−1),

(26)

where S3(R−1) is represented by an odd power series in R−1,

S3(R−1) =
√

3π2

16

(
R−1

60
+ 7R−3

14400
+ R−5

28224

+ 449R−7

121927680
+ . . .

)
. (27)

Table I lists the known coefficients of τ2 and τ3 taken from
Refs. 3 and 9 and from the series representation of Eq. (17),
respectively. The coefficients b2 and b3 are universal and
describe the properties of the bulk HS systems up to order

TABLE I. The components of τ2 and τ3.

i bi ai ci,J ci,K Si (R−1)

2 −2π/3 −π/8 0 −π/(2432) 0

3 3π2/4
137

560
π2 9π

√
3 + 16π2

1536

781

36288
π2 �= 0
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three in density,5 while the coefficients a2 and a3 being also
universal describe the wall-fluid interface in the limit of low
curvature. In a previous work,3 I verified that c2,J = 0 also
apply to cuboidal and cylindrical confinements and thus one
can expect that both c2,J and c3,J to be universal. On the
other hand, I determined that c2,K is not the same coefficient
for spherical and cylindrical cavities. I conjecture that the
non-universal behavior of c2,K extends to c3,K.

In what follows, I underline some interesting features re-
garding Eq. (26), which resume in Z3 the statistical mechan-
ical properties of the 3-HS-HSC system. Z3 is a polynomial
function of the set of variables {V, A, J, K} and also includes
a non-polynomial dependence on R. It contains pure volumet-
ric terms and pure terms that depend on the other extensive-
like measures {A, J, K} together with mixed dependencies. A
constant term is present in Z3, which is related to the Gaussian
curvature K. On the other hand, there is not a logarithmic term
proportional to ln(R). Higher order terms in the curvature like
S2(R−1) are needed to describe the properties of the system
and they could be mixed with {V, A, J, K}. It is expected that
these general properties to be not an artifact of the three-body
system, but rather they should also apply to Z N for any N. For
example, all the mentioned features for Z3 were also obtained
in an exploratory analysis of the 4-HS system.12 In particular,
new terms proportional to A2 and A K are present in the CI of
this system.

Although the complete thermodynamic description of
the 3-HS-HSC system may be done on the basis of M
= {V, A, J, K, R}, in order to obtain a simple description
it is preferable to use M = {V, A, R}. Therefore, I adopt the
definitions for V and A given above and the decomposition
rule

τi/ i! = Z1bi (p) = V bi − A ai (R) , (28)

ai (R) = ai − ci,J j − ci,K k − Si (R−1)/A(R), (29)

with j = j(R) = 2R−1 and k = k(R) = R−2. Thus, for R > 1
the CI takes the form

Z3 = V 3 + 6V 2b2 + 6V b3 − 6V A a2(R) − 6A a3(R). (30)

Even though Eq. (28) may be used for any value of R, the an-
alytic expressions for Z3 and τ3 in Eqs. (12) and (17) reveal
that Eq. (29) only applies to R > 1. To implement a decom-
position rule for the full region of physical interest R > Rmin,
the Eqs. (28)–(30) must be supplemented with a decomposi-
tion rule for 
τ3 [see Eq. (12)]. By relating 
τ3 to the area
term the full range decomposition rule is given by Eqs. (28)
and (30) and

a3(R) = a3 − c3,J j − c3,K k − S3(R−1)

A(R)
− 
τ3

6A(R)
�(1 − R).

(31)
Using the thermodynamic connection given in Eq. (3) it is
obtained the total reversible work due to an infinitesimal
variation of the radius, dw = FR d R = Pw dV , where FR

= −d F/d R is the scalar force and Pw is the pressure-for-
work.4 In fact, for a hard-wall fluid-substrate interaction
Pw is the wall-pressure, which coincides with the contact

density

β Pw = −β
d F

d R

(
dV

d R

)−1

= ρc. (32)

This latter expression provides the first equation-of-state
(EOS) of the system and applies for R > Rmin. Based on
Eqs. (3) and (12)–(16) it is possible to describe the proper-
ties of F and Pw in their non-analytic points. Near R = 1 I
find β
F 
 (1 − R)5 � (1 − R) and

β
Pw 
 (1 − R)5 � (1 − R) . (33)

Besides, near R = Rmin it is evident a logarithmic divergence
in the free energy βF 
 11/2 ln(R − Rmin) and an order one
pole in Pw

β Pw = 33

8π
(R − Rmin)−1 − 1719

√
3

208π
+ O(R − Rmin),


 11

6
(v − vmin)−1 , (34)

where v = V/3 is the volume per particle. The properties
given in Eqs. (32)–(34) link measurable properties in a molec-
ular dynamic simulation of the system with the basic non-
analytic behavior of Z3, which suggests an interesting ap-
proach to the study of the exact properties for systems with
N > 3. The other EOS are given by

β P ≡−β
∂ F

∂V

∣∣∣∣
T,M−V

=3Z−1
3

[
V 2+V 4b2 + 2b3− A 2a2(R)

]
,

(35)

βγ ≡ β
∂ F

∂ A

∣∣∣∣
T,M−A

= 6Z−1
3 [V a2(R) + a3(R)] , (36)

βCR ≡ β
∂ F

∂ R

∣∣∣∣
T,M−R

= 6Z−1
3 A [V ∂Ra2(R) + ∂Ra3(R)] ,

(37)
where in the partial derivatives, M − Mi means that all the
measures except Mi are held fixed. In Eqs. (35)–(37) P is the
thermodynamic pressure, γ is the fluid-substrate surface ten-
sion, and CR describes the work necessary to curve the fluid-
substrate interface. The four EOS are related to each other via
the Laplace-like equation that express the balance between
them

−
P ≡ P − Pw = γ j + CR A−1. (38)

Equation (38) is a direct consequence of Eq. (32) and the
definitions of P , γ , and CR given in Eqs. (35)–(37). There-
fore, the equation of balance is still valid despite the fact that
P , γ , and CR could be not given by the right-hand side of
Eqs. (35)–(37). In fact, it also applies to the N-HS-HSC fluid
system without restriction in the number of particles. From
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FIG. 1. The dependence on the size cavity parameter R of the thermody-
namic EOS and other relevant functions for the 3-HS-HSC system.

Eqs. (32) and (35) is clear that 
P measures the magnitude of
the inhomogeneous terms in dw . This suggests the introduc-
tion of the excess work dwe = 
P dV = dw − dwV where
dwV is the work of volume and we(R) = ∫ R

∞ 
P dV , where
the lower limit corresponds to zero density.

In Fig. 1 it is plotted the dependence on R of Pw , P , γ ,
CR , the difference of pressures 
P , and the density ρ0(R). All
the EOS diverge at R = Rmin but they are continuous, smooth
but non-analytic functions at R = 1. The density ρ0(R) goes
to zero at R = 1 is smooth but non-analytic at R = 2 and has
a maximum value ρ0(1.284) 
 0.2027. Both pressures are
monotonous functions but γ , CR , and 
P are not. The func-
tion β
P(R) has a zero at R 
 1.092 (where β P = β Pw


 2.418) and reaches a maximum value β
P(1.189)

 0.1809. In addition, the function βγ (R) has a zero at
R 
 1.396 and a maximum value βγ (1.564) 
 0.02615.
Finally, R 
 0.9714 corresponds to a null excess
work we(R) = 0. It is also interesting to analyze the EOS as
functions of the “rough” or global density ρ̂ = 3/V and the
central density ρ0, which are plotted in Figs. 2(a) and 2(b), re-
spectively. The vertical dotted line included in Fig. 2(a) shows
the value ρ̂(R = 1) 
 0.7162, for comparison the maximum
density value is ρ̂(Rmin) 
 3.721. The general picture of
Fig. 2(a) agrees with the features shown in Fig. 1. On the
contrary, Fig. 2(b) shows a more complex behavior for the
dependence of the EOS on ρ0, which includes bi-valued
functions and a closed loop for 
P . The 
P curve in-
tersects itself at ρ0 
 0.1079 and β
P 
 0.01419 where
its two branches have a positive slope. This intersection
corresponds to macroscopically different states, one is mod-
erately inhomogeneous with R 
 1.816, ρ̂ = 0.1196 and (ρc

− ρ0)/ρ0 
 2.710, while the other is strongly inhomogeneous
with R 
 1.095, ρ̂ = 0.5455 and (ρc − ρ0)/ρ0 
 21.20. It is
worthwhile to note that all the plotted magnitudes in Fig. 2(b)
evolve along the axis ρ0 = 0 for Rmin < R < 1.

Finally, I extract the dependence on the curvature of the
fluid-substrate surface tension. For the case of a flat substrate
or wall, the surface tension of a fluid-substrate interface, γ∞,
is obtained from Eq. (36) by replacing ai (R) = ai but keeping
unmodified the factor Z−1

3 .3 Thus, for the 3-HS-HSC system
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FIG. 2. Thermodynamic EOS for the 3-HS-HSC system. Subfigure (a)
shows their dependence on the global density, while (b) displays the more
complex dependence on the central density.

the ratio between both surface tensions is

γ (R)

γ∞
− 1 = [a2(R) − a2] V + a3(R) − a3

a2V + a3
,

= − 1

V

c3,J

a2 + a3/V
j − c2,K + c3,K/V

a2 + a3/V
k + O(R−3),

= δj j + δk k + O(R−3), (39)

where δj and δk are the coefficients of 2R−1 and R−2, respec-
tively.

A. Many-body systems

The procedure developed to obtain Eq. (39) may be
also implemented for systems composed of N particles with
N > 3. Briefly, from the expression for Z N in terms of τi

given by Eq. (22.23) in Ref. 5 (p. 135) [which is similar to
Eqs. (4) and (5)] together with the assumption that Eqs. (25)
and (28) hold for τi , one can derive an expression for Z N

similar to Eq. (30). Using the surface tension definition in
Eq. (36) one can derive γ (R) and γ∞ [see the comments above
Eq. (39)]. Finally, from the ratio of both surface tensions one
find the curvature dependence of the surface tension. Follow-
ing this approach and making a careful analysis of the terms
that scale with N, I found

γ (R)

γ∞
− 1 = −ν c3,J

a2
ρ̂ j +

[
− c2,K

a2

+ν

(
c2,Ka3

a2
2

− c3,K

a2

)
ρ̂

]
k + . . . , (40)

where ν = 1 − 2N−1 and the higher order term is
(j + k) O(ρ̂2) + O(R−3) O(ρ̂). In addition

βγ∞ = ν ′a2ρ̂
2 − (

4a2b2ν
′′′ − a3ν

′′) ρ̂3 + . . . , (41)

where ν ′ = 1 − N−1, ν ′′ = ν ′ν and ν ′′′ = ν ′(1 − 3
2 N−1). In

the limit N → ∞, one can obtain the third order dependence
on the density of the fluid-wall surface tension

βγ∞ = a2ρ̂
2 − (4a2b2 − a3) ρ̂3 + . . . , (42)
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FIG. 3. Dependence of the low density expansion for the fluid-substrate sur-
face tension on the radius of the spherical substrate. The continuous lines
correspond to βγ for the HS fluid in contact with a concave hard substrate
(j > 0), while dashed lines draw βγ for the fluid in contact with a convex
substrate (j < 0). From top to bottom the curves correspond to the global
densities ρ̂ = 0.05, ρ̂ = 0.1, ρ̂ = 0.25, and ρ̂ = 0.5. The triangles approxi-
mately indicate the place where the continuous curves leave to be valid and
the crosses show some βγ values obtained by assuming δk = 0.

or βγ∞ 
 −0.39267ρ̂2 − 0.87534ρ̂3, which coincides with
the previously known exact result.13–15 It is interesting to
mention that such results were obtained in the study of the
HS fluid in contact with a planar hard wall using the virial
expansion in the grand canonical ensemble, which shows the
consistency of the present approach. In addition, I obtained
the first order dependence of the surface tension on both cur-
vatures

γ (R)

γ∞
− 1 = δj j + δk k + . . . , (43)

where the delta coefficients are given up to first order in den-
sity by

δj = −c3,J

a2
ρ̂ =

(
3
√

3

64
+ π

12

)
ρ̂, (44)

δk = −c2,K

a2
+

(
c2,K a3

a2
2

− c3,K

a2

)
ρ̂,

= − 1

18
+ 1439π

22680
ρ̂,

(45)

i.e., δj 
 0.34299 ρ̂ and δk 
 −0.055555 + 0.19933 ρ̂. It is
the first time that this result is obtained. The fluid-substrate
Tolman’s length is the coefficient of j in Eq. (43),

δTol ≡ δj. (46)

Thus, in the case of a fluid in contact with a spherical con-
cave substrate, δTol is the coefficient of 2R−1 and is positive
(note that the sign of δTol may change by adopting a differ-
ent convention). Figure 3 shows in continuous line the depen-
dence of γ (R) on both R−1 and the density for a HS fluid
in contact with a concave spherical wall [given by Eqs. (42)–
(45)]. In the low density regime, the large N and the small
radius conditions cannot be simultaneously fulfilled. There-
fore, I estimated the maximum value of R−1 where Eqs. (43)–
(45) make sense, through the expression R−1 ∼ (4πρ̂/3N )1/3

with N = 10. This situation is plotted in Fig. 3 using trian-

gles. The δk term has a little observable effect in the behavior
of βγ (R−1), as it is denoted by the crosses in Fig. 3 which
mark the value of βγ (R−1) at R−1 = 0.5 and at R−1 = 0.7
for ρ̂ = 0.5 under the assumption of δk = 0.

B. In-out symmetry and the properties
of the dual system

Here I discuss the similarities and differences between
HS-HSC and HS-HSO, systems. In order to make this I in-
troduce the following notation, which is used in this and
next subsections: a measure X (X ∈ M) without label refers
to the system contained in the �̄sph region, and Xsph de-
notes the same measure but it is referred to the system con-
fined in �sph the region. The extensive-like set of measures
M = {V, A, J, K, R} applied to the system in �̄sph and the
same set applied to system in �sph are related to each other by
V = V∞ − Vsph, A = Asph, J = −Jsph, and K = Ksph, where
V∞ is the volume measure of the complete space. A second
symmetry relation between the systems constrained to �sph

and �̄sph involves the derivatives of the measures. For the
�sph confinement one obtain ∂R Vsph = Asph, ∂R Asph = Jsph

and ∂RJsph = Ksph, while for the �̄sph confinement one find
∂R V = −A, ∂R A = −J, and ∂RJ = −K. Using Eq. (23) for
the 3-HS-HSO system it follows that

τ̃3/3! = Z̃1b3(p) = V b3 − A a3 + J c3,J

+ K c3,K + S3(R−1) , (47)

where the coefficients {b3, a3, c3,J, c3,K} are the same to
those listed in Table I for the case of HSC. However,
S3(R−1) is different to the expression given in Eq. (27) that
herefrom I will rename S3 sph(R−1). Indeed, I find S3(R−1)
= −S3 sph(R−1) = S3 sph(−R−1). The symmetry between
Eqs. (25) and (47), and the known properties of τ̃2

3 show an
interesting relation concerning τi and τ̃i . For i = 1, 2, 3 and
R > 1 it is easy to demonstrate that

τi (R)/ i! − τ̃i (−R)/ i! + V∞ bi = 0, (48)

τi (R)/ i! + τ̃i (R)/ i! − V∞bi = 2

× [−ai Asph + ci,KKsph + Si sph(R−1)
∣∣
even

]
, (49)

τi (R)/ i! − τ̃i (R)/ i! + V∞bi = 2

× [
bi Vsph + ci,JJsph + Si sph(R−1)

∣∣
odd

]
, (50)

where Si sph(R−1)|even (odd) implies that only the even (odd)
powers of R−1 in Si sph(R−1) are taken into account.
Eqs. (48)–(50) constitute the third symmetry relation between
both systems. I conjecture that this relation is also valid for
i > 3 and a large enough R.

The symmetry between τi and τ̃i may also be analyzed
by adopting the second set of measures M = {V, A, R} along
with the decomposition rule

τ̃i/ i! = Z̃1bi (p) = V bi − A ai (R) , (51)

ai (R) = ai − ci,J j − ci,K k − Si (R−1)/A(R), (52)
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with j = −jsph = −2R−1 and k = ksph = R−2. In such a case
Z̃3 becomes

Z̃3 = V 3 + 6V 2b2 + 6V b3 − 6V A a2(R) − 6A a3(R),

(53)

and Eqs. (49) and (50) take the form

τi (R)/ i! + τ̃i (R)/ i! − V∞bi = 2
[− ai sph(R−1)

∣∣
even Asph

]
,

(54)

τi (R)/ i! − τ̃i (R)/ i! + V∞bi = 2

× [
bi Vsph − ai sph(R−1)

∣∣
odd Asph

]
. (55)

The analytic expressions for the EOS of the 3-HS-HSO
system are obtained easily from their definitions in Eqs. (32)
and (35)–(37) and they are very similar to those found for
the 3-HS-HSC system. The equilibrium condition between
the EOS is given by the Laplace-like relation for the HSO
confinement


P = Pw − P = γ jsph + CR A−1, (56)

which is similar to Eq. (38) and also apply to any number of
particles. For the case N ≤ 3 is

CR A−1 = ∂Rγ − βγ CR, (57)

and then Eq. (56) may be rewritten as


P = γ
(
jsph − βCR

) + ∂Rγ. (58)

C. Many-body dual system

In Refs. 16 and 17 Henderson derived an approximate
Laplace-like equation for a fluid in contact with a HSO (some-
times called impurity hard-particle, test particle or empty cav-
ity in a bulk fluid), which is frequently considered as an exact
sum rule.18, 19 He obtained


P = γ jsph + ∂Rγ, (59)

which differs from the exact Eqs. (56) and (58). From the
comparison of his result with that in Eq. (58) it is apparent the
missing term βγ CR , which is of the order β−1 O(AV −4 R−3)
and positive.

To obtain the low density expansion of γ∞ and the low
curvature expansion of γ (R) I follow the same procedure
implemented above for the HS fluid in contact with a con-
cave spherical wall. This reproduces the expressions given in
Eqs. (40)–(46) but now for the HS fluid in contact with a
convex spherical wall. The unique difference is that now
j = −2R−1 and thus δj is the coefficient of −2R−1. In sum-
mary, for a many-HS fluid system in contact with either
a concave or convex spherical surface, the fluid-substrate
Tolman’s length and the second order term in curvature are
given up to first order in density by

δTol = 0.342 99 ρ̂, δk = −0.055 55 + 0.199 33 ρ̂. (60)

It is interesting to compare the exact results pre-
sented in this work with that obtained from the scaled

particle theory (SPT). Taken into account18 [Eqs. (4), (5)
and (12), (13) therein], I obtain δTol,SPT = 0.261 80ρ and
δk,SPT = −0.055 556 + 0.143 23ρ, which up to zero order in
density agrees with the exact result. There is not, however, a
good agreement in the first order for which the discrepancy
between both, the SPT and the exact results, is approximately
of 25%. The fluid-substrate surface tension for a HS fluid in
contact with a convex spherical wall is plotted in Fig. 3 using
dashed lines. For a given density this graphic shows that the
curves that correspond to concave and convex surfaces have
negative and positive slope, respectively, as well as a linear
dependence on R−1.

The results, derived for the curvature dependence of the
HS fluid-substrate surface tension may be extrapolated to the
case of a HS fluid in contact with other hard curved substrates.
By assuming that c3,J is universal, i.e., it is the same coef-
ficient for any constant curvature surface, the Eq. (43) also
represents γ (R) for a cylindrical surface (with |j| = R−1). In
such a case Eq. (60) gives the Tolman’s length up to the first
order in density. Unlikewise, because of δk involves the coeffi-
cients c2,K and c3,K which are not universal, the Eqs. (45) and
(60) do not gives δk for this system. However, for a HS fluid in
contact with a cylindrical surface (with k = 0), the curvature
dependence of the surface tension involves a term of order
j2 = R−2.3 Up to zero order in density it is −j2 3

8 c2k/a2 which
is of the same order to that found in Eqs. (43) and (45). I pro-
pose that this latter statement is also valid for the first order
term in density. That is, for a HS fluid in contact with a cylin-
drical surface the curvature dependence of the surface tension
should be roughly given by

γ (R)cyl ≈ γ∞[1 + δTolj + (−0.021 + 0.2ρ̂) j2], (61)

with γ∞ and δTol taken from Eqs. (42) and (60). This re-
sult together with the little effect produced by the second
order term in curvature on the behavior of γ (R), show that
Fig. 3 (after renaming the ordinate axis as |j|/2) not only
describes γ (R) for the HS fluid in contact with a spheri-
cal substrate, but also it can be considered to describe the
case of a cylindrical surface both, for the convex and concave
cases.

IV. FINAL REMARKS

The analysis of the statistical mechanical properties pre-
sented in this work concerning few-body systems of HS de-
termine the relationship between two types of spherical con-
finement: the closed hard spherical cavity and the unbounded
hard spherical object.

This in-out symmetry for spherical boundaries is stated
in Eqs. (48)–(50). The studied many-body systems composed
of HS in contact with spherical walls revealed that the con-
cavity/convexity of the hard surface is linked with the in-out
symmetry. This is an interesting point because the symme-
try involves a global property while the curvature of a sur-
face is a local property. To the best of my knowledge, the
curvature dependence of the fluid-substrate surface tension,
specifically, the expression for δTol given in Eqs. (43)–(46)
and (60), concern new results never published in the literature
up to present. The approximate sum-rule given in Eq. (59) is
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often assumed to be an exact relation in the literature. This
point, however, should be analyzed in more detail because the
higher order terms in the curvature may produce measurable
consequences. The exact results presented in the current work
are useful to test several approximations involved in the the-
ories of inhomogeneous fluids. In particular, those concern-
ing the curvature dependence of the fluid-substrate surface
tension may contribute to further understand the still contro-
versial behavior of the Tolman’s length in the fluid-substrate
interface.
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APPENDIX: ANALYTIC EXPRESSIONS
OF SEVERAL GRAPHS

This appendix summarizes the analytic expressions for
the integrals that correspond to three particles labeled-clusters
in a spherical pore which are represented by irreducible four-
nodes graphs. Note that the convention used in this work for
the implicit sign of each graph is as follows: a term −1 is
involved in both, each continuous-line between particles (an
fi j -bond) and each dashed line between p and a particle (an
fi -bond). On the other hand, there is not a negative term re-
lated to dashed lines between particles (ei j -bonds) and contin-
uous lines between p and a particle (the ei -bond). This sign
convention determines the positiveness or negativeness of
each graph which are also monotonous functions of R ≥ 0. In
order to solve the integrals involved in the irreducible graphs
with four nodes they are expressed in terms of the overlap vol-
ume between two spheres with different radii.2, 6 We obtain

P B

A C

=
{ 64π3

2835

(
10−81 R2 + 105 R3

)
, if R ≥ 1

64π3

2835 R6
(
105−81 R + 10 R3

)
, if 0 ≤ R < 1,

(A1)

P B

A C

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π3

11340 (2120 + 2835 R − 25488 R2 + 26880 R3), if R ≥ 1

π3

11340

(−440 + 2835 R − 4752 R2

+ 26880 R6 − 20736 R7 + 2560 R9
)
, if 1

2 ≤ R < 1

64π3

27 R9, if 0 ≤ R < 1
2 ,

(A2)

where the last row comes from a reduction of the graph to Z3
1, and

P

A C

B

=
{− π3

11340 (335 − 6588 R2 + 12600 R3), if R ≥ 1
2

− 64π3

2835 R6(105 − 81 R + 10 R3), if 0 ≤ R < 1
2 ,

(A3)

which for 0 ≤ R < 1/2 reduce to Eq. (A1) with an overall factor −1. For the special case of the four-vertex star-graph it was
obtained using Eqs. (9) and (17),

P

A C

B

=

⎧⎪⎪⎨
⎪⎪⎩

π3

3780 (440 − 2835R + 4752R2 + 840R3 − 15120R5

+ 20736R7 − 11520R9) + h �(R − 1/
√

3), if R ≥ 1
2

− 64π3

27 R9, if 0 ≤ R < 1
2 .

(A4)

We observe that for 0 ≤ R < 1/2 the star-graph reduces
to −Z3

1 , which determines that B[1]
4 = Z3

1/4 for the same
range in R [see Eq. (10)]. The following expressions show
several three and two nodes irreducible cluster integrals of
different kind

A C

B

= −3B3 = − 5π2

6 , (A5)

A B = 2b2(∞) = −2B2 = − 4π
3 , (A6)

P

A C

= τ2 =
{

π2
(− 16

9 R3 + R2 − 1
18

)
, if R ≥ 1

2

− 16π2

9 R6, if 0 ≤ R < 1
2 ,

(A7)
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P

A C

= Z2 =
{

π2
(

16
9 R6 − 16

9 R3 + R2 − 1
18

)
, if R ≥ 1

2

0, if 0 ≤ R < 1
2 ,

(A8)

P

A C

= τ̃2 =
{− 4π

3 V∞ + π2
(

16
9 R3 + R2 − 1

18

)
, if R ≥ 1

2

− 4π
3 V∞ + π2

(− 16
9 R6 + 32

9 R3
)
, if 0 ≤ R < 1

2 ,
(A9)

P

A C

= Z̃2 = (
V∞ − 8π

3 R3
) (

V∞ − 4π
3

) + Z2, (A10)

P A = τ1 = Z1 = 4π
3 R3, (A11)

P A = −Z̃1 = − (V∞ − Z1) , (A12)

where Bi is the i-th virial coefficient for the bulk HS fluid.
The expressions for τ2 and τ̃2 are taken from2 for R ≥ 1/2.
For 0 < R < 1/2 two particles do not fit into the pore and
therefore Z2 = 0. This condition provides τ2 = −Z2

1 for 0
< R < 1/2. Note that b1(p) = b1 = 1.
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