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Abstract Several species of parasitoid phorid flies

(Pseudacteon spp., Diptera: Phoridae) have been

released into the United States as potential biological

control agents for the red imported fire ant, Solenopsis

invicta Buren (Hymenoptera: Formicidae). Here we

report the first successful introduction and spread of

Pseudacteon nocens Borgmeier at a site in Texas,

USA. Pseudacteon nocens is an important natural

enemy since it is a widespread and often abundant

parasitoid of S. invicta in Argentina, where it attacks

larger fire ant workers eliciting a strong defensive

response. Several years of effort to establish this

species previously failed, and here we provide a model

to better understand the likelihood of founding new

populations when introducing sequential batches of

flies in field or laboratory cultures. We also report

on a novel method of establishing new populations

of phorids in the field using pupae burial boxes to

overcome constraints of releasing adult flies or

infected worker ants.

Keywords Solenopsis invicta � Pseudacteon �
Population model � Small population � Parasitoid �
Biological control agent � Parasitoid rearing

Introduction

Parasitoids of the genus Pseudacteon Coquillett

(Diptera: Phoridae) have been proposed as potential

biological control agents for the red imported fire ant

Solenopsis invicta Buren (Hymenoptera: Formicidae)

given their host-specificity within fire ants and several

possible pathways of impact on fire ant populations

(Orr et al. 1995). Direct impacts through worker

mortality are low with field rates of parasitism usually

less than 1% (Calcaterra et al. 2008; Morrison and

Porter 2005) however indirect effects on colony health

through reduced foraging efficiency and defenses

(Feener and Brown 1992; Folgarait and Gilbert 1999)

or even as pathogen vectors (Valles and Porter 2007)

may provide important population level impacts,

especially on environmentally stressed colonies.

Over 20 species of Pseudacteon decapitating flies

are hosted by S. invicta or closely related species

within the S. saevissima-complex (Patrock et al.

2009). Several species have been evaluated for

introduction to the US for biocontrol, with successful

establishment achieved for P. tricuspis, P. curvatus,

P. obtusus and P. litoralis and here we report the

first field establishment of P. nocens in the United
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States. A multi-species assemblage of phorids has

been proposed for biological control of fire ants

(Gilbert and Patrock 2002; Porter 1998) given that up

to 14 species may co-occur, with each species

differing in host-location cues, phenology, climate

tolerance, and preferred host body size (Folgarait et al.

2007a, b).

Pseudacteon nocens Borgmeier was described in

1926 from Córdoba, Argentina and is hosted by

S. interrupta, S. invicta, S. macdonaghi, S. quinquecu-

spis, S. richteri, and S. saevissima (Patrock et al.

2009). A small morph or cryptic species has also been

reported (Folgarait et al. 2006) but the subject of this

study is the nominal form. It is a widely distributed

species found across much of northern Argentina,

through Paraguay to southern Brazil (Calcaterra et al.

2005; Patrock et al. 2009) with climatic conditions

ranging from mesic to arid. This species was found to

tolerate areas with ‘‘Chaco’’-type continental climates

that had extreme temperatures and were arid (Folgarait

et al. 2005).

P. nocens was reported as the most abundant phorid

species throughout the year in Santiago del Estero

(Azzimonti et al. 2004; Folgarait et al. 2007b). In that

province it was the most common species at any time

of the day, being 44.1% more likely to be found

on an hourly basis than the second ranked species,

P. litoralis. In another regional survey, it was present

at nine of 30 sites, but when present it was among

the most abundant species (Calcaterra et al. 2005).

Absence from field surveys may be an artifact of

collecting protocols since P. nocens is most prevalent

in the early morning and late evening (Calcaterra et al.

2005; Folgarait et al. 2007a). However during fall and

winter it may be quite abundant at midday (Azzimonti

et al. 2004). Seasonally, P. nocens is more abundant in

Fall (May–July) and again in Spring (Nov–Dec)

(Calcaterra et al. 2005; Folgarait et al. 2007b). The

crepuscular behavior corresponds to periods of high

ant activity and is therefore relevant to biological

control considerations since, apart from P. litoralis,

the other phorid species already released are more

active during other periods of the day.

In a survey comparing prevalences of Pseudacteon

species at disturbed mounds or at foraging trails,

P. nocens was twice as common at disturbed mounds

(Folgarait et al. 2007a). It was also associated with

shaded microsites compared to sunny or partially

shaded sites (Folgarait et al. 2007a). P. nocens is an

aggressive parasitoid that elicits a particularly strong

response from workers resulting in foraging ants

abandoning food resources in the presence of ovipos-

iting females (Folgarait et al. 2006).

The development of P. nocens was found to vary

with temperature, host species, source of flies, and host

size (Folgarait et al. 2006). Development times were

17–32% longer at 22�C compared to 28�C and pupal

mortality was also lower at 22�C. Fly sizes differed

according to source (Corrientes [ Santiago del

Estero). Mean female development times were

56 days at 22�C, and 44 days at 28�C in S. invicta.

Development times are over 30% slower in S. richteri

than in S. invicta (Folgarait et al. 2002). Female

development time is about two–eight days longer than

males (Folgarait et al. 2002, 2006). The emergence rate

for over 6,000 pupae was 61.2% (Folgarait et al. 2002).

Field sex ratios are generally male-biased typically

2:1–3:1 (Folgarait et al. 2006, 2007a), potentially an

outcome of differing gender-host size associations

(Morrison et al. 1999). Preferred host size is *0.6 mm

head width, however P. nocens will utilize workers

with a range from 0.5–1.1 mm head width. Accord-

ingly, P. nocens adult body sizes range considerably

(0.2–0.66 mm male, 0.27–0.63 mm female thoracic

width), with slight regional differences in mean body

size (Folgarait et al. 2006).

In sequential, no choice tests, 30% of P. nocens

females attacked S. geminata following exposure to

S. invicta, but at only 1/6th of the rate with S. invicta

(Estrada et al. 2006). Even at these levels, P. nocens

had lower non-host attraction than P. curvatus which

has already been released (Porter and Gilbert 2004)

and a decision was made to proceed with introductions

of P. nocens.

A major challenge posed when initiating new

populations of a novel species in the laboratory or in

the field is the potential for disruptive impacts from a

range of demographic, developmental and environ-

mental factors, as encountered when rearing parasit-

oids in other systems (van Lenteren 2003). Allee

effects in very small populations may result in reduced

fitness when conspecific densities are low through

positive correlations between abundance and per

capita growth rates (Taylor and Hastings 2005).

Several early attempts to begin a laboratory culture

of P. nocens by our team and also by USDA-ARS

(S. Porter pers. comm.) failed to generate positive

population growth. Typical conditions for raising
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other species of phorid flies in laboratory cultures have

been described (Pesquero et al. 1995; Porter et al.

1997; Vogt et al. 2003), but these conditions and

modifications thereof (described below) failed to yield

viable populations of P. nocens.

Considering that Allee effects would decrease per

capita growth rates of very small populations, an

option was to increase the number, frequency and size

of incoming pupae shipments. As reported below, a

significant shipment and importation effort was made

to establish a laboratory culture but this population

failed to grow or survive beyond 15 months.

These experiences required us to re-evaluate the

prospects for successfully introducing P. nocens to

North America and we developed a novel field release

method to overcome the failure of laboratory cultures

of this species. In this paper we report on the first

successful field establishment of P. nocens, along with

two novel contributions to methodology by using 1) a

new field release method and 2) a simulation model to

evaluate challenges associated with rearing this

species in a laboratory culture.

Methods

Field sites of sources and introduced populations

Pseudacteon nocens pupae were originally generated

by field attacks on Solenopsis fire ants at several sites

in Argentina. Solenopsis invicta and S. richteri were

used as host species since prior studies had shown both

to be competent hosts (Folgarait et al. 2006). Initial

collections made in Corrientes province (27.788S,

58.088W) (2003–2004) were used for host-specificity

testing and for initial efforts to establish laboratory

cultures. From 2004 to 2010, flies were sourced in

Santiago del Estero province (28.278S, 63.958W).

The alternate site was chosen because P. nocens was

locally abundant there, and also to seek an alternate

biotype from a drier habitat after the initial lack of

success in developing a laboratory culture using

Corrientes flies (Porter and Briano 2000). Santiago

del Estero has a similarly arid climate to that of south-

central Texas, and it has been proposed (Folgarait et al.

2005) that matching biotypes from climatically similar

sites of origin to sites of release may be an important

factor for successful introductions of Pseudacteon.

Further shipments of pupae obtained in Folgarait’s

laboratory using flies from Santiago del Estero were

used both for laboratory trials and for release into the

field in Texas (Table 1).

Three field sites in Texas were selected to optimize

prospects of success based on the following criteria.

All sites were in southern or coastal Texas, along

temperate riverine woodlands embedded in arid mes-

quite or oak savanna. The goal was to provide sites

with year round warmth and moisture, and with a

high abundance of host fire ants. River corridors are

considered likely to act as refuge source populations in

times of drought, and also to serve as corridors to aid

the spread of introduced flies (Plowes et al. 2011). The

three sites used were in Kenedy (27.16�N, 97.96�W),

Gonzales (29.31�N, 97.38�W) and Dimmit (28.50�N,

99.63�W) counties. The Kenedy county site was

abandoned after twice being flooded during the initial

release efforts. Weather records for the three sites

were extracted from the nearest weather stations on

http://wunderground.com.

Pupae releases in buried boxes

Given the difficulties of developing laboratory cul-

tures of P. nocens (see next section), we decided to test

an alternate method of release and introduction. With

previously introduced species of lab cultured adult

flies of P. tricuspis, P. curvatus and P. obtusus, we

either released adult flies or we parasitized colonies of

S. invicta in the lab and returned the infected workers

to the field (Gilbert et al. 2008; Plowes et al. 2011).

Faced with small lab cultures of P. nocens we tried a

new method whereby imported pupae were placed in a

buried, insulated box from which enclosing flies could

emerge through an escape tube. It was assumed that

flies would emerge using natural cues such as

temperature, humidity or barometric pressure.

The boxes contained only pupariating flies in the

host head capsule that had been sterilized with

solutions of methyl paraben and bleach solution to

minimize potential development of fungi. The pupae

were set out on 9 9 6 cm trays with 1 cm Denstone�

plaster bases that were moistened. The pupae trays

were placed into an insulated Coleman� cooler box

(60 9 40 9 40 cm, L 9 W 9 H) with an internal

lining of shop towel moistened with 0.5% bleach

solution to minimize fungal growth and maintain

The introduction of the fire ant parasitoid P. nocens in North America
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humidity. A 50 cm long, vertical, PVC-made escape

pipe 4 cm diameter was drilled and glued to the lid of

the box. The escape pipe terminated in a downward

facing pipe section with a metal mesh screen (2 mm

hole size) to prevent predator and rain ingress. After

placing the pupae trays into the box and sealing it

with aluminum foil tape, the box was placed into a

plastic garbage bag and sealed with only the escape

tube emerging to prevent ingress of water, dirt and

other arthropods. This apparatus was then buried into

the ground such that the lid was about 10 cm below

ground level and the excavated soil and other plant

material was mounded over the box to provide

30 cm of insulating material. Boxes with pupae were

left buried for a minimum of three months before

excavation and inspection. Following field releases

using the burial boxes, we periodically monitored

for the presence of flies at four disturbed fire ant

nests and at four trays of fire ants brought from the

laboratory (Table 1). During each monitoring event,

all flies attracted to the disturbed mound or tray were

recovered by aspiration, identified and stored in

vials with 90% ethanol. Monitoring started between

3–4 pm, and continued until 30 min after dusk or

30 min after recovery of the first P. nocens female

fly. In June 2011 we used sticky fly traps (LeBrun

et al. 2009) to determine expansion from the release

site. Pairs of traps were placed at *500 m intervals

up to 2 km east and west of the release site, set out at

3–4 pm and recovered by 9 am the following day.

During initial trials, one box was buried at Brack-

enridge Field Station in Austin, Texas, for 30 days in

September 2007 to evaluate how well the box buffered

against ambient temperature and humidity fluctuations

and to determine the pupal emergence rates of a sister

species, P. tricuspis, compared to samples maintained

in the laboratory. An ethanol filled tube was attached

to the escape tube opening to capture emerging flies.

A Hobo� data logger was included to record temper-

ature and humidity.

Key demographic parameters (species content,

emergence rate, sex ratio) were estimated from

subsamples of shipments retained in the laboratory.

We generally retained around 10% of each shipment

for tracking, although six shipments were sent directly

to the release sites with no tracking samples retained

and in these six cases we estimated demographic

parameters using mean emergence rates and sex ratios

from other shipments.

Laboratory cultures

A series of efforts were made to start laboratory

cultures of P. nocens both by the University of Texas,

Austin laboratory, and by USDA-ARS. We followed

the same protocols used for successfully rearing three

other phorid species, P. tricuspis, P. obtusus and

P. curvatus (Pesquero et al. 1995; Plowes et al. 2011;

Porter et al. 1997; Vogt et al. 2003). These efforts

failed and a series of modifications to the protocols

was attempted to overcome potential issues such as

high larval mortality, mating failures, and low ovipo-

sition rates. We did record several instances of highly

successful oviposition rates, but these were often

accompanied by high levels of aborted fly larvae

emerging from the ant head capsule just prior to

pupariation (Fig. 3). We also suspected that mating

conditions may not have been optimal since low

numbers of ovipositing females were observed com-

pared to the total numbers that emerged. To simulate

the crepuscular activity period of P. nocens in an effort

to improve mating conditions and oviposition rates,

we tested a lighting schedule and lamp combination

with 2-h periods of low light using warm-white

fluorescent tubes and infra-red lamps to simulate

sunset lighting, but with no overall improvement in

parasitism rate. In other species, the newly enclosed

adult flies take several hours to mature prior to mating

and so we tested several options including keeping

flies one or two days before allowing them to mate,

and by using ‘‘mating tubes’’ where a female and a

male were placed in 10 cm of plastic tubing to ensure

close contact. On the suggestion of S. Porter (USDA-

ARS) we included strips of black fabric in the fly

chambers since the flies were observed to aggregate on

these strips. We also included a variety of plants with

different leaf types since other species of phorids have

been reported to swarm or perform courtship routines

on leaves (Disney 1994). None of these modifications

resulted in long term improvements to the population

growth rate.

Simulation model for growth of small populations

Given the difficulties encountered initiating labora-

tory cultures of P. nocens we developed a simula-

tion model to evaluate the shipment strategies needed

to successfully start a population of P. nocens.
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The model uses a general approach that may be

applied to populations in the field or laboratory

since it allows flexible testing of the effects on

population growth of different generation times,

adult longevity, differing male and female devel-

opment periods, development period distributions,

and per capita reproductive rates. The algorithm is

a Markov-chain formulation based on a projection

of the number of offspring of the current cohort of

adult flies for a particular day, using the afore-

mentioned demographic parameters. A further

projection is made for each successive day, based

on the number of emerging males and females that

form the daily cohort. The algorithm is initialized

using a schedule for the emergence of the

founding population (which may be one or more

pulses of adults emerging from a shipment or

release of flies). The model may be applied to

either laboratory or field populations by adjust-

ment of relevant demographic parameters, which

may be affected by various environmental and

ecological conditions.

When applied to the case of P. nocens in the

laboratory, we simulated the following conditions that

were expected to span the range of likely parameters.

The response variable (Fig. 4 y-axis) is the resulting

population size after 20 generations of simulation for a

range of demographic parameters: a) the lag between

female and male emergence (Fig. 4 x-axis) was varied

from zero to four days; b) each simulation chart shows

a set of outcomes when varying female per capita

replacement rates between 1.2 and 2.0. The chosen

parameter ranges were based on the following labo-

ratory observations: a) the distribution of individual

development times was modeled as a log series, per

laboratory observations of an initial peak followed

by a long tail; b) observed female–male development

delays were about two days; c) female replacement

rate for P. curvatus is about 1.57 (Vogt et al. 2003),

and 1.1 for P. obtusus (RMP unpublished); d) the

male:female sex ratio of laboratory cultures is approx-

imately 2:1. For the simulation, generation time was

assumed to be 30 days, with all shipments occurring

within that 30 day window. We simulated several

shipment strategies, to show the effect of varying the

timing and number of initial shipments made within

the first generation period (Fig. 4a, b, c). We consid-

ered three cases, of one, two and four shipments during

the 30 day window of one generation.

Results

Establishment in the field

We report the first establishment and spread of a

field population of P. nocens in North America.

The releases of buried pupae in November 2008, 2009

and 2010 at the Nueces River in Dimmit County,

Texas established successfully and P. nocens was

recorded there seven times between October 2009 and

June 2011 (Fig. 1a; Table 1), with spread over 3 km

recorded in June 2011.

At the Kenedy County release site, we twice recorded

P. nocens at that release point within the first generation

period in 2008, but no further flies have been detected

since then during multiple surveys and we assume that

the species failed to establish. This site was subject to

widespread flooding following several release events

with water ingress into the burial boxes, and potential

flooding of any pupae in the habitat (Fig. 1b). No flies

have been recovered from the Gonzales County site

during four subsequent surveys. The Gonzales site

underwent severe winter conditions in the months

following the primary release activities (Fig. 1c).

Evaluation of buried box release method

A test box containing pupae of P. tricuspis confirmed the

efficacy of this novel method. The emergence rate of

adult flies from pupae was 51.6% in the box, compared

to 69.7% for a control set of pupae held in the laboratory.

The sex ratio of emerging flies from the box was 1:1.54

(male:female) compared to 1:1.40 in the control sample

(lab cultured populations are manipulated to be female

biased). Environmental conditions inside the box

were found to be well regulated compared to ambient,

with a daily mean temperature 0.7�C cooler, maximum

4.6�C cooler, and minimum 2.6�C warmer than outside

(Fig. 2). Importantly, the buffered conditions also

resulted in a constant high humidity (92–96% RH)

while ambient humidity ranged from 32 to 90% RH

(mean 66.4%). High humidity (over 90%) is essential to

fly pupal development.

Laboratory culture results

A culture of P. nocens was maintained at the

Brackenridge Field Laboratory from November 2008
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until January 2010. As described above, this culture

never achieved sustained positive growth despite

addition of new flies on nine occasions (Table 1;

Fig. 3). The key period with positive growth occurred

after the May 2009 shipment when approximately 260

female P. nocens produced 665 pupae (male and

female). Although no conditions were changed in the

subsequent time period, the following generations

failed to provide positive growth.

Multiple possible causes for the decline were

investigated with the primary attention given to

aborted larvae and mating failures. When flies were

available in reasonable numbers ([ten males and

females per day) we regularly observed oviposition

attacks that yielded large numbers ([100 per day) of

parasitized ants (Fig. 3). However, the fly larvae in

these parasitized workers frequently aborted immedi-

ately prior to pupariation. These aborted larvae were

Fig. 1 Timelines of release

events and weather

conditions at the three

release sites, a Dimmit Co.,

b Kenedy Co., and

c Gonzales Co. The positive

detection dates of P. nocens
at the Dimmit Co. site are

annotated with arrows
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observed immediately adjacent to the decapitated

heads of the host worker ants. In contrast, when few

flies were available (\ten males or females per day)

we saw few oviposition attacks, most likely on account

of mating failures.

Larvae that did not abort and were able to

successfully pupate usually survived to enclose as

adult flies with emergence rates around 73% for pupae

raised in the lab. Emergence rates for pupae coming

directly from shipments ranged from 23 to 53%, mean

38%.

Simulation model results

The simulation model showed that attempting to start a

laboratory culture with a single shipment of pupae is

unlikely to succeed, using typical parameters observed

for P. nocens (Fig. 4a). The simulations were based on

a log series emergence profile so that fly emergence is

distributed longer than a single pulse. However with a

time lag between male and female development times,

asynchronous emergences may result in mating fail-

ures. The likelihood of positive population growth

increased dramatically if four shipments of pupae

occurred during the first generation cycle, even with

a two day lag between male and female emergence.

Alternately, single large shipments could result in

increased absolute abundance, such that a few flies of

either gender would be more likely across a longer

emergence window.

As a result of these simulations, a set of closely

timed shipments were made in November and Decem-

ber 2009. During this period the numbers of emerging

males and females was adequate to provide sustained

production of pupae, however, with continued high

levels of larval abortion (Fig. 3), the laboratory culture

was unsuccessful.

Discussion

The establishment of Pseudacteon nocens in North

America is an important milestone in the research

program of potential biocontrol agents for Solenopsis

invicta. P. nocens is widely distributed in their native

range, occurring in a variety of continental and arid

zones. P. nocens is often a co-dominant with P. obtu-

sus, P. tricuspis, P. curvatus and P. litoralis (Calca-

terra et al. 2005; Folgarait et al. 2007b), other species

that have been introduced into North America.

P. nocens is crepuscular and active during periods of

high ant activity. Behaviorally, they are an aggressive

species that elicit a strong behavioral response in

attacked ants. While P. nocens prefer large workers

(*0.6 mm head width), they develop successfully in a

wide range of worker sizes resulting in a correspond-

ing range of fly adult body sizes. Cumulatively, these

factors have made P. nocens an important candidate

biocontrol agent.

At the site in which they were established in

Dimmit County, Texas, in November 2008, P. nocens

Fig. 2 Temperature in buried pupae box and ambient. Bars

indicate daily temperature range (min to max)

Fig. 3 Laboratory culture of P. nocens. a Number of female

P. nocens from shipment used in lab culture, b number of pupae

and c aborted larvae produced in lab culture (11–14 days post-

oviposition). Peaks of aborted larvae often occurred in the week

before surviving pupae were produced
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co-occurs with three other introduced Pseudacteon

species (P. obtusus, P. curvatus and P. tricuspis).

Although an ideal release site for new founding

species would be free of other competing species, this

site was selected in a river corridor for year-round

warmth, high soil moisture and high densities of

fire ants to help start the founding population.

The continued low densities of P. nocens at this site

may in part be attributable to the presence of

competing species (LeBrun et al. 2009), but may also

reflect a phenomenon noted among other Pseudacteon

species of having a long latency period prior to

population growth and spread (LeBrun et al. 2008;

Porter et al. 2004). Nearby in South Texas, several

releases of P. tricuspis at Brownsville, Laredo and

Kingsville around 1999–2001 were all assessed as

having failed, but each population was found to have

survived when flies were detected after 2007 (RMP,

LEG unpublished). Similarly P. litoralis in Alabama

was also considered to have a weak founding popu-

lation, remaining in small numbers near the release

site since 2005 until they were recently found to have

expanded (Porter et al. 2011). There is some possibil-

ity that the other two P. nocens release sites may later

yield viable populations, especially the Gonzales

County site where substantial releases were made,

while the Kenedy Co. site has been frequently

monitored with no fly detection and was subject to

widespread flooding during the release period.

The founding population of P. nocens in Dimmit

County was supplemented by additional shipments

during the 2010 drought. Once the P. nocens popula-

tion at this site is well-established and spreading, it

could be used as a source from which to infect ant

colonies for release elsewhere.

The weather conditions at each site (Fig. 1) may

have played a role in the success or failure outcome

as observed during the establishment of P. obtusus

(Plowes et al. 2011). Habitat conditions and host ant

status are likely to reflect recent rainfall, while fly

mortality may be high during extremely hot or cold

episodes. Although the successful Dimmit County site

had lower overall rainfall, the site conditions remained

somewhat moist and warm given its location along the

deeply wooded Nueces River.

Techniques for field collections and shipments

from Argentina were perfected such that large num-

bers ([3,000 pupae per shipment, Table 1) of

P. nocens pupae were regularly imported and used

for laboratory cultures or field releases. Given the prior

failures by University of Texas, Austin and USDA-

ARS to initiate laboratory cultures, the decision was

made in 2006 to attempt a novel release method by

installing pupae into buried boxes from which they

could emerge as prompted by local environmental

cues. This method was shown to be successful in a test

Fig. 4 Simulation model of population growth comparing

strategies of a one, b two and c four shipments during the first

generation cycle. Each chart shows the population growth after

20 generations (y-axis) for five cases when the female per capita

replacement rates (r) were set at increments between 1.2 and 2.0.

The lag between female and male emergence (x-axis) was varied

from zero to four days (actual male-female development delay

is usually two days)
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box at Brackenridge Field Laboratory with tempera-

ture and humidity maintained at levels necessary for

successful development and eclosion of P. tricuspis,

and was also proven to work with P. nocens at the

Dimmit site (Table 1).

Mass rearing of myrmecophagous parasitoids has

only been attempted among Pseudacteon species and,

given the flies’ complex life histories in association with

their eusocial hosts, such mass rearing efforts are likely

to face considerable challenges over and above those

encountered when rearing parasitoids of non-social

insects (van Lenteren 2003). The rearing protocols we

used for P. nocens were based on the methods used for

other Pseudacteon (Pesquero et al. 1995; Porter et al.

1997; Vogt et al. 2003) and included close regulation of

conditions for larval and pupal development, eclosion,

mating, foraging, host-location and oviposition. Our

attempts to maintain a laboratory culture may have

failed for several reasons. At low per capita female

replacement rates, the small cultured population was

vulnerable to a range of stochastic events. Furthermore,

the two day lag in development and emergence between

male and female flies resulted in many occasions when

emerging females lacked mating partners. Our model

supported the notion that at least three shipments of

pupae were needed in a short period during the first

generation cycle to provide a flow of emerging flies to

overcome these problems. In some cases, mating failure

was suspected to arise from lack of stimuli and cues such

as lighting intervals, light quality, and lack of suitable

mating substrate and vegetation structure. We found

that once a female was mated, she was able to sustain a

high attack rate. However, we consider that the most

important negative impact on population growth was

the high level of larval abortion that frequently

occurred immediately prior to pupariation (Fig. 3). On

many days, over 70–90% of developing larvae aborted.

The cause of this sustained larval abortion is still

unknown but may be environmental or host related. Low

humidity during pupation is a critical factor resulting in

pupal mortality, but our cultures were maintained at

[90% humidity so this can be discounted as a possible

cause of larval abortion. Host quality problems are

likely to be the cause of aborted larvae, possibly based

on mismatched biotypes, nutritional deficiencies, path-

ogen infection status or ant immune responses. The

source of these P. nocens pupae was from Santiago del

Estero province which is over 500 km distant from the

likely source of the introduced fire ants in Formosa

province (Caldera et al. 2008). This is not considered to

be a root cause of the aborted larvae problem since on

many days the fly development proceeded with few

aborted larvae and other species of Pseudacteon can be

raised successfully on host ants derived from either

region, and the USDA imports that also failed were from

the Formosa area.

In contrast to the difficulty encountered with main-

taining a laboratory culture, even when supplemented

by numerous inputs of flies, burial releases at one of the

three field release sites resulted in a successful outcome.

The initial population appears to have started from a

large shipment of 6,485 pupae in November 2008, with

flies detected again in October 2009 before supplemen-

tal pupae were introduced. This release was equivalent

to a single shipment into the laboratory (Fig. 4a)

and the successful establishment implies a per capita

replacement rate [1.7 which is not unrealistic but

was not sustained in laboratory cultures. The size of the

shipment and the outdoor weather conditions were

probably important factors in the success of this

founding population. The use of large numbers of

buried pupae (Table 1) ensured that sufficient flies

emerged over an extended period, while variable

temperatures of the outdoor environment compared to

laboratory conditions may have broadened the range of

developmental periods, both leading to establishment

of overlapping generations. This implies that laboratory

populations could have benefited from exposure to a

wider range of temperatures to alter the developmental

periods, but would also need to be numerically larger.

Furthermore, field emerging flies may have better

prospects than laboratory cultures if in the field they

select preferred ant colonies and microhabitats, with

potentially positive fitness consequences.

Overall, the establishment of P. nocens in North

America is considered to be a noteworthy achievement

for the fire ant biological control research program.

This is an important species to include in the

biocontrol program given their relatively high abun-

dance and wide distribution in the native range.

Considerable time and resources were invested in this

introduction and establishment effort in comparison to

the relative ease with which other phorid species have

been raised in laboratory cultures and established in

the field. P. nocens differs in several important ways

from its congeners and future research will examine

the co-occurrence of these new assemblages and the

potential functional impacts on fire ants.
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