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The partition function of two hard spheres in a hard-wall pore is studied, appealing to a graph
representation. The exact evaluation of the canonical partition function and the one-body
distribution function in three different shaped pores are achieved. The analyzed simple geometries
are the cuboidal, cylindrical, and ellipsoidal cavities. Results have been compared with two
previously studied geometries; the spherical pore and the spherical pore with a hard core. The search
of common features in the analytic structure of the partition functions in terms of their length
parameters and their volumes, surface area, edges length, and curvatures is addressed too. A general
framework for the exact thermodynamic analysis of systems with few and many particles in terms
of a set of thermodynamic measures is discussed. We found that an exact thermodynamic
description is feasible based on the adoption of an adequate set of measures and the search of the
free energy dependence on the adopted measure set. A relation similar to the Laplace equation for
the fluid-vapor interface is obtained, which expresses the equilibrium between magnitudes that in
extended systems are intensive variables. This exact description is applied to study the
thermodynamic behavior of the two hard spheres in a hard-wall pore for the analyzed different
geometries. We obtain analytically the external reversible work, the pressure on the wall, the
pressure in the homogeneous region, the wall-fluid surface tension, the line tension, and other
similar properties. © 2010 American Institute of Physics. �doi:10.1063/1.3469773�

I. INTRODUCTION

The exact analytical evaluation of the partition function
and thermodynamic properties in systems of confined par-
ticles is a new trend in statistical mechanics. Due to the
inherent difficulties in searching the exact solution of three-
dimensional systems, the interest is focused on few confined
particles and is restricted to hard spherical particles. Systems
composed of many hard spheres �HSs� have attracted the
interest of many people because they constitute a prototypi-
cal three-dimensional simple fluid.1 Despite its apparent sim-
plicity, only a few exact analytical results are known. In the
limit of large homogeneous systems, only the first four virial
coefficients in the pressure virial series for the monodisperse
system are known �see Ref. 2 and references therein�. Simi-
larly, the fourth-order coefficient for the polydisperse sys-
tems were also obtained.3 It is interesting to note that the
exact equation of state �EOS� for the HS is unknown, al-
though an approximate, simple, analytical, and accurate EOS
was found by Carnahan and Starling.4 The earlier published
works on HS were specially devoted to the analysis of uni-
form fluid properties, as was the classical molecular dynam-
ics experiment on fluid particles by Alder and Wainwright.5

Gradually, the focus of the following works turned to inho-
mogeneous systems. In the past decades, a great effort was
devoted to the understanding of HS inhomogeneous fluid

systems, in part, because such systems are the starting point
of several density functional theories.6,7 These general theo-
ries deal with a large class of simple and complex fluid sys-
tems with successful results in the study of the substrate-fluid
behavior including wetting, capillary condensation, and ad-
sorption phenomena. Recent advances in the analysis of fluid
adsorption in a porous matrix were supported by develop-
ments in this field.8–10 In recent years, much attention was
focused on small systems of HS confined in vessels. The
study of simple fluids constrained to small cavities of various
shapes has enlightened fundamental questions of statistical
mechanics and thermodynamics �for example, about phase
transitions9,11�, but only recently the relevance of few-body
systems was recognized.

The few-body confined system is a topic of statistical
mechanics that belongs at the opposite of the thermodynamic
limit. The study of such systems is becoming technologically
interesting because the manipulation of matter in the micro-
scopic and nanoscopic scales shows that they can be built.
Besides, the design of new nanodevices could take advantage
of their properties. From that point of view, the use of simple
hard-core potentials enables a schematic description of the
interactions between particles and with the container. As we
will see below, this simplified picture makes the two-body
system analytically tractable. Interestingly, colloidal particles
with HS-like interaction have been produced and studied
experimentally.12–14a�Electronic mail: iurrutia@cnea.gov.ar.
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In few-body systems, different ensembles are not
equivalent. The correct ensemble to describe the properties
of a given system is that which better simulates its real prop-
erties. Thus, the canonical partition function of the confined
few-HS systems attempts to describe the statistical mechan-
ics properties of this system kept at constant temperature.
Besides, exact canonical ensemble studies of few-body con-
fined systems provide the building blocks for an exact grand
canonical study of them. The grand ensemble is important
because the statistical mechanical theory of macroscopic liq-
uids is largely developed in such framework. We recognize
that the absence of exact results for inhomogeneous fluids in
this framework is an obstacle that impedes the theoretical
improvement of the theory of liquids. Thus, we expect that in
the near future, the connection between exactly solved few-
body systems and the theory of macroscopic fluids can pro-
vide new theoretical insight.

From now on, we will focus on the analytical exact so-
lution of few-HS systems in a pore emphasizing on canonical
ensemble results. Until now, only the two HS �2-HS� system
was tackled. Recently, the canonical ensemble 2-HS confined
in a spherical cavity was solved,15 and also, the system con-
fined in a spherical cavity with a hard internal core was
evaluated.16 In both works, the principal result is the analytic
expression of the configuration integral �CI�, but the one-
body density distribution and pressure tensor were analyzed
too. Studies of the same system in the framework of the
microcanonical ensemble has also been done.17 The present
work �PW� is devoted to the exact solution of the statistical
mechanical properties of 2-HS in hard-wall simple pores in
the framework of the canonical ensemble. We present new
results for the cuboidal, the cylindrical, and the ellipsoidal
cavities. We should mention that the microcanonical en-
semble CI of 2-HS in a cuboidal cavity found in Ref. 17 is
formally identical to that analyzed in PW for the same ves-
sel. However, we present a different approach to the integral
evaluation and a simpler and more explicit expression of the
CI. We have checked that both solutions are equivalent.

In Sec. II we show how a hard-wall cavity that contains
2-HS can be analyzed as a third particle. There, we show
explicit expressions of the canonical configuration integral
for 2-HS into three pores of simple shape. We study the
confinement in cuboidal, cylindrical, and spheroidal cavities.
The obtained exact CIs are a function of a set of parameters
X that characterize the different shapes of the cavity. In Sec.
III we analyze both the one-body distribution function and
the pressure tensor for some of the studied cavities. In this
section we also obtain an analytic expression for the inter-
secting volume between a cuboid and a sphere, which ap-
pears to be a novel geometrical result. Section IV is devoted
to the search of some universal features in the CI of the 2-HS
system constrained to simple geometric cavities including
the cuboidal, cylindrical, spherical, ellipsoidal, and also the
spherical cavity with a concentric hard core. A discussion of
how to obtain a thermodynamic description of the system by
transforming the CI from Z2�X� to a more interesting de-
scription Z2�M�, where M is a set of thermodynamic mea-
sures, is done in Sec. V. There, we find the equations of state

of the 2-HS system in the studied cavities and obtain some
exact results for the many-HS system in contact with curved
walls. Final remarks are shown in Sec. VI.

II. TWO BODIES IN A PORE

The canonical partition function of two distinguishable
particles in a pore is Q2=�−6Z2, with � being the thermal de
Broglie wavelength and Z2 the CI, which may be expressed
as a three node graph15,18

= Z2 =

ˆ ˆ
e(r1)e(r2) e(r12) dr1dr2 .

P

�1�

Here, e�ri�=ei=exp�−�U�ri��, with i=1,2, e�r12�=e12

=exp�−���r12��, r12=r1−r2, U is the external potential act-
ing on each particle, � is the particle-particle potential, and
the integration must be performed over the infinite space.
The accessible region of space for the ith particle, �, is the
region where ei�0, and its boundary is ��. In PW we as-
sume that � and �� are the same for both particles. The
labeled P node in Eq. �1� that represents the pore is linked to
the particles by the ei bonds drawn with continuous lines in
Eq. �1�. Particles are linked to each other by the eij bond
drawn with dashed line. Pores with hard walls have
ei= �1 if ri�� and 0 otherwise� and then the ei bonds fulfill
the in-pore condition. For hard spherical particles,
eij =��rij −��, where � is the Heaviside function, rij = �rij�,
and � is the hard repulsion distance �it is also the diameter of
one HS�. Therefore, the eij bond fulfills the nonoverlap be-
tween particle’s condition, being null if particles overlap
each other. Both conditions are mandatory for the non-null
value of the integrand in Eq. �1�. It is clear that Z2 for a 2-HS
system confined in a hard-wall cavity is by its nature a geo-
metrical magnitude. This means that Z2 depends on � and a
set of parameters that characterize the shape and size of the
cavity. Therefore, Z2 is a piece of the bridge that links ge-
ometry and thermodynamics. We will return to this point in
Sec. V. Before the evaluation of the integral �1�, we may
perform some simple Mayer-type transformations on it. Us-
ing the general identity e=1+ f , we may replace the e12 bond
and/or the ei bonds. The introduced f12 function is non-null
only if the two particles are overlapping, while f i is null if
the i-particle is in the pore. We will draw the functions ei and
f12 with continuous line, while we will draw the functions f i

and e12 with dashed line. Following this procedure, we ob-
tain

P P P

P P P

+=

+ +=

�2�
where each graph with an articulation node can be factorized
and easily evaluated,18 taking into account some trivial iden-
tities
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P = Z1 ,

�3�

= −2b2 = −4π

3
σ3 .

�4�

Here, Z1 is the CI of the one-particle system, −b2 is the usual
second virial coefficient, and � plays the role of exclusion
radius. Note that Z1 depends both on the shape of the empty
cavity and the HS size �. The independent particle term Z1

2

was explicitly separated in the first row of Eq. �2�, from the
second term that concentrates all corrections to this simple
picture. This term is 2Z1b2�pore�, with b2�pore� being the
first cluster integral with the complete dependence on the
size and shape of the pore.18 Therefore, the first row of Eq.
�2� is

Z2 = Z1
2 − 2Z1b2�pore� . �5�

From an opposite point of view, we may regard the p-node as
if it was a particle. This allows us to recognize that the right-
hand side term in the first row of Eq. �2� is part of the third
virial coefficient of a fluid mixture.15,16 The first nonideal gas
term, −2Z1b2, which contains the usual second virial coeffi-
cient for homogeneous systems, was also extracted in the
second row of Eq. �2�. Therefore, the third term contains the
nontrivial core of the problem involving a complex depen-
dence on the pore’s shape parameters. It hides the inhomo-
geneous system dependencies, dominating its properties
along the entire density regime, from low density �or large
pore size� to the close packing condition. Moreover, this term
produces ergodic-nonergodic transitions and dimensional
crossovers. To make a contribution to the last graph in the
second row of Eq. �2�, one particle must be outside � �or

inside �̄, the complement of ��, while the other particle
must be inside �, and also both particles must be near each
other. This explains that for large pores the term scales with
the surface area of the container, which is a measure of the
size of ��. Even more interesting, this graph remains un-
modified if we turn to the conjugate system of 2-HS confined

in �̄, i.e., the graph is symmetric with respect to the in-out
inversion. More explicitly, we introduce a partition of the

Euclidean space E3=���̄ being V	=Z1���+Z1��̄� the
volume of the space. Equation �5� is valid for Z2=Z2��� and

Z1=Z1��� as was already stated, but also for Z2=Z2��̄� and

Z1=Z1��̄�. This is the in-out symmetry of the 2-HS system
confined in a hard-wall cavity.15

Now we concentrate on the evaluation of Eq. �1�. In
principle, the integration is over the positions of both par-
ticles �with a fixed pore position�; however, it can be rewrit-
ten as an integration over the coordinates of the pore and one
particle �by fixing the second particle�. Hence, we first fix
both particle coordinates and integrate over all pore center
positions that allow both particles to be inside the cavity. The
result of the integration is the volume W. To build the region
with volume W, we can follow a simple geometrical recipe.
Choose one point of the cavity, e.g., the center, and draw two
cavities centered at particle 1 and particle 2 positions. Cavity
2 must be the translation in r of cavity 1, i.e., they must be
equally oriented. The overlap between cavities 1 and 2 is the

available region for the pore center. In Fig. 1 we show a
schematic picture for a cuboidal pore. The result of the first
integration is the overlap volume W, the gray region defined
by the overlap of cavities 1 and 2. At a second stage, we
should integrate over the position of particle 2 with coordi-
nate r. The integration domain is the region outside the ex-
clusion sphere �ES� with radius � and inside the external
boundary �EB� where W vanishes. The EB is determined by
the region enclosed by all the positions of particle 2 when we
support cavity 2 on cavity 1 and translate it in all possible
directions, keeping the boundary of both cavities touching.
Through this padding procedure, the obtained EB is the re-
gion enclosed by the dashed line in Fig. 1. The CI of the
system reads as

Z2 =	 W�r�e�r�d3r , �6�

where e�r�=��r−��. By integrating only the pore center po-
sition, we find an unnormalized two-body density distribu-
tion, g�r�=Z2

−1W�r�e�r�. Interestingly, Z2 and W�r� of the
2-HS confined system are related to the CI of other systems,
e.g., the confined stick-particle or dumbbell built by fasten-
ing two HSs. The CI of this system is easily obtained from
Z2 by making a sticky-bond transformation.16 The one-body
density distribution 
�r� will be analyzed in Sec. III. A
simple consequence of Eqs. �1� and �6� is that Z2 depends on
the X parameters �introduced by the ei bond and W volume�,
which characterize the geometry of each pore. Now we are
ready to solve Eq. �6� for some simple cavities. As we have
mentioned above, PW is mainly devoted to study the 2-HS
confined system of distinguishable particles. Even so, at the
end of Sec. II we make a brief comment about the 2-HS
system of indistinguishable particles.

A. CI of 2-HS in a cuboid pore

The empty cavity is characterized by the length param-
eters Lx�, Ly�, and Lz�. We introduce the effective cavity length
parameters Li=Li�−�, which characterize the available space
for the center of one particle and the dimensionless lengths
li=Li /�, with i=x ,y ,z. Then we obtain for the cuboid shaped
pore Z1=LxLyLz and

W�r� = �Lx − x��Ly − y��Lz − z� , �7�

where r= �x ,y ,z� �see Fig. 1�. The EB is a cuboid with
doubled length sides, and the W�r� dependence turns conve-
nient to integrate Eq. �6� over one octant, i.e., 0�x�Lx, 0

r 2

1

FIG. 1. Representation of the integration procedure utilized in the evalua-
tion of Z2. The drawn points indicate particles 1 and 2. The solid lines
indicate cavities 1 and 2, while the overlap region with volume W is shaded.
The dashed lines plot the ES and EB.
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�y�Ly, 0�z�Lz, and multiply by 8. Although, W�r� is a
nonanalytic positive function. For practical purposes, we will
extend analytically W to enlarge the integration domain out-
side the EB box to x�0, y�0, and z�0. Assuming
Lx�Ly �Lz, it is necessary to analyze the integral �6� for
different pore size domains in the parameter space
X= �Lx ,Ly ,Lz� or the similar X= �lx , ly , lz�. Introducing the
directions: xŷLxx̂+Lyŷ, xẑLxx̂+Lzẑ, yẑLyŷ+Lzẑ, and
xŷzLxx̂+Lyŷ+Lzẑ, we may distinguish eight different re-
gions of X.

1. Region 1

The large pore domain is defined by the condition that
ES is completely enclosed into the EB, i.e., that li�1, with
i=x ,y ,z. The integral �6� splits into the simpler ones,

I1 = 8	
0

Lx

dx	
0

Ly

dy	
0

Lz

Wdz = Z1
2, �8�

I2 = 8	
0

�

dx	
0


�2−x2

dy	
0


�2−x2−y2

Wdz

=
4�

3
�3LxLyLz −

�

2
�4�LxLy + LxLz + LyLz�

+
8

15
�5�Lx + Ly + Lz� −

1

6
�6, �9�

which in terms of dimensionless length variables is

I2 =
4�

3
�6lxlylz −

�

2
�6�lxly + lxlz + lylz�

+
8

15
�6�lx + ly + lz� −

1

6
�6. �10�

Then, we find

Z2 = I1 − I2 = Z1
2 − 2Z1b2�cub� . �11�

The last expression is similar to Eq. �5�.

2. Region 2

The ES exceeds only two faces of the EB domain. Here,
the exclusion sphere showed in Fig. 1 should extend beyond
the EB at most in one direction normal to the faces of the
box. As far as this direction was labeled as x̂, then we have
lx�1, ly �1, and lz�1. We define the auxiliary integral I3x,
its integration domain is the spherical cup outside the EB
box in the x̂ direction

I3x = 8	
Lx

�

dx	
0


�2−x2

dy	
0


�2−x2−y2

Wdz

= �6�−
1

30
�1 − lx�4�5 + 4lx + lx

2�

−
�

6
lylz�1 − lx�3�lx + 3� + �ly + lz�

�� 1

15

1 − lx

2�8 + 9lx
2 − 2lx

4� − lx�

2
− arcsin�lx���� ,

�12�

Z2 = I1 − I2 + I3x. �13�

In the same sense, we define I3i, with i=x ,y ,z. The integra-
tion domain of I3i corresponds to the spherical cup outside

the EB in the î direction, which completes the description of
the set of functions �I3x ,I3y ,I3z�.

3. Region 3

We consider the situation when ES exceeds only four
faces of the EB, where the exclusion sphere must extend
beyond the cuboidal EB in the x̂ and ŷ directions but not in
the ẑ and xŷ directions. In this case, lx�1, ly �1, lz�1, and
lx
2+ ly

2�1. The CI is

Z2 = I1 − I2 + I3x + I3y . �14�

4. Region 4

The next domain to consider is when ES exceeds all six
faces of EB but not any more. It goes beyond the EB in the
�x̂ , ŷ , ẑ� directions but not in �xŷ ,xẑ ,yẑ�. Then, we need
li�1 and li

2+ lj
2�1, for i , j=x ,y ,z with i� j, therefore

Z2 = I1 − I2 + I3x + I3y + I3z. �15�

5. Region 5

In this region ES exceeds at four faces and four edges of
EB. The sphere fall off the EB in the �x̂ , ŷ ,xŷ� directions but
not in ẑ. Then we have obtain lx

2+ ly
2�1 and lz�1. We define

the auxiliary integral I3xy, its integration domain is the right
angle spherical wedge outside the EB in both x̂ and ŷ direc-
tions. Note that the edge of the spherical wedge does not
cross the sphere center. In addition, we define I2xy, its inte-
gration domain is the space outer to ES and inner to EB,

I3xy = 8	
Lx


�2−Ly
2

dx	
Ly


�2−x2

dy	
0


�2−x2−y2

Wdz , �16�

I2xy = 8	
0

Lx

dx	
0

Ly

dy	
0


�2−x2−y2

Wdz , �17�

both integrals are related by

I2xy = I2 − I3x − I3y + I3xy . �18�

For I2xy, we found

I2xy = �6�−
1

6
lx
2ly

2�6 − lx
2 − ly

2� +
8

15
lz +

1

15
lz

1 − lx

2 − ly
2�8

+ 9�lx
2 + ly

2� − 2�lx
4 + ly

4� + 6lx
2ly

2�

−
8

3
lxlylz arctan lxly


1 − lx
2 − ly

2� + lz�H�lx,ly�

+ H�ly,lx��� , �19�
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H�u,v� = −
1

15

1 − u2�8 + 9u2 − 2u4� − u arcsin�u�

+
1

3
v�3 + 6u2 − u4�arcsin v


1 − u2� . �20�

The straightforward generalization of I2xy and I3xy in Eqs.
�16� and �17� defines the set of functions
�I2xy ,I2xz ,I2yz ,I3xy ,I3xz ,I3yz�. The zone of the phase space
with non-null integrand in Eq. �1�, i.e., the available phase
space of the system �APS� breaks or fragments into two
equal unlinked zones because the pair of particles cannot
interchange their positions anymore. In this sense, we refer
to an ergodicity breaking in the canonical ensemble, which
introduces an overall factor �=1 /2 in the CI, therefore

Z2 = � � �I1 − I2xy� . �21�

Note that � was not explicitly written in Eq. �5� and then a
�=1 value was there assumed.

6. Region 6

In this region ES exceeds at six faces and only four
edges of EB. Here, the sphere should exceed the EB in the
�x̂ , ŷ , ẑ ,xŷ� directions but not in �xẑ ,yẑ�. Then, the region in
the parameter space is lx

2+ ly
2�1, lz�1, lx

2+ lz
2�1, and ly

2+ lz
2

�1. For this region, the particles cannot interchange their
positions, thus, the APS breaks into two equal and unlinked
zones. The ergodicity breaking introduces the overall factor
�=1 /2,

Z2 = � � �I1 − I2xy + I3z� . �22�

7. Region 7

When ES exceeds at six faces and only eight edges but
not any vertex of EB, we have the seventh region. Here, the
sphere exceeds the EB in the �x̂ , ŷ , ẑ ,xŷ ,xẑ� directions but
not in yẑ. The parameter domain is lz�1, lx

2+ ly
2�1, lx

2+ lz
2

�1, and ly
2+ lz

2�1. Again, APS breaks but now into four
equal and unlinked zones, each one characterizing a set of
microstates that is nonsymmetric under some of the symme-
tries of the cuboid cavity. This is a spontaneous symmetry
breaking phenomenon. The ergodicity breaking produces a
factor �=1 /4, and the CI reads as

Z2 = � � �I1 − I2 + I3x + I3y + I3z − I3xy − I3xz�

= � � �I1 − I2xy + I3z − I3xz� . �23�

8. Region 8

The last region considered is when ES exceeds at 6
faces, 12 edges but not any vertex of EB. Then, the sphere
exceeds the EB box in the �x̂ , ŷ , ẑ ,xŷ ,xẑ ,yẑ� direction but not
in xyzˆ . Then, li

2+ lj
2�1 for i , j=x ,y ,z �i� j�, and lx

2+ ly
2+ lz

2

�1. With these conditions, the APS breaks into eight equal
and unlinked zones, which also involves a spontaneous sym-
metry breaking. The factor introduced by the ergodicity
breaking is �=1 /8, while CI is

Z2 = � � �I1 − I2 + I3x + I3y + I3z − I3xy − I3xz − I3yz� .

�24�

Finally, in the case that ES exceeds the EB also in the xyzˆ
direction, the partition function becomes null because both
particles do not fit into the cavity.

B. CI of 2-HS in a cylindrical pore

Let us define the usual length parameters, height, and
radius that characterize an empty cylindrical cavity Lh�, R�.
The effective cavity length parameters are then Lh=Lh�−�,
R=R�−� /2, and the dimensionless ones are given by
h=Lh /�, R=s−1=2R /�. For the cylindrical shaped pore, we
have Z1=�LhR2. As it was mentioned above, we need to
know the volume defined by the intersection of two equal
and parallel cylinders, W�r ,Lh ,R�. It is related to the inter-
section of two disks of equal radii R and separated by a
distance r, Wdisk�r ,R�=2R2�arccos�r�− r�1− r2�1/2�, where
r=r / �2R� by

W�r,Lh,R� = �Lh − z�Wdisk�r,R� . �25�

Note that W is a well defined function of r only for the range
of 0� r�1. The EB is a cylinder of double lengths, and the
W dependence turns convenient to integrate over 0�z�Lh,
0�r�2R, and multiply by 4�. The analytic extension of W
for values z�0 will be considered when it becomes neces-
sary. We need to analyze the integral considering the param-
eters X= �R ,Lh�, which define the allowed pore size domain.
Defining rẑRr̂+ �Lh /2�ẑ, we distinguish four regions.

1. Region 1

The large pore domain is defined by the condition that
the ES is completely enclosed into the EB, i.e., that h�1 and
R�1. The CI splits into

I1 = 4�	
0

2R

rdr	
0

Lh

Wdz = Z1
2, �26�

I2 = 4�	
0

�

rdr	
0


�2−r2

Wdz

= �2R2Lh
4

3
�3 − �2R21

2
�4 − �2RLh

1

2
�4

��1 − 2F1−
1

2
,
1

2
;3;s2��

+
�

12
�
�2R�2 − �2�− 6R4 + 5R2�2 + �4�

+ �R2�2R4 − 2R2�2 + �4�arcsin�s� , �27�

where 2F1
�− 1

2 , 1
2 ;3 ;a� is the Gauss hypergeometric function

that can also be written in terms of complete elliptic
integrals.19,20 The CI is then

Z2 = I1 − I2. �28�
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2. Region 2

The ES exceeds only the bases of EB domain. Here, the
exclusion sphere should go beyond the EB only in the ẑ
direction and then h�1, R�1. We define the auxiliary inte-
gral I3z, its integration domain is the spherical cup outside
the upper base of the EB

I3z = 4�	
0


�2−Lh
2

rdr	
Lh


�2−r2

Wdz

= R6�/45�− 256hs2�− 2 + 7s2 + 3s4�

�E�arcsin�s
1 − h2�,s−2� + 15��3 − 12�1 + h2�s2

+ 64hs4� − 256hs3�1 + 2s2 − 3s4�F�arccos�h�,s2�

+ 2s
�1 − h2��1 − �1 − h2�s2��− 45 + 2�75

+ 41h2�s2 − 24�− 5 − 4h2 + h4�s4� + 30�− 3 + 12�1

+ h2�s2 + 8�− 3 − 6h2 + h4�s4�arccos�s
1 − h2�� ,

�29�

where F�a ,b� and E�a ,b� are the incomplete elliptic inte-
grals of the first and second kind, respectively.19 The CI is

Z2 = I1 − I2 + I3z. �30�

3. Region 3

In this case ES exceeds only the curved lateral face of
EB. The exclusion sphere should go beyond the cylindrical
EB only in the r̂ direction being h�1 and R�1. With these
conditions, particles cannot interchange their positions and
the APS breaks into two equal and unlinked zones. We intro-
duce the auxiliary integral I2r given by

I2r = 4�	
0

2R

rdr	
0


�2−r2

Wdz

= �2R6 − R4�2 +
4

3
R2Lh�3�

+
4�

45
Lh���32R4 − 28R2�2 − 3�4�E�s−2�

+ �− 16R4 − 8R2�2 + 3�4��K�s−2��� , �31�

where K�a� and E�a� are the complete elliptic integrals of the
first and second kind, respectively. We may also formally
define I3r=I2−I2r. The ergodicity breaking produces a
�=1 /2 factor, being Z2,

Z2 = � � �I1 − I2r� = � � �I1 − I2 + I3r� . �32�

4. Region 4

This region appears when ES exceeds both the bases and
the curved lateral face but not the edges of EB. Therefore,
the exclusion sphere exceeds EB in the �r̂ , ẑ� directions but
not in rẑ. In consequence, h�1 and R�1, but h2+R2�1.
As what happens in region 3, here the APS breaks into two
equal and unlinked zones due to the ergodicity breaking,
giving �=1 /2 and

Z2 = � � �I1 − I2 + I3z + I3r� . �33�

Finally, if ES exceeds also in the rẑ direction, the partition
function becomes null because both particles cannot fit into
the pore.

C. CI of 2-HS in a spheroidal pore

The last CI that we evaluate in PW corresponds to the
ellipsoidal pore. We restrict the study to cavities where only
two principal radii are independent, i.e., to the revolution
ellipsoids also called spheroids. Therefore, two distinct
shapes, the prolate and the oblate ones, will be analyzed. Let
us consider an effective cavity with spheroidal shape. The
effective length parameters are the principal radii R and Rc,
where Rc is a different radius. Dimensionless parameters are
R=s−1=2R /�, C=2Rc /�, and �=Rc /R. For ��1, we deal
with the oblate, while for ��1, we deal with the prolate,
spheroids. The configuration integral for one particle is
Z1= �4� /3�R2Rc. The volume of intersection of two equally
oriented spheroids, W�r ,z�, is related to the volume of the
intersection of two spheres. In terms of Wsphere�� ,R�
= �4� /3�R3�1− 3

2 r+ 1
2 r3�, with � as the spherical radial coor-

dinate, and r=� / �2R�, we obtain

W�r,z� = �Wsphere�
r2 + �z/��2,R� . �34�

Function W is well defined in the domain 0�r2+ �z /��2

�4R2. The EB is a spheroid with double length radii. For
this pore, the W dependence turns convenient to integrate
over 0�z�2Rc, 0�r�2R, and multiply by 4�. We need to
analyze the integral considering the allowed values of pa-
rameters X= �R ,Rc� that define the pore size domain. We
may distinguish three regions.

1. Region 1

In the large pore domain ES is completely enclosed in
EB, i.e., C�1 and R�1. As it was described above, the
integral splits into

I1 = 4�	
0

2Rc

dz	
0


�2R�2−z2�−2

Wrdr = Z1
2, �35�

I2 = 4�	
0

�

dz	
0


�2−r2

Wrdr =
16

9
�2R3��3

−
�2�4

2
R2 −

�2

24
�1 +

�2


− 1 + �2
arcsec����

+
�2

72

�6

�2 , �36�

which applies to both oblate and prolate spheroidal cavities.
For ��1, �−1+�2�1/2arcsec��� transforms into
�1−�2�1/2arcsech���. Although, for �→1 we obtain
�−1+�2�1/2arcsec���→1, which is consistent with the spheri-
cal pore result.15 In terms of I1 and I2, we find

Z2 = I1 − I2. �37�

Next regions concern the situation where ES exceeds EB.
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Under such condition, it becomes necessary to make a sepa-
rate analysis of prolate and oblate ellipsoids.

2. Region 2 „oblate…

Here we consider an oblate ellipsoid, ��1. In this re-
gion ES exceeds on top and down directions of EB, i.e., in
the direction of the principal axis ẑ but not in r̂. Therefore,
we consider C�1, R�1. We find that in this region it is
simpler to deal directly with Z2, we obtain

Z2 = 4�	
0

zmax

dz	
�2−z2


�2R�2−z2�−2

Wrdr

=
�6�2�2

144
1 − �2
�− R
R2 − 1�3 + 16R2 − 4R4�

− 3�6R2 − 1�arcsech�R2�� , �38�

with zmax=�
��2R�2−�2� / �1−�2�. We may also formally de-
fine I2z=I1−Z2 and I3z=I2−I2z. In the case that ES also
exceeds EB in the r̂ direction, the partition function becomes
null because both particles cannot fit into the pore.

3. Region 3 „prolate…

Here we restrict to a prolate ellipsoid, ��1. In this re-
gion ES exceeds in the lateral direction the surface of EB.
Then, ES goes beyond EB only in the r̂ direction but not in ẑ,
i.e., C�1, R�1. Under these conditions, APS breaks into
two equal and unlinked zones and the ergodicity breaking
produces the factor �=1 /2. Again, in this region, it is pref-
erable to deal directly with Z2

Z2 = � � 4�	
0

rmax

rdr	
�2−r2

�
�2R�2−r2

Wdz , �39�

where rmax=
�2− ��2R�2 /
�2−1. This integral was solved
by splitting it into several parts; after some work, we obtain

Z2�−1 = I1 −
16

9
�2R3��3 +

�2�4

2
R2 −

�2�6

24
1

2
+

1

3�2�
+

�2�6�2

144
− 1 + �2
R
1 − R2�3 + 16R2 − 4R4�

+
3�6�2�2

144
− 1 + �2
�6R2 − 1��arcsec���

− arccos�R�� . �40�

Formally, we can define I2r=I1−�−1Z2 and I3r=I2−I2r. In
addition, we note that if the exclusion sphere exceeds EB all
around, particles do not fit into the cavity, and then the CI
becomes null. Equation �40� is the last analytic expression
for the CI of the 2-HS system confined in the studied cuboid,
cylindrical, and spheroidal cavities.

In PW we deal with a pair of distinguishable particles.
Even so, we make a brief discussion about the CI of a system
of two-indistinguishable HS �2i-HS�. The canonical partition
function of 2i-HS confined in a cuboidal, cylindrical, sphe-
roidal, and other shaped cavities are easily obtained from the
CI of a two-distinguishable HS with the introduction of mi-
nor modifications. The first obvious change comes in the

partition function definition because we must introduce the
correct Boltzmann factor, then Q2,ind= 1

2�−6Z2,ind. Secondly,
we must analyze the difference between Z2 and Z2,ind. In
principle, expression �1� gives the starting point to define
both Z2 and Z2,ind. However, the evaluation of Z2 for the
studied cavities involves the factor � that modifies Eq. �1� in
some regions. We recognize that Z2,ind=Z2 in regions where
no extra factor appears. A detailed inspection of the origin of
� also shows other different situations. In some regions the
ergodicity breaking appears because particles cannot inter-
change their positions, but this makes nonsense for indistin-
guishable particles. Therefore, regions where �=1 /2 corre-
spond to �ind=1. In other regions the ergodicity breaking also
involves the spontaneous symmetry breaking, in this regions
we find �ind=2�. In summary,

Z2,ind = �indZ2�� = 1� with �ind = 2� if � � 1,

and �ind=2 if �=1. Remarkably, partition function relates
simply by Q2,ind=Q2 if ��1, and Q2,ind= 1

2Q2 if �=1.

III. LOCAL PROPERTIES: DENSITY DISTRIBUTION
AND PRESSURE

In principle, the partition function of the system de-
scribes its global statistical mechanical properties. Such
properties are presumably obtainable from some derivatives
of Q2. This makes the study of the analytical properties of
Z2, which is done in Sec. IV, interesting. Now, we are also
interested in the local properties of the 2-HS confined sys-
tem. Therefore, we studied two functions, the one-body den-
sity distribution 
�r� and the pressure tensor P�r�. We begin
with a general brief description of the properties of 
�r�. For
any pore shape, 
�r� is �Ref. 18, p. 180�


�r� = 2Z2
−1e1�r� 	 e2�r2�e12��r − r2��dr2

= 2Z2
−1e1�r��Z1 − J2�r�� , �41�

J2�r� = −	 e2�r2�f12��r − r2��dr2, �42�

where J2�r� is the overlap volume between the cavity and
the ES �with � radius� at position r. This ES is produced by
one HS particle located there. The complete integral is
�
�r�dr=2. For an arbitrary r, J2�r� is positive and continu-
ous but nonanalytic and may be piecewise defined. When the
particle is placed sufficiently deep inside the cavity, all the
ES is inner to the boundary. Therefore, for r such that the
shortest distance to the boundary is greater than �, J2�r�
reaches its maximum value J2�r�=2b2. This means that for
big enough cavities of any shape a plateau of constant den-
sity,


0 = 2Z2
−1�Z1 − 2b2� , �43�

develops at a distance to the boundary grater than �. When r
becomes nearer the boundary, the function J2�r� decreases
and 
�r� increases. For r outside the cavity, 
�r�=0, but we
can define its continuous extension y�r� by dropping out the
e1�r� term in Eq. �41�. Outside the cavity, for distances to the
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boundary greater than �, y�r� becomes constant
because J2�r�=0. The J2�r� for the cuboid and cylindrical
pores may be expressed by combining the 2b2

constant and the geometrical functions

�J2a�r · â� ,J2ab�r · â ,r · b̂� ,J2abc�r · â ,r · b̂ ,r · ĉ��, where
�a ,b ,c� represent characteristic directions normal to the cav-

ity boundary with inward normal versors �â , b̂ , ĉ�. The func-
tion J2a is the inner overlap volume defined by the ES and
one boundary surface that intersects it, J2ab is the inner over-
lap volume defined by the sphere and two intersecting
boundary surfaces, and J2abc involves three mutually inter-
secting boundary surfaces. The shortcut r · â and similar are
the �minimum� distance between the ES center and a face of
the boundary with normal inward versor â. Although, r · â
extends to negative values when r is outside the cavity. We
may mention that inner overlap volume clearly identifies a
unique volume and this description is nonambiguous. When
position r is on a cavity surface with a simple curvature and
away from other surfaces �a distance greater than ��, J2�r�
=J2a�r · â=0� which reduces to simple expressions. In such
conditions, we have J2�0�=b2 for the planar surface,
J2,sph�0�=b2�1− 3

4s� for a concave spherical surface, and
J2,sph�0�=b2�1+ 3

4s� for the convex one.15,16 For r on the
lateral curved surface of a cylinder, the analytic expression
involving elliptic integrals is known.21 Its power series are
J2,cyl�0�=b2�1− 3

8s− 1
32s3�+O�s5� and J2,cyl�0�=b2�1+ 3

8s
+ 1

32s3�+O�s5� for the concave and convex cases, respec-
tively. The question becomes even worse for the spheroidal
pore surface, where we found analytic expressions of
J2,sphd�0� only for points on the poles and on the equatorial
line.

A. Density distribution in the cuboidal pore

For the cuboid cavity, the boundary surfaces are orthogo-
nally intersecting planes. Therefore, in cuboidal cavities, J2a

is the inner overlap volume defined by the ES and a plane
that intersects it, J2ab is the volume defined by the sphere
and a right angle dihedron that intersects it, and J2abc is the
volume defined by the sphere and a right angle vertex. We
must include a brief digression about the volume of intersec-
tion of a unit sphere and a set of mutually intersecting
planes. As we are primarily interested in the cuboid, we re-
strict ourselves to sets of mutually orthogonal planes with at
most three planes. We introduce the function Ka�r · â� that
measures the volume of the spherical segment or spherical
cap, defined by the intersection of the unit sphere at position
r and a half-space with inward normal â. The vector r goes
from a point in the plane to the sphere center. For â= x̂, we
have r · â=x with x�0 if the center of the sphere is in the
positive half-space. For −1�x�0,

Kx�x� = 4	
−x

1

dx�	
0


1−x�2

dy�	
0


1−y�2−x�2

dz� �44�

=
�

3
�1 + x�2�2 − x� , �45�

but Eq. �45� is also valid in the extended domain −1�x
�1. Naturally,

4�/3 = Ka�r · â� + Ka�− r · â� , �46�

Ka�− r · â� = Kā�− r · â� , �47�

where the label ā=−a corresponds to the inward direction

−â. The function Kab�r · â ,r · b̂� is the volume between the
sphere and a right angle wedge when the edge crosses the
sphere. The wedge is defined by the quadrant determined by
the intersection of half-spaces with inward directions â and

b̂. The center of the sphere does not lie on the edge; then this
spherical wedge is different from the usual one. For â= x̂ and

b̂= ŷ, we obtain

Kxy�x,y� = 2	
x


1−y2

dx�	
y


1−x�2

dy�	
0


1−y�2−x�2

dz� �48�

=
1

3�� + 2xy
1 − x2 − y2

− 2 arctan xy

1 − x2 − y2�

+ x�3 − x2�arccos − y

1 − x2�

+ y�3 − y2�arccos − x

1 − y2�� , �49�

where Eq. �48� applies for −1�x ,y�0, x2+y2�1, but Eq.
�49� is valid in the extended domain −1�x, y�1,x2+y2

�1. The half-length of the portion of the wedge edge inside

the sphere is 1−x2−y2. The function Kab�r · â ,r · b̂� has the
following properties:

Ka�r · â� = Kab�r · â,r · b̂� + Kab�r · â,− r · b̂� ,

Kb�r · b̂� = Kab�r · â,r · b̂� + Kab�− r · â,r · b̂� , �50�

4�/3 = Kab�r · â,r · b̂� + Kab�− r · â,r · b̂�

+ Kab�r · â,− r · b̂� + Kab�− r · â,− r · b̂� , �51�

Kab�r · â,− r · b̂� = Kab̄�r · â,− r · b̂� ,

Kab�− r · â,r · b̂� = Kāb�− r · â,r · b̂� ,

Kab�− r · â,− r · b̂� = Kāb̄�− r · â,− r · b̂� . �52�

Equation �51� is a consequence of Eqs. �46� and �50�. The
last K function in which we are interested is

Kabc�r · â ,r · b̂ ,r · ĉ�, the volume defined by the sphere and a
right angle vertex inner to the sphere,
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Kxyz�x,y,z� = 	
x


1−y�2−z�2

dx�	
y


1−x�2−z2

�dy�	
z


1−x�2−y�2

dz� �53�

=
�

6
− xyz −

1

4
�Kx�x� + Ky�y� + Kz�z��

+
1

2
�Kxy�x,y� + Kxz�x,z� + Kyz�y,z�� . �54�

As happened before, Eq. �53� applies for −1�x ,y ,z�0, x2

+y2+z2�1, but Eq. �54� is valid in the extended domain
−1�x ,y ,z�1, x2+y2+z2�1. Interestingly, we were unable
to perform the direct integration expressed in Eq. �53�, al-
though it was evaluated making a geometrical decomposition
into simple terms. Equation �54� shows that Kxyz involves the
same degree of complexity that of Kxy, but not a higher one.
Applying a similar decomposition, we found an expression
of the intersection area between a circle and a quadrant. We

obtain the following properties for Kabc�r · â ,r · b̂ ,r · ĉ�:

Kab�r · â,r · b̂� = Kabc�r · â,r · b̂,r · ĉ�

+ Kabc�r · â,r · b̂,− r · ĉ� ,

Kac�r · â,r · ĉ� = Kabc�r · â,r · b̂,r · ĉ�

+ Kabc�r · â,− r · b̂,r · ĉ� ,

Kbc�r · b̂,r · ĉ� = Kabc�r · â,r · b̂,r · ĉ�

+ Kabc�− r · â,r · b̂,r · ĉ� , �55�

4�/3 = Kabc�r · â,r · b̂,r · ĉ� + Kabc�− r · â,− r · b̂,− r · ĉ�

+ Kabc�− r · â,− r · b̂,r · ĉ� + Kabc�− r · â,r · b̂,

− r · ĉ� + Kabc�r · â,− r · b̂,− r · ĉ� + Kabc�

− r · â,r · b̂,r · ĉ� + Kabc�r · â,− r · b̂,r · ĉ�

+ Kabc�r · â,r · b̂,− r · ĉ� . �56�

Kabc�r · â,r · b̂,− r · ĉ� = Kabc̄�r · â,r · b̂,− r · ĉ� ,

Kabc�r · â,− r · b̂,− r · ĉ� = Kab̄c̄�r · â,− r · b̂,− r · ĉ� ,

Kabc�− r · â,− r · b̂,− r · ĉ� = Kāb̄c̄�− r · â,− r · b̂,− r · ĉ� ,

�57�

where other identities similar to Eq. �57� may be obtained by
symmetry considerations. To the best of our knowledge, the
basic geometrical functions Kab and Kabc are new results
never published before.

Using the K functions we can complete the picture of

�r� for the cuboid cavity, being that functions J2 and K are
related by

J2a�r · â� = �3Ka�r̃ · â� ,

J2ab�r · â,r · b̂� = �3Kab�r̃ · â, r̃ · b̂� ,

J2abc�r · â,r · b̂,r · ĉ� = �3Kabc�r̃ · â, r̃ · b̂, r̃ · ĉ� . �58�

with r̃=r /�. We take the three orthogonal planes at x=0,
y=0, and z=0 with inward directions x̂, ŷ, and ẑ, respec-
tively. Thus, �x ,y ,z� represent the perpendicular distances to
this set of planes. We assume a cuboidal pore such that
Li�2� �region 1� and 0�x�y�z�1, therefore

J2�r�
�3 =�

2b2, x,y,z � 1

Kx�x� , x � 1,y � 1,z � 1

2b2 − Kx�− x� − Ky�− y� , x,y � 1,x2 + y2,z � 1

2b2 − Kx�− x� − Ky�− y� − Kz�− z� , x,y,z � 1,x2 + y2,x2 + z2,y2 + z2 � 1

Kxy�x,y� , x2 + y2 � 1,z � 1

Kxy�x,y� − Kz�− z� , z,x2 + y2 � 1,x2 + z2,y2 + z2 � 1

Kx�x� − Kxy�x,− y� − Kxz�x,− z� , x2 + y2,x2 + z2 � 1,y2 + z2 � 1

Ky�y� − Kxy�− x,y� − Kyz�y,− z� , x2 + y2,y2 + z2 � 1,x2 + z2 � 1

Kx�x� − Kxy�x,− y� − Kxyz�x,y,− z� , x2 + y2,x2 + z2,y2 + z2 � 1,x2 + y2 + z2 � 1

Kxyz�x,y,z� , x2 + y2 + z2 � 1.

� �59�

Following a similar procedure, we can obtain J2�r� for re-
gions 2–8. In Fig. 2, we show three contour plot slices of

�r� for a cube with L=5�. From left to right of Fig. 2, the

first slice shows the behavior of 
�r� at half height of the
cavity, the second one refers to a near wall position, while
the third one describes the behavior of 
�r� upon contact
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with the planar wall. The nearest lines to the top-right corner
of the slices correspond to 
�3=0.0159, 0.016, and 0.0162,
respectively. The step in density between lines is �
�3

=0.5�10−4. In Fig. 2, all the relevant characteristics of the
density profile 
�r� are apparent. We can observe the plateau
of constant density at a distance � from the boundary and the
increasing value of 
�r� going from the plateau to the cuboi-
dal cavity boundaries. Figure 3 shows a plot of 
�r� for a
given path in the same cubic cavity �L=5��. There, the path
is composed of several straight line parts. It starts at the
cavity center �c�, goes to the face �f� center, next to the
middle of the edge �e�, and next to the vertex �v�. The rest of
the path follows other highly symmetric directions of the
cube. We can observe here that even when 
�r� is a piece-
wise defined function, it is continuous and also derivable
�peaks appear because the path changes its direction
abruptly�. The minimum value corresponds to the plateau of
constant density. For cavities with smaller size, the extent of
the plateau of constant density is more reduced. The effect of
the higher confinement may be seen in Figs. 4 and 5, where
the density distribution for a cubic pore with L=2� is pre-
sented. From the left of Fig. 4, the first slice of 
�r� is at half
height of the cavity. Other two slices are similar to Fig. 2.
The nearest lines to the top-right corner correspond to 
�3

=0.18, 0.20, and 0.26, respectively. The step in density be-
tween lines is now �
�3=0.02. As can be seen in Fig. 5, the
plateau disappears because only for r at �c� the ES is com-
pletely inside the cubic cavity. It is also apparent from a
comparison with Fig. 3. From Figs. 2–5 we can also smell
out the general behavior of 
�r� for the 2-HS in cavities with
different geometries and the effect of reducing the size of the
cavity.

B. Density distribution in the cylindrical cavity

For the cylindrical pore, the set of relevant functions are

�J2z�r · ẑ�,J2r̄�r · r̂̄�,J2zr̄�r · ẑ,r · r̂̄��

= �3�Kz�r̃ · ẑ�,Kr̄�r̃ · r̂̄�,Kzr̄�r̃ · ẑ, r̃ · r̂̄�� , �60�

where the cylinder axis is in the ẑ direction and r̂ is the radial
polar versor. The inward normal to the lateral face is r̂̄=−r̂
and r · r̂̄ is the shortest distance from the sphere center to the
lateral surface of the cylinder with radius R. Here, the func-
tions �Kz�r · ẑ�, Kr̄�r · r̂̄�, Kzr̄�r · ẑ ,r · r̂̄�� are defined by trans-
lating to a cylindrical cavity the description made for the

cuboidal cavity. The function Kz�r · ẑ� was already analyzed
in Eqs. �44�–�47�. On the basis of the analytical expression
for the overlap volume between a sphere and an infinite cyl-
inder obtained in Ref. 21 �see Eq. �3� therein�, we may ob-
tain Kr̄�r · r̂̄� in terms of elliptic integrals. Some properties of
these functions are

4�/3 = Kr̄�r · r̂̄� + Kr�r · r̂� , �61�

Kz�r · ẑ� = Kzr̄�r · ẑ,r · r̂̄� + Kzr�r · ẑ,r · r̂� ,

Kr̄�r · r̂̄� = Kzr̄�r · ẑ,r · r̂̄� + Kzr̄�− r · ẑ,r · r̂̄� , �62�

4�/3 = Kzr̄�r · ẑ,r · r̂̄� + Kzr̄�− r · ẑ,r · r̂̄� + Kzr�r · ẑ,r · r̂�

+ Kzr�− r · ẑ,r · r̂� . �63�

We did not find an analytical expression for Kzr̄�r · ẑ ,r · r̂̄�,
which implies that we were not able to describe 
�r� near the
circular edges of the cylinder when �r · ẑ�2+ �r · r̂̄�2�1. How-
ever, the exact value of 
�r� on the edge is

Kzr̄�0,0� = 1
2Kr̄�0� . �64�

For the spheroid cavity, we only found analytic expressions
of J2a�r · â� for points on the polar axis and points on the
equatorial plane, but they are not presented here. Functions
J2r̄�r · r̂̄� and Kr̄�r · r̂̄� for the spherical cavity were obtained
in Ref. 15, and for dimensions other than 3 in Refs. 15 and
16. These expressions give 
�r� near a concave or a convex
spherical surface. In addition, 
�r� at the spherical pore with
a hard core can also be obtained analytically using the same
J2r̄�r · r̂̄� and Kr̄�r · r̂̄�.
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FIG. 2. Contour plot of the density distribution for a cubic pore with L=5�. As gray becomes darker, the density becomes higher.
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C. Pressure

The analytic evaluation of the pressure tensor P�r�, a
symmetric tensor of rank 2, is much more difficult than the
evaluation of 
�r� in an inhomogeneous fluid. For that rea-
son, we will not make a systematic search for each geometry
confinement as was done in Secs. III A and III B. Even so,
we only make the complete evaluation for some simple
cases. The relevant task of a detailed and systematic study of
P�r� for 2-HS system near simple curved walls is planned to
be presented anywhere. We focus on the evaluation of the
pressure tensor P of Irving and Kirkwood.22 The components
of P for the two-particle system are Pab�r�=�−1�ab
�r�
+ Pab

U �r�, with

Pab
U �r� =�r12

a F12
b 	

0

1

dt��r − r1 + tr12��
c

, �65�

where ri is the coordinate of the i-particle, r12=r1−r2,

r12
a =r12· â, and F12

b =F12· b̂=−��� /�r12��r12
b /r12�. By direct

integration, we obtain the identity

I�r,r1,r2� = 	
0

1

dt��r − r1 + tr12�

= r12
−1u−2��r̂12 − û���r12 − u� , �66�

with u=r1−r=uû. For a fixed r, we introduce a set of Car-
tesian and spherical coordinates with the usual convention
for the polar angles, i.e., r12

x =cos��12�sin��12�r12,
r12

y =sin��12�sin��12�r12, and r12
z =cos��12�r12. We can rewrite

Eq. �65�, and, for example, the Pzz
U component

�Pzz
U�r� = Z2

−1	 	 e�r1�e�r2���r12 − ��r12

�cos2��12�I�r,r1,r2�d3r1d3r2. �67�

Using Eq. �66�, changing the integration variables to
d3ud3r12, expressing all the distances in � units and both
variables in spherical coordinates, i.e., d3r12

=r12
2 sin��12�dr12d�12d�12 and d3u=u2 sin���dud�d�, and

finally integrating on d3r12, we obtain

�Pzz
U�r� = Z2

−1�3	 e�r − u�e�r − �1 − u� · û�

�cos2���sin�����1 − u�dud�d� . �68�

Note that the range of u is 1. For r at a distance from the wall

greater than 1, the integral �Pzz
U�r� becomes independent of r

because for all the available values of u in the integration
domain we have e�r−u�=1 and e�r− ��−u� · û�=1. There-
fore, for such r in the region of constant density �see Eq. �43�
and comments therein�, we find

�Pzz
U�r� = Z2

−1�3	 cos2���sin�����1 − u�dud�d�

= Z2
−12b2 �69�

The other components of the tensor are Pxx
U = Pyy

U = Pzz
U and

Pxy
U = Pyz

U = Pxz
U =0. This is expected because the pressure ten-

sor in a region of constant density must be isotropic. The
scalar pressure and the tensor relates by �P=� tr�P� /3,
where tr is the trace. Therefore, the scalar pressure in the
region of constant density is

�P0 = 
0 + Z2
−12b2 = Z2

−12�Z1 − b2� . �70�

A similar procedure was applied in Ref. 16 to the study of
the 2-HS system in D dimensions. There, using a different
definition of Pab

U , the authors obtained the same result for P0.
Pressure tensor near a planar wall can also be evaluated start-
ing from Eq. �68�. We consider a wall with inward normal ẑ
and an inner particle at a distance r · ẑ=z with 0�z�1. In-
tegrating on a domain defined by �r−u��1, �r− �1−u� · û�
�1, and 0�u�1, we find the normal component

�PN
U�r� = Z2

−12��3	 cos2���sin���dud�

= Z2
−1b2z�3 − z2� . �71�

Such result can be easily checked. On one side, for an inho-
mogeneous fluid with planar symmetry, we obtain �PN�r�
=Z2

−12�Z1−3b2�, which is independent of the position as it
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FIG. 4. Contour plot of the density distribution for a cubic pore with L=2�. As gray becomes darker, the density becomes higher.
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would be expected. On the other side, the fact that the con-
tact value at the wall surface must be �PN

U�z=0�=
�0�,
which implies PN

U�z=0�=0. By following an identical proce-
dure, we find for both equal tangential components that

�PT
U�r� = Z2

−1��3	 sin3���dud�

= Z2
−1 1

2b2z�3 + z2 − 6 ln�z�� . �72�

For symmetry reasons, the nondiagonal components are null.
The scalar pressure near a planar wall is

�P�r� = 
�z� + Z2
−12b2z�1 − ln�z��

= Z2
−12�Z1 − b2�1 + z�1 − z2�/2 + z ln�z��� . �73�

Finally, the wall-fluid surface tension of the 2-HS fluid in
contact with a hard planar wall and the �mechanical defini-
tion� of the surface of tension position23,24 are

�� = ��	 �PN�z� − PT�z��dz = − Z2
−12a2, �74�

zs = �−1�	 �PN�z� − PT�z��zdz = 0.35� . �75�

Here, zs�0 means that the surface of tension is in the region
where the 2-HS are confined. We can also mention that the
position of the surface of zero adsorption is ze=0. For a
future reference, we introduce the magnitude �	=zs−ze. The
dependence of Eqs. �74� and �75� on the adopted pressure
tensor definition has been largely discussed in literature both
for liquid-vapor and wall-fluid interfaces, involving both the
planar and spherical symmetries. For a wall-fluid planar in-
terface, it was recognized that Eqs. �74� and �75� do not
depend on the adopted pressure tensor.24,25

In Fig. 6 we plot together the position dependence for
the pressure tensor components and other related magnitudes
near a planar wall. The dependence with position is high-
lighted by plotting dimensionless magnitudes independent of
Z2. We plot ��Pk�z�−
�z=0��Z2 /2b with Pk= P , PN , PT and

��PN�z�−�PT�z��Z2 /2b with continuous, dashed, dot-dashed
and dot-dotted-dashed lines, respectively. We see that at con-
tact with the wall, all functions go to zero with finite slope.
For P, PN, and PT, the null value at z=0 is a consequence of
the contact theorem. On the opposite, functions attain their
definitive homogeneous value at distance � from the wall.
Similar to the planar case, the spherical symmetry produce
only two independent components, PN

U and PT
U. We have ob-

tained analytical expressions for the Irving–Kirkwood pres-
sure tensor P near a spherical surface. This was done for
convex and concave surfaces. Even so, the evaluation is not
straightforward and therefore the study of the pressure tensor
for the 2-HS system near a spherical wall will be presented
in a future work. Near a cylindrical wall the components of P
involve more complex integrals that we do not attempt to
solve.

Additionally, it is interesting to note a simple relation
between pressure and density in the region of constant den-
sity. Recognizing that Z1 plays the role of the system volume,
we can define the mean density 
̄=2 /Z1. Therefore, from
Eqs. �43� and �73�, we obtain the local compressibility factor
in the region of constant density

�P0


0
= 1 +

1

2

b


̄−1 − b
. �76�

This is a local EOS because it describes the properties in
certain location of the entire 2-HS system. In Sec. V we will
study thermodynamic or global EOS. Expression �76� is very
similar to the EOS of a �bulk� van der Waals system without
the term of attractive force between particles. They differ in
the 1 /2 factor present on Eq. �76�, which is related to the
small number of particles of the 2-HS system. Equation �76�
is valid for all the studied cavities, and it was also obtained
for the equivalent system of confined 2-HS in dimensions
D�3. As it was suggested in Ref. 16, it seems that Eq. �76�
is a universal feature of a 2-HS system confined in a cavity
with hard walls of any shape and for all dimensions D�1.
We note that for a small enough cavity that produces a van-
ishing size density plateau, the value of 
0 depends on the
geometry of the cavity. For a spherical cavity, we have

0=0, while in other cavities, 
0 assumes positive values.

IV. ANALYTIC STRUCTURE OF CI

The usual classical statistical mechanics links global
thermodynamic properties of any system of particles with
derivatives of ln�Z2�; this idea will be discussed in detail in
Sec. V. Now, we simply recognize that the analytical behav-
ior of Z2 is related to the physical properties of the 2-HS.
Therefore, the goal of this section is the study of the analytic
structure of Z2 as a function of pore size parameters X, with
the emphasis on the nonanalytic domain. We are interested in
investigating common features between cavities with differ-
ent geometries. By including results from Refs. 15 and 16,
we compare the CI for two hard spheres constrained by five
different simple geometries: cuboid, sphere, sphere with a
hard core, cylinder, and spheroid shaped pores. A picture
representing the structure of the domains for those Z2 is
shown in Fig. 7. There, each box labeled with R �R-boxes�
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FIG. 6. Position dependence of pressure tensor near a planar wall. We have
drawn magnitudes related to scalar pressure P in continuous line, PN in
dashed line, and PT in dotted-dashed line. The behavior of PN�z�− PT�z� �the
integrand of Eq. �75�� is shown in dot-dotted-dashed line. More details about
the plotted functions in the text.
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represents a region of parameter X domain studied in Sec. II
as a separate case. The analytic domain of Z2 is the union of
the �open� domains represented by the R-boxes. Straight line
paths show the boundaries between adjacent zones, i.e., the
nonanalytic domain of CI, while the broadened lines high-
light paths of maximum symmetry �Lx=Ly =Lz for cuboid
and Lh=2R for cylinder�. The stars distinguish the nonana-
lytic domains involving the ergodic-nonergodic transition.
Dashed lines plot the crossover to systems with reduced di-
mension: zero-dimensional �0D�, one-dimensional �1D�, or
two-dimensional �2D�; the 2D effective systems are repre-
sented with dark rounded-corner boxes. The 2D limit for the
spheroidal cavity has a different nature, and we do not draw
the box for this 2D limit. From Fig. 7, we can sort the struc-
ture of the Z2 analytic domains for the studied cavity geom-
etries in an increasing order of complexity: sphere, spheroid,
sphere+core, cylinder, and cuboid. The sphere is the sim-
plest geometry, the cuboid is the most complex, while the
spheroid, sphere+core, and cylinder have a similar degree of
complexity. Moreover, if we restrict from the cuboid cavity
to a cube, or from the cylinder to the symmetric cylinder, its
structure becomes much more simple. This shows that the
increment of the symmetry result in a decrement of the num-
ber of parameters in X. In summary, cavities with high
�poor� symmetry and few �many� number of parameters X
produce a simple �complex� structure. In Fig. 7 we identify
several interesting common features concerning different
shaped pores: �a� the large pore domain R1, �b� its bound-

aries, �c� the Ri→
*

Rj, the signature of the ergodicity break-
ing, �d� the Rj→2D limit that exist in cuboid, cylinder, and

sphere+core pores, �e� the structure Ri→
*

Rj→1D limit, and

�f� the structures Ri→
*

Rj→0D limit, Ri→Rj→0D limit, and
particularly the last sequence Rj→0D limit. We now analyze
the relevant properties for each case.

(a) The large pore domain R1. Firstly, we concentrate on
large cavities. The different analyzed geometries show that
the large pore domain is the easiest to integrate and fre-
quently the CI has a simple functional dependence. From
direct inspection �see Eqs. �8�–�11� and also Refs. 15 and
16�, we note that for cuboid, spherical, and sphere+core
cavities, the CI is a polynomial, but a more complex analytic
dependence appears for the cylindrical and spheroidal pores.
A comparison with two dimensions shows that the CI of the
system of two hard disks in a rectangular cavity is also a
polynomial, although for a circular cavity it is not true. From
all the available CIs, we observe that Z1b2�pore� of Eq. �5�
naturally decomposes in a universal way, showing a simple
dependence on basic geometrical measures of the effective
pore. In terms of the volume notion V=Z1, we obtain

Vb2�pore� = Vb2 − a2A + �2Le + c2,1 + c2,2
Le

R2 . �77�

The constant coefficients b2 �see Eq. �4�� and a2=�4� /8 are
independent of the pore shape. a2 appears in the virial ex-
pansion of the fluid-substrate surface tension and adsorption
�referred to as w2 �Ref. 26–29�� and particularly for a HS
fluid in contact with planar and spherical walls.16,28,30 Be-
sides the volume, in Eq. �77� we introduce other geometrical
characters of the effective cavity, the area of the boundary A,
and the total edges length Le. In Table I we present a com-
parison of the set ��2 ;c2,1 ;c2,2� for all the studied pore
shapes, where the dependence on edges length, surface cur-
vature, and edge curvature is traced. We note that Vb2�pore�
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FIG. 7. A simple picture representation of the Z2 X-space domain for all the studied pores. From top to bottom of each graph the volume decreases.

TABLE I. Coefficients of Vb2�pore�, dependence on the cavity shape for the large pore region.

Cuboid Cylinder Spheroid Sphere Sph+core

�2 /�5 1 /15 1 /15 ¯ ¯ ¯

c2,1 /�6 −1 /12 �Lh /2R�F�s��2 /96 H����2 /36 �2 /36 2�2 /36
c2,2 /�7

¯ −� /210G�s� ¯ ¯ ¯
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in Eq. �77� for cuboid, sphere, and sphere+core shaped pores
involves constant coefficients ��2 ;c2,1 ;c2,2�. The coefficient
�2 that multiplies Le has a unique positive value having the
opposite sign to the preceding area term. Naturally, the edges
are the area boundaries. Then, we saw the Le term in Eq.
�77� as a correction to the previous one. We interpret �2�cub�
and �2�cyl� coefficients as being originated in the right dihe-
dral edge formed by the intersection of two smooth surfaces.
The c2,1 is, in general, a slowly varying function of adimen-
sional parameters s=� /2R and �=Rc /R. It is constant for
cuboid, spherical, and sphere+core pores. The negative con-
stant c2,1�cub� has a sign opposite to the previous edges term.
From that, we consider it as an end-of-edge correction that
corresponds to the eight right vertices of the cuboid. Then,
seeking for each vertex contribution, we may write
c2,1�cub� /�6=−8 /96 and therefore each vertex produces
−1 /96. On the other hand, c2,1�sph� and c2,1�sph+core� are
positive, i.e., they have the sign opposite to c2,1�cub�, and
also, they are not corrections to an absent edge term. There-
fore, their nature is different to that c2,1�cub�. Coefficients
c2,1�sph� and c2,1�sph+core� originate from the curvature of
the surfaces and their sign is opposite to the previous area
term which they correct. Therefore, the surface curvature
should produce a negative value for c2,1 for both cylindrical
and spheroidal pores. We introduce now the usual surface
curvature measures, normal curvature j and Gaussian curva-
ture k, which take the values �j=R−1 ,k=0� and �j=2R−1 ,k
=R−2� for a cylinder and a sphere, respectively. We find that
c2,1�sph� /�6=AR−2� /144=JJ�R���1� and c2,1�sph+core� /�6

= �JJ�R�+JJ�R−h����1�=2c2,1�sph� /�6 with the extensive
quadratic curvature JJ�R�=Aj2=24� and ��1�=3−22−6�16.
For cylindrical cavities, we find that c2,1�cyl� /�6

=AcurvR
−2F�x�� /384=JJ�R���1�F�x�3 /2, where Acurv is the

curved lateral surface area, JJ�R�=Acurvj2=2�Lh /R, and for
large radius c2,1�cyl��AcurvR

−2. An unified description of
cyl, sph, and sph+core pores at large R is c2,1�cyl, sph,sph
+core��−6=Acurv� 3

4 j2+k���1�, but more complex dependence
exists at c2,1�sphd�. In fact, for large curvature radius and
quasispherical ellipsoids ��1, we find c2,1�sphd�
�c2,1�sph��1+4 /5�1−��2�. Similarly, c2,2�cyl� relates to the
curvature of the edges. We may resume some characteristics
of �F�s� ,G�s� ,H����, F�s� and G�s� are positive and mono-
tonically increasing functions in the domain �0, 1� with
asymptotic minimum F�0�=G�0�=1. H��� is positive in its
domain �0,	� and has a minimum at H�1�=1. Its asymptotic
behavior is H��→	�→�3� /16 and H��→0�→�−2 /4. In
Fig. 8 we plot F�s� and G�s� adimensional functions.

We have found a general structure of Vb2�pore� that is
explainable by a hierarchy of correction terms. The term Vb2

is the homogeneous component, it is linear in the volume,
and is positive. The correction to Vb2 is the area term, the
first signature of inhomogeneity. The area term is negative
and then opposite in sign to the homogeneous term that cor-
rects. Two types of essentially different corrections to the
area term were found; they come from the edges and the
curved area. The edge term that corrects the area term is
negative and proportional to Le. For right dihedral edges, we
found the value −1 /15 for the constant of proportionality, it
appears for cuboidal and cylindrical pores. The curved area

term is a correction to the area term too, and sometimes, it is
independent of pore size parameters being a constant. It is
negative and approximately proportional to an extensivelike
quadratic curvature Acurvj2. This term appears at cylindrical,
spherical, spherical+core, and ellipsoidal pores. Noticeably,
no extensivelike linear curvature term exists. Two terms that
correct the edge term were also found. They concerns an
edge boundary term and an edge curvature one. Both of them
basically reproduce the behavior of the corrections to the
area term. These conclusions make the evaluation of several
coefficients in other geometric confinements interesting,
which may include �2 for the edge of an arbitrary dihedral
angle, c2,1 for a general vertex produced by three nonor-
thogonal surfaces, for the cone vertex, and the curvature cor-
rection of the general edge.

(b) The boundary of the large pore domain R1→Ri. In
the rest of Sec. IV our main purpose is to study the nonana-
lytic behavior of CI when we go in the parameter space from
an analytic domain to a contiguous one. With this in mind,
we consider closed regions in the �real� parameter space con-
sisting of a region of the analytic domain with its boundary.
We introduce the difference between the series representation
of CIs, shortly Z2�Ri�−Z2�Rj�, corresponding to contiguous
regions and evaluated in the neighborhood of the common
boundary. This may be not a well behaved magnitude. Even
so, when at least one of the CI can be analytically extended
in the contiguous region, the difference Z2�Ri�−Z2�Rj� is
easily analyzed. More complex is the case where neither
Z2�Ri� nor Z2�Rj� can be analytically extended in the domain
of the others. In such a case we made a careful comparison
between the coefficients in each series.

When we walk in the X-space from R1 to its outside, the
pore becomes unable to fit both particles for some fixed di-
rection r̂12. For example, going from R1 to R3 in the cylin-
drical pore becomes impossible that both particles locate in a
plane orthogonal to the central axis. The effect on the volume
of the available position phase space is not smooth enough,
producing the nonanalytic behavior of CI. We find that the
behavior of CI in several paths of the type R1→Ri is well
described by
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FIG. 8. Shape dependent coefficients in b2�pore�. Functions F�s� and G�s�
of Table I are shown in continuous and dashed lines, respectively.
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Z2�R1� − Z2�Ri� � �Z2 � − ��3, �78�

that is, for many situations we verify that CI has a discon-
tinuous third derivative when the large pore domain is
crossed in the parameter space. Here �=1−Li /� is an adi-
mensional vanishing parameter, ��0 and � /6 is the discon-
tinuous step in the third derivative in the path R1→Ri.
When ES exceeds the planar regions of EB, i.e., R1→R2,
R1→R3 and R1→R4 for cuboidal pore; and R1→R2 for
cylindrical pore, we obtain

��cub� = �2��4/3�LyLz for R1 → R2

= �2��4/3��LyLz + LxLz� for R1 → R3

= �2��4/3��LyLz + LxLz + LxLy� for R1 → R4,

��cyl� = �2�2�4R2/3� for R1 → R2, �79�

where each equation should be evaluated at Li→�, consis-
tent with the analyzed path. Here, the nonanalyticity of Z2 is
a consequence of the limiting behavior of the functions
�I3x�cub� ,I3y�cub� ,I3z�cub�� and I3z�cyl�. Close to the
boundary they behave as

I3x�cub� � − 2
3��LyLz�� − Lx�3

= − b2V�1 − Lx/��3 for R1 → R2,

I3z�cyl� � − 2
3�2�R2�� − Lh�3

= − b2V�1 − Lh/��3 for R1 → R2, �80�

where Lx→� and Lh→� for cuboidal and cylindrical pores,
respectively. Equations �79� and �80� may be accomplished
with

� =
��4

3
A+, �81�

I3i � − b2
�

2
A+�1 − Li/��3, �82�

where A+ is the total area of such cavity boundaries that
cannot contain a sphere with � diameter. The same proce-
dure is feasible for nonplanar boundaries, R1→0D in the
spherical pore, R1→R2 in the sph+core pore, R1→R2 and

R1→
*

R3 in the spheroidal pore, and R1→
*

R3 in cylindrical
pore. Taking �=1−2R /�, we obtain

��sph� =
��4

3
A for R1 → 0D, �83�

which must be evaluated at R=� /2. The sph+core involves
two nonplanar walls with different curvatures, the external
spherical wall has radius R, while the internal wall has radius
Rin. The spherical walls are separated by Lh=R−Rin. The gap
in the third derivative with �=1−Lh /� is now

���sph + core��R =
��4

3
�A+ − 4��2� for R1 → R2,

�84�

where A+=4��R2+Rin
2 � is the total area.

We find three situations with different behaviors; they do
not involve a finite discontinuity in the third derivative. The
path R1→R2 for the oblate-spheroidal pore has a discon-
tinuous fourth derivative. For �=1−2Rc /��0, we have

�Z2�sphrd� �
�2�6

12�2�1 − �2�
�4 for R1 → R2. �85�

The path R1→
*

R3 involves an ergodicity breaking in prolate-
spheroid and cylindrical pores. Neglecting the factor �, for
�=1−2R /��0, we obtain for the prolate-spheroid pore

�Z2�sphrd� �
16
2�2�2�6

105
− 1 + �2
�7/2 for R1→

*
R3. �86�

We recognize that ��cyl� is somewhat ill-defined because the
third lateral derivative with respect to 2R diverges logarith-
mically to minus infinity. Even so, the difference between
them becomes null. For �=1−2R /��1, we obtain a
nonanalyticity expressible by the limiting behavior

�Z2�cyl� � −
32
2��6

105
�7/2 for R1→

*
R3. �87�

Finally, the path R1→
*

R4 in the cylindrical pore is analyzed
by a superposition of results from Eqs. �79� and �87�. Its
behavior is similar to that found in the path R1→R2.

(c) The path Ri→
*

Rj, a signature of the ergodicity break-
ing. The rational power in Eqs. �86� and �87� corresponds to
path with ergodicity breaking; thus, we wish to study their

characteristics. A third path with this behavior is R2→
*

R4 for
cylindrical pore. Again, neglecting the �=1 /2 factor, we ob-
tain the result described in Eq. �87�, based on the nonanaly-
ticities of I3r. The cuboidal pore has also several paths of

this type. They are paths R3→
*

R5, R4→
*

R6, R4→
*

R7,

R6→
*

R8, R4→
*

R8, and R7→
*

R8. All of them are character-
ized by the fact that a sphere with � radius fixed at the center
of the cavity crosses its edges. In fact, this condition is
equivalent to that described above for such a cavity �see Sec.
II A, region 5�. Here the partition functions have an infinite
discontinuous fifth derivatives as a consequence of the ana-
lytic behavior of the family of functions �I3xy ,I3xz ,I3yz�

I3xy�cub� �
8

9!!

Lz

Lx
2Ly

2 ��2 − Lx
2 − Ly

2�9/2

�
211/2

9!!
�5�� + �−1�2L+1 −


Lx
2 + Ly

2

�
�9/2

for R3→
*

R5, �88�

where �=Lx /Ly and L+ is the total length of the crossed right
edges, i.e., in Eq. �88� L+=4Lz. Other paths are suitably ana-
lyzed by applying this result to the set �I3xy ,I3xz ,I3yz�. The

path R4→
*

R6 is completely equivalent to R3→
*

R5. Some-
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what different are the paths R4→
*

R7, R6→
*

R8, R7→
*

R8, and

R4→
*

R8, which involve an ergodicity breaking along with a
spontaneous symmetry breaking. Even so, their analytic be-

havior is basically described by Eq. �88�. The path R7→
*

R8

is similar to R3→
*

R5 with the replacement y↔z. Paths

R4→
*

R7 and R6→
*

R8 have two equal terms with the same
value of �, the addition of both terms makes a unique con-
tribution identical to Eq. �88�, with L+ as the total length of

the four crossed edges. The last path, R4→
*

R8, involves
three terms with �=1, which resumes on one term with total
edges length L+=L=12� /
2. It is interesting to note that a
similar situation is also possible for the cylindrical pore,
where the circular edges are crossed by the sphere. It corre-
sponds to the path R4→0D, which will be studied below.

(d) The Rj→2D limit. The equivalent of the HS system
in two dimensions is the hard disk �HD� system. In the 2D
limit we may expect that 2-HS systems collapse to a 2-HD
system. Then, Z2 should collapse to Z2,HD, then the CI of
2-HS in the cuboidal pore transforms to the CI of 2-HD in a
box, and so on. Expressions of Z2,HD for particles constrained
in a rectangular or a circular pore, as well as on the surface
of a sphere, are well known;15,16,31 this fact allows us check
several results in PW. The expected limiting behavior of Z2

in terms of the vanishing length parameter � is

Z2 = �2�Z2,HD + �qZ2,HD lim� + O3+q��� , �89�

where �=Lx and �=Lh for cuboidal and cylindrical cavities,
respectively. Hence, we may study the unknown term
�qZ2,HD lim. For the planar surface 2D limit, we obtain q=2,
being for cuboidal shape

Z2,HD lim�cub� = 1
6 ��LyLz − 2��Ly + Lz� + �2� for R2 → 2D

= 1
3�Lz


�2 − Ly
2 + LyLz arcsin�Ly/�� − 1

2Ly
2

− �Lz� for R5 → 2D = 1
3�Ly


�2 − Lz
2

+ Lz

�2 − Ly

2 − 1
2 ��2 + Ly

2 + Lz
2�

+ LyLz�arcsin�Lz/�� + arcsin�Ly/��

+ �/2�� for R7 → 2D, �90�

and for a cylindrical shape

Z2,HD lim�cyl� =
4�

135
��R2 − 1�−1/2�32R4 − 157R2 − 3�

+ 45R2 arcsec�R�� for R2 → 2D. �91�

In the case of a 2D limit involving a curved surface confine-
ment, we obtain for the spherical+core pore q=1 and

Z2,HD lim�sph + core� = 4�2R��2 − 8R2� for R2 → 2D,

�92�

where �=Lh. In the 2D limit of the oblate spheroidal pore
R2→2D, we do not find the behavior depicted by Eq. �89�.

(e) The Rj→1D limit. The path going from R1 to the 1D

limit has an ending structure Ri→
*

Rj→1D. It means that
before reaching the limiting behavior, a characteristic
ergodic-nonergodic transition appears. Once both particles
are not able to interchange their positions, the path
Rj→1D can happen and the final 1D limit may be attained.
In that limit, the HS behaves like hard rods �HRs� and Z2

collapses to Z2,HR. The limiting behavior for Z2 written in
terms of the vanishing length parameter � ��2=LxLy for a
cuboid and �2=�R2 for a cylinder� is

Z2 � �4�Z2,HR + �qZ2,HR lim� . �93�

For the cuboidal pore Z2,HR= �Lz−� /2�2, q=2, and

Z2,HR lim�cub� =
1

6�
�Lz − ���� + �−1� for R5 → 1D,

�94�

being �=Ly /Lx. For the cylindrical cavity, we obtain
Z2,HR�cyl�= �Lh−� /2�2, q=2, and

Z2,HR lim�cyl� =
1

��
�Lh − �� for R3 → 1D. �95�

In addition, we may compare with the 1D limit taken from
the two dimensional 2-HD system confined into a rectangle
and from the 2-HD system confined between two concentric
circles, from Refs. 16 and 31. The 1D limit for the 2D rect-
angular confinement produces q=2, while the circular pore
with a hard core shows q=1. We conclude that the power
q=2 is a characteristic of straight line 1D limit, while q=1
corresponds to curved-closed-line 1D limit. The prolate
spheroidal pore does not behave in accordance with Eq. �93�.

(f) The Rj→0D limit. The final state obtained in this
limit consists of particles that cage in a final solid or densest
configuration. This densest state of 2-HS characterizes by the
complete spatial correlation of particles. Two different paths
coming from R1 and ending at the 0D limit may be

identified; they have the structures Ri→
*

Rj→0D and
Ri→Rj→0D. The first case includes an ergodic-nonergodic
transition and sometimes also includes a symmetry breaking
transition, it happens for the cuboid pore. We find that in the
0D limit the phase space of positions �PSPs� may collapse to
three topologically different manifolds. For a cuboidal cav-
ity, the 0D limit shows a collapse of the PSP in a 0D mani-
fold, i.e., a single point. Thus, the most compact state is a
solidlike state. For the cylindrical cavity in the 0D limit, the
PSP collapses to a 1D manifold consisting of a simple closed
line also called a circle. Here the densest state is a rigid body,
which is able to rotate with a fixed axis. For the spherical
cavity, the 0D limit shows that PSP collapses to a 2D mani-
fold given essentially by a spherical surface. Therefore the
densest state behaves as a freely rotating rigid body. In the

104503-16 Ignacio Urrutia J. Chem. Phys. 133, 104503 �2010�

Downloaded 09 Sep 2010 to 168.96.66.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



last two cases, even in the 0D limit, particles can interchange
their positions. In general, the limiting behavior of Z2 in
terms of some vanishing adimensional parameter � is
Z2�q. For the cuboidal cavity with L=Lx=Ly =�Lz and
�=
2+�2L /�−1, we obtain q=6 and

Z2�cub� =
�2 + �2�3

90�2 �6�6

+
�2 + �2�3�1 − �−2 + �−4�

105
�6�7

for R8 → 0D. �96�

We note that q=6 also in the case of a general cuboid. Ana-
lyzing the cylindrical geometry we find q=9 /2, L=Lh

=�2R, �=2R
1+�2 /�−1, and

Z2�cyl� = �
2�1 + �2�3/2127 575−1�6�9/2 � �28 350�−6

+ 84 105�−4 + 98 100�−2 + 40 200 + 6688�2

+ 192�4� for R4 → 0D. �97�

For the spheroid, we can attain the 0D limit in two different
ways, by seeking the paths R2→0D and R3→0D. We ob-
tain, q=7 /2, �=2R /�−1�0, and

Z2�sphd� �
16
2�2�2�6

105
1 − �2
�7/2 for R2 → 0D, �98�

and also, q=4, �=2Rc /�−1�0, and

Z2�sphd� �
�2�6

12�2�− 1 + �2�
�4 for R3 → 0D. �99�

The 0D limit in the spherical pore was previously studied in
Ref. 15. In that work, it was found that q=3 and �= �2R /�
−1�. Also, the 0D limit of a 2D system composed by 2-HD in
a circular cavity has the same � but q=5 /2.

We are now able to extract some minimal conclusions
from this section. Based on the analysis made in �a�, we note
a very general decomposition of Vb2�pore� in terms of basic
geometric magnitudes that characterize the effective cavity.
This decomposition could be applied in other confinement
geometries. From �b� we find a common nonanalytic behav-
ior of Z2 when the ES exceeds planar regions of the EB
boundary. It consists of a finite discontinuity at the third
derivative with a step proportional to the surface area of the
crossed planes. We also obtain a similar behavior for spheri-
cal surfaces and discontinuities at higher order derivatives in
other curved surfaces. In general, we observe that the paths
between analytic domains involving ergodic-nonergodic

transitions Ri→
*

Rj are consistent with a CI, which scales
with fractional powers of the vanishing magnitude. It is ap-
parent in �b� where we find that a 7 /2 power appears when
ES exceeds a curved wall of the EB, and also, from �c� and
�f� �see Eqs. �88� and �97�� where we obtain a common
nonanalytic behavior of Z2 when ES exceeds the right angle
edges of the EB boundary given by a common power depen-
dence of 9 /2 in the vanishing length.

A general picture of the dimensional crossovers agrees
with the description given in Ref. 16. Given a N-HS fluid

system in a region of the D-dimensional space, the number
of total spatial �i.e., translational� degrees of freedom is
DEF=N ·D. When we consider a limiting process of dimen-
sional crossover, the dimension of the available space re-
duces to D� with 0�D��D. We define the number of lost
degrees of freedom �LDC� as the power of the vanishing
magnitude in the CI in the dimensional crossover limit. We
claim that LDC=N� · �D−D��, where N� is the number of
particles constrained to the D� dimensional region being usu-
ally N�=N. One exception to this rule is the 0D limit when
the final densest state consists of a rotating N�-particle rigid-
like system. In such a case, we find LDC=N�D−n3 /2, with
n indicating the number of independent degrees of rotational
freedom for the caged N� particles, being 0�n�D.16 In a
unified description, for any dimensional crossover we obtain

LDF = N� · �D − D�� − n3/2, �100�

where n=0 if D��0. Here, the first term counts the loss of
translational degrees of freedom, while the second one com-
pensates for the nonvanishing pure rotational degrees of free-
dom. For PW we must fix N=N�=2 with a starting value of
D=3 and analyze possible values D�=0,1 ,2. In the zero
dimensional limit, the 2-HS collapses to a dumbbell or stick.
Thus, n=0 is a nonrotating stick, n=1 corresponds to a ro-
tating stick with fixed rotation axis, and n=2 is a freely ro-
tating stick. Systems of two particles have a maximum value
n=D−1. Several sequences of dimensional crossovers de-
scribed by Eq. �100� are accessible from the results exposed
in PW. For example, in the cylindrical cavity the path
R2→2D involving LDF=2 can be followed by a 0D limit
with LDF=5 /2, obtained with D=2, D�=0 and n=1.

V. THERMODYNAMIC PROPERTIES

The aim of this section is to achieve the thermodynamic
behavior of few-body confined systems. In this section, we
use the word thermodynamic in the sense of thermodynamic
of fluids, where a fluid is a system of particles allowed to
move in a given region of continuous space. Our objective is
to find the EOS that describes the global properties of a
few-body fluid system. In order to accomplish such a goal,
the discussion will be oriented toward the few- and many-HS
systems confined in a hard-wall cavity with no restriction in
the number of particles. In addition, we will keep in mind a
system in a fluidlike state. Besides these statements, other
systems could be included in the discussion without much
effort, such as open systems and soft interactions. Again, we
must emphasize that a few-body system is far away from the
thermodynamic limit N→	. Therefore, the thermodynamic
description developed below does not involve such limit. In
a few-body system, its different ensemble representations are
not equivalent to each other. Thus, we assume that the sys-
tem under interest is well described by a certain Gibbsian
ensemble and analyze the properties of this ensemble repre-
sentation. From our point of view, we will obtain the EOS of
the system if we know the basic relations between the mean-
ensemble values of the thermodynamic relevant magnitudes.
A rigorous discussion about the equivalence between a
mean-ensemble thermodynamic property, e.g., U, and the
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time average value U� is out of the scope of PW. Still, we
can draw a general picture. We expect that for cavity’s size in
the ergodic regime and far from an ergodic-nonergodic tran-
sition, U=U� for times � moderately short. For example, in a
cylindrical pore it should apply in R1 and R2, but far enough
from R3 and R4 �see Fig. 8�. In case that the size of the
cavity approaches an ergodic-nonergodic transition, the iden-
tity U=U� only applies for increasing values of �. For cavi-
ties with sizes in the ergodicity breaking regime, U and U�

may be different �e.g., R3 and R4 in the cylindrical cavity�.
Next paragraphs are devoted to a general discussion about
the thermodynamic description of a few-body system, while
at the end of this section, we analyze the thermodynamic
behavior of confined 2-HS systems in the canonical en-
semble representation making a comparison between differ-
ent shaped cavities.

The pertinence of the thermodynamic theories to small
systems was recognized by several authors �see, e.g., the
book of Hill.32� From this book, we can extract several argu-
ments about the relevance of small systems to statistical me-
chanics and thermodynamics, and also, we find an interesting
discussion about the particularities of the thermodynamics of
small systems. Although, the central thesis of Hill is that the
macroscopic thermodynamics must be adapted to extend its
range of validity to include small systems. His thermody-
namic approach begins with large �infinitely extended� sys-
tems and drops to the small ones. Certainly, we adopt an
opposite point of view. We state that the first law of thermo-
dynamics applies few-body systems provided that any as-
sumption about the extensivity of the energy and entropy
must be avoided.

An implicit hypothesis of thermodynamics is that the
equilibrium states of a large class of fluid systems may be
specified with a unique small set of independent macroscopic
quantities. A trivial example is the class of simple homoge-
neous fluids usually studied by taking three independent
macroscopic magnitudes �see, e.g., Callen’s thermodynamics
book Ref. 33, pp. 13 and 283�. Therefore, we say that ther-
modynamics should have the simplicity and universality
�SU� attributes. Usually, the studied systems involve a large
number of particles, but a minimum cutoff in this quantity
does not exist. To highlight this point, we note that in the
statistical mechanics literature the grand canonical partition
function is defined by a weighted sum of canonical partition
functions over the available number of particles in the sys-
tem �see, e.g., Ref. 18�. This sum starts from zero, following
by one, two particles, and goes usually up to infinity. There-
fore, systems with few bodies are included in the usual for-
mulation of the statistical mechanics. We also note that usual
relations that link statistical mechanics of partition functions
and thermodynamic magnitudes do not make any assumption
about the number of particles. This fact supports the idea that
the same relations apply to systems with few bodies. Still,
any assumption of extensivity in magnitudes such as the en-
ergy, entropy, and free energies must be rejected in a few-
body system �see, e.g., Ref. 33, p. 360�. We understand the
thermodynamic pertinence of systems with many and few
bodies as the size invariance �SI� of thermodynamics. Based
on SU and SI, we argue that a consistent thermodynamic

treatment of systems with large, many, and few number of
particles should be possible using a basic small set of inde-
pendent macroscopic quantities. Naturally, we will call this
the SUSI hypothesis.

We want to bring attention to an unsolved problem in
equilibrium statistical mechanics. At first sight, it might be
surprising that even when we may know the exact partition
function of an inhomogeneous fluid system, its thermody-
namic properties appear unrevealed. Our knowledge about
the partition function comes from the exact evaluation of an
integral �see paragraph above Eq. �1��. The integrand and the
limits of evaluation are functions of some set of independent
parameters X; therefore, by solving the integral, we merely
obtain Q�X�. For a HS system in a hard-wall cavity at con-
stant temperature, the discussion is mainly focused on Z�X�,
where X can be of geometrical nature and usually involves
proper lengths of the cavity, e.g., in a cuboidal pore X
= �Lx ,Ly ,Lz�. Let us suppose that for a given X space with
dimension dim�X� the canonical partition function Q�X� for
the N particles system is known within a reduced domain H.
In such a domain we may obtain the Helmholtz free energy

�F�X� = − ln�Q�X�� , �101�

which is related to other thermodynamic quantities by

� = F�X� − F−�X� , �102�

F = U − TS , �103�

dF = − SdT − dw . �104�

In Eq. �102� the evaluation of the chemical potential � as-
sumes that the partition function for the system with N−1
particles, Q−�X� �with Helmholtz free energy F−� is also
known in H. U, S, and T are the energy, entropy, and abso-
lute temperature of the system, respectively. Lastly, dw is the
differential of reversible work done by the system. Equation
�104� shows how F depends on both T and X. The tempera-
ture dependence gives the entropy S,

S = − � �F

�T
�

X
, �105�

while the X derivative at constant T is related to the work.
Let us consider two different equilibrium states a and b,
characterized by parameters Xa and Xb, respectively. The
variations �F, �S, and �U in going from state a to state b at
fixed temperature are easily evaluated with the help of Eqs.
�102�, �103�, and �105�. We may also evaluate the reversible
work wab in going from a to b

wab = − 	
a

b

�XF · dX = F�Xa� − F�Xb� , �106�

where �X is the gradient operator with respect to X param-
eters taken at constant T, and the line integral in Eq. �106�
does not depend on the path adopted between a and b. From
here on, we implicitly make the same assumption for any
derivative with respect to X. Equation �106� enable us to
define the differential of reversible work
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dw = dwaX̂ = − �X̂F · dl = − �XF · X̂dl , �107�

with X̂ being some unit vector in the parameter space, dwaX̂
the work to make a differential reversible change from Xa to

Xb=Xa+ X̂dl, and �X̂ the directional derivative. Given any
volume notion V, which may or may not be defined in the
spirit of SUSI, we can define the overall pressure or

pressure-for-work P̄w,X̂ for an infinitesimal transformation of
the cavity

P̄w,X̂ � −
�XF · X̂

�XV · X̂
, �108�

which makes sense only if �XV · X̂�0. For an infinitesimal
transformation at constant volume, we should ignore Eq.
�108�. In addition, we may prefer to introduce some surface
area notion A, and therefore, we can define an external sur-
face tension or surface-tension-for-work by

�̄w,X̂ �
�XF · X̂

�XA · X̂
. �109�

Equation �108� or Eq. �109� is indeed a physical convention,
and therefore, we could describe the total work as it would
be produced by either an effective pressure or a surface ten-

sion. From now on, we assume that �XV · X̂�0. Then, the
definition �108� is consistent with Eq. �107�, which now
reads as

dwX̂ = P̄w,X̂dVX̂, �110�

where dVX̂=�XV · X̂dl. The definition of P̄w,X̂ requires the
introduction of a volume notion V�X�. Hence, pressure de-

pends on both the adopted V and X̂. On the opposite, even

when the choice of a different V modifies P̄w,X̂ it does not
influence dwaX̂.

At this point, we emphasize that even when the above
description is exact, it is not completely satisfactory. It says
little about the thermodynamic properties of the fluid inside
the cavity. It also depends on X parameters, which do not
have a universal thermodynamic meaning. The parameters
needed to describe the shape of certain cavity are of different
kind and quantity from those needed to describe other
shapes. Even worse, for a given geometry, they are nonu-
nique. We may extract some examples from the studied two-
particle systems. For a cavity with spherical symmetry, we
may utilize X= �R+� /2� or X= �R�, but also, we may adopt
X= ��R2� all of them with dim�X�=1. In a cuboidal cavity,
we may adopt X= �Lx ,Ly ,Lz� or X= �lx , ly , lz� with dim�X�
=3, but also, if we are interested in a and b states with cubic
symmetry we may choose X= �L� with dim�X�=1. However,
a somewhat more realistic cavity model may be adopted in
which the substrate atoms, HS at fixed positions, are the
building blocks of the rough confinement walls. In this case
dim�X� could be a much larger number. In addition, the
X-representation prevents comparing results from dissimilar

confinement conditions. Hence, the same fluid in a spherical
or a cuboidal cavity produces results, which inhibit any com-
parison between them.

We conclude that the next step forward in the thermody-
namic description of the system is out of the scope of the
X-representation. Therefore, it is necessary to build the path
between the X-representation of certain thermodynamic
property, e.g., Q�X�, and a universal description. Two basic
questions have guided us in the search of such a path: �i�
what properties of the confined systems should depend on
the shape of the cavity? �ii� What properties should depend
on the particular choice of adopted parameters X? The rest of
this section shows some answers, which arise from our in-
quiries.

Because X is an unsuitable set of parameters, we must
look for a better choice. At this point, we wish to extract a
statement from Callen’s thermodynamics book, “It should
perhaps be noted that the choice of the variables in terms of
which a given problem is formulated, while a seemingly in-
nocuous step, is often the most crucial step in the solution”
�Ref. 33, p. 465�. The interesting point is that Callen focused
on the relevance of an adequate choice of variables. This
question guides us to the concept of thermodynamic variable
of state �VOS�. We are interested in such VOS that charac-
terizes the spatial extension and other spatial features of an
inhomogeneous fluid. A long time ago, in the origins of ther-
modynamics, volume was recognized as a good VOS for
diluted gases, as was stated in Boyle’s law in 1662. A step
forward was the introduction of surface area and curvature as
VOS, it is documented in the study of vapor-fluid spherical
interfaces made in 1805 and 1806 by Young and Laplace.34,35

Although, in 1875, Gibbs36 extended the use of curvature
measures as VOS when he analyzed nonspherical fluid-vapor
and fluid-fluid interfaces. Gibbs also suggested the use of the
length of the three fluid interface line as VOS. This idea was
further developed in 1977 by Boruvka and Newmann,37 who
also introduced the curvature of such line as VOS. These
VOSs were extensively applied to the thermodynamic analy-
sis in a variety of macroscopic inhomogeneous fluid systems
including liquid-vapor and liquid-liquid interfaces, and ad-
sorption of fluids on solids in accordance with SU,25,38–41 but
they were never applied to the thermodynamic analysis of
few-body systems, in contradiction to SI. Besides, these ther-
modynamic magnitudes are based in geometrical concepts,
but even when the geometrical concepts have a precise defi-
nition, their counterpart thermodynamic magnitudes usually
have no precise meaning. For example, in the system of
many hard spheres in contact with a �convex� spherical wall,
different choices for the locus of the so-called Gibbs dividing
surface is not innocuous. A comparison between Refs. 42 and
25 shows that the locus of this surface may modify the vol-
ume and surface area of the inhomogeneous nonplanar fluid
system. Both modifications influence the macroscopic de-
scription of the entire system, changing the Laplace equa-
tion, the surface tension, etc. The most dramatic change is
probably in the Tolman length.

Therefore, we introduce a set M of thermodynamic mea-
sures, which should be suitable VOS in accordance with
SUSI requirements. We seek for a set M with a precise defi-
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nition which enables an exact description of few-body ex-
actly solved systems, and also, we expect that a good choice
for M provides consistence with previous well established
known results. The homogeneous fluids are typically de-
scribed by taking M= �V� with dim�M�=1, while for inho-
mogeneous systems, several authors currently add the sur-
face area, being M= �V ,A� and dim�M�=2. The classical
analysis of the ideal gas produces an elementary EOS, PV
=NkT. Accordingly, M must include a volume measure V
with a pressure provided by P=−�VF�M� compatible with
the known system pressure, yielding the expected behavior
for noninteracting particles. The same thought applies for the
surface area of the substrate and the wall-fluid surface ten-
sion �. The discussion about the choice of M will be com-
pleted later in PW. Now, assuming that we have adopted a set
M and also that M�X� is given, we must implement the
thermodynamic description of the system using these mea-
sures. With this purpose we need to relate the
X-representation and the M-representation. We state that wab

must be independent of the adopted representation X or M,
then we claim

wab�M� = wab�X� , �111�

dwaM̂ = dwaX̂, �112�

where we assume that Ma and Mb are well defined quanti-
ties, and also, that for all X�H measures, M�X� must exist.
Hence, Eqs. �106� and �107� transform into

wab = − 	
a

b

�MF · dM = − 	
a

b

m · dM , �113�

dwaM̂ = − �M̂F · dl = − m · M̂dl , �114�

where m��MF, and for a given direction X̂ in the param-

eters space, M̂=�XM · X̂. Comparing Eq. �107� with Eq.
�114�, we find

�XF · X̂ = m · M̂ = �
j
� �F

�Mj
�

M−Mj

�
i
� �Mj

�Xi
�

X−Xi

X̂i� ,

�115�

where X̂i is the i-component of X̂, mj = ���F /�Mj��M−Mj
, and

subscript M−Mj means that all the measures but the
j-component are kept constants in the partial derivative.
Then Eq. �115� is simply the chain rule for the F derivatives.
When we adopt the volume notion of Eq. �109� as the vol-
ume measure M1=V=V, we obtain P=−m1, and also from
Eqs. �109� and �115�

P − P̄w,X̂ = �PX̂ = �
j=2

dim�M�

mj
�XMj · X̂

�XV · X̂
, �116�

which is a Laplace-type equation for a fluid-substrate

interface.25 Equations �109� and �116� show that �X̂� is irrel-
evant, and therefore, the restriction to unit modulus in Eq.

�110� is superfluous. An interesting point is that P̄w,X̂ and P
can be measured both experimentally and with molecular
dynamics simulations.

Now, to make a practical use of Eq. �116�, the unknowns
mj, i.e., the EOS of the system, should be revealed. There-
fore, we need F�M� �see Eq. �113��. In general, the set M
may include dependent magnitudes and then dim�M�
�dim�X�, showing that M↔X is not a �locally� one-to-one
correspondence or bijective relation. Thus, the transforma-
tion F�X�→F�M� is not a simple change of variables, which
prevents us from obtaining F�M�=F�X�M��. We need a pro-
cedure to identify the hidden dependence of F�X� in M.
Accordingly, we must overcome two difficulties, find a good
set M�X� and obtain F�M�. Now, we can show that the se-
lection of measures M and the identification of F�M� are not
independent questions. To proceed, we analyze some results
for the 2-HS confined system.

We are mainly interested in fluidlike systems where par-
ticles can move freely and are able to interchange their po-
sitions. Then, we look for measures M that enable the ther-
modynamic description of systems in this regime. Certainly,
this M may or may not be suitable to describe other situa-
tions as solidlike or dense systems. The graph decomposition
presented in Sec. II �see also Ref. 15� and the analysis per-
formed in Sec. IV show that some thermodynamic measures
M appear naturally in F for cavity sizes in region 1. For
higher confinement conditions, as in Regions 2 and 3, some
characteristics, surface areas and lengths of the cavity, also
emerge as thermodynamic measure candidates. We focus on
the results for region 1 where any characteristic length of the
cavity is greater than �. The list of measure candidates starts
with the volume V�Z1=�e�r�dr, suggested by the graph
decomposition in Eqs. �3� and �4�. This volume appears usu-
ally in the study of inhomogeneous fluids29,38,43–45 of differ-
ent nature. Interestingly, for fluid systems in contact with

hard walls, this V�X� makes that P̄w,X̂ reduces to the contact
pressure on the hard wall. In fact, it reproduces exactly the
hard-wall pressure contact theorem for planar, spherical, and
cylindrical hard walls, but also for much more complex geo-
metrical shapes of the cavity.46 Other magnitudes are also
suggested by Eqs. �5� and �77�, e.g., the surface area measure
defined as A���e�r� · n̂dr. We also consider Le, the mea-
sure of the total edges length with the right internal angle.
More measures could be added, the number of right vertex,
Nvert, some measure of the surface curvature, e.g., M
��� 3

4 j2+k�dS, and a measure of the edge’s curvature.
Finally, even for region 1, to ensure the exactness of Eq.

�116�, in principle, we should include X in the set of mea-
sures. With all these measures, we may conform a complete
measure set Mc= �V ,A ,Le ,Nvert ,M ,X�, which is certainly
not a small set of measures. We note that a hierarchy exist in
Mc, the most important term is V, the second in relevance is
A. Both of them have been defined in detail, and their defi-
nitions can be applied to a large class of systems. Next terms,
Le, Nvert, and M are less important and their definitions con-
cern particular characteristics of the confinement cavity. Fi-
nally, the last added terms to Mc are still less relevant. Their
definitions apply only to a given cavity geometry and were
included to make a complete description of F so that Eqs.
�11� and �12� are guaranteed. The loss of relevance for in-
coming terms in Mc relates to the SU hypothesis.

Now, we take into account all these questions to analyze
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the thermodynamic behavior of 2-HS systems in region 1.
The spheroidal cavity will be excluded from the thermody-
namic analysis because we do not find a small set M that
enables the unified study of this and other geometries. We
adopt the small set of measures M= �V ,A ,Le ,R�, where the
last parameter is the radius of curvature of the �curved� sur-
face. Measure R is frequently used in the study of fluid sys-
tems in contact with simple curved surfaces as such with
cylindrical or spherical symmetries.25,47 We also select a rule
to identify the dependence of F on the adopted set of mea-
sures M. It is based on rewriting Eq. �77� in the form

Vb2�pore� = Vb2 − Aa�R� + Le��R� . �117�

Again, the adopted M and the identification rule are nonu-
nique. In the Appendix a different M is analyzed. For the
adopted M= �V ,A ,Le ,R�, we can define the F derivatives
related to the volumetric-work, surface-area-work, edges-
length-work, and radius-of-curvature-work

− P = � �F

�V
�

T,M−V
, �118�

� = � �F

�A
�

T,M−A
, �119�

� = � �F

�Le
�

T,M−Le
, �120�

CR = � �F

�R
�

T,M−R
. �121�

From Eq. �116�, we relate the difference in pressures �PX̂ for

an infinitesimal deformation in the X̂ direction with �, �,
etc., by

�PX̂ = �
�XA · X̂

�XV · X̂
+ �

�XLe · X̂

�XV · X̂
+ . . . . �122�

Now it is apparent that Eq. �122� is a generalization of the
Laplace equation obtained for a macroscopic fluid system in
contact with a spherical wall.38,48 An interesting fact is that
the EOS given in Eqs. �118�–�121� may be strongly depen-
dent on the details of the fluid system. On the other hand, the
relation between �PX̂, �, �, etc., given by the Laplace-type
equation �122� only depends on the geometry of the cavity
and the adopted M. For example, given a cuboidal pore it
remains unperturbed if we confine 2-HS, an N-Lennard-
Jones, or any other fluid. Before analyzing each confinement
geometry, we wish to state that for all the studied cavities,
the thermodynamic pressure from Eq. �118� is

�P = Z2
−12�V − b2� . �123�

This is our first global or thermodynamic EOS for the 2-HS
system. The same expression was obtained in Eq. �73� for the
local pressure in the constant density region when we ana-
lyze cavities of any shape. We find that both pressures are
equal, which shows the consistence of the present thermody-
namic study. A similar result for spherical confinement was
previously obtained.16 Based on the universal behavior of

Eqs. �77� and �117� and the consistence between the local
pressure in the constant density region and thermodynamic
pressure in all the studied cavity geometries, we confirm that
the adopted volume measure is correct in the spirit of SUSI.
Therefore, taking the volume measure V=Z1, we argue that
the identity between both pressures should be true for a 2-HS
system in any cavity shape. In the next paragraphs we per-
form the thermodynamic analysis for each pore shape. We fix
�=1 to keep notation simple.

A. The cuboidal pore

The cuboidal pore does not involve R, then
M= �V ,A ,Le�. We obtain the thermodynamic pressure of Eq.
�123� and also

�� = − Z2
−12a2, �124�

�� = Z2
−12�2. �125�

The three EOSs relate the pressure, surface tension, and line
tension with the measures �V ,A ,Le� of the system. They
apply to any cuboidal pore, in particular, these equations are
valid for the cubic confinement. Surface tension � of Eq.
�124� is in coincidence with Eq. �74�, it is negative for large
enough cavities. A simple inspection shows that for large
cuboids, the EOS scales �P�
+b2
2 /2, ���−a2
2 /2, and

����2
2 /2. For P̄w,X̂ we may find in literature two fre-
quently used deformations. Adopting the length parameters
X= �Lx ,Ly ,Lz�, the first one is like a piston expansion trans-

formation and reads as X̂= �1,0 ,0�. From Eq. �109�,

�P̄w,X̂ = Z2
−1�2�V − b2� +

2a22�Ly + Lz� − 2�24

LyLz
� , �126�

with this choice of X̂, magnitudes P, �, �, and P̄w,X̂ are
related to each other by

�PX̂ = � 2

Ly
+

2

Lz
� + �

4

LyLz
. �127�

Equivalent results may be obtained with X̂= �0,1 ,0� or

X̂= �0,0 ,1�. The second option is an isotropic expansion

with X̂= �1,1 ,1�, which produces

�P̄w,X̂ = Z2
−1�2�V − b� +

2a24�Lx + Ly + Lz� − 2�212

LyLz + LxLz + LxLy
� ,

�128�

�PX̂ = �
2Le

A
+ �

24

A
. �129�

We now analyze X̂= �1,0 ,0�, X̂= �1,1 ,1� starting with a cu-
bical cavity L=Lx=Ly =Lz. In this case, Eqs. �126� and �128�
converge to a single expression. The same applies also to
Eqs. �127� and �129�, which can be simplified because
�A−Ax� /V=4L−1, Lex /V=4L−2, and Le /A=2L−1. Therefore,

for all the studied X̂ for a cubical cavity we obtain

�P̄w,X̂ = Z2
−1�2�V − b� + 8

a2L − �2

L2 � , �130�
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�PX̂ = �
4

L
+ �

4

L2 . �131�

The same expressions �Eqs. �123�–�125�, �130�, and �131��
are obtained if we start from the beginning the analysis of a

cubical cavity with X= �L� and X̂= �1�, which shows the ro-
bustness of the procedure.

B. The cylindrical pore

From the same basic set of measures, we recognize that
the planar and curved surfaces, with areas Ap and Ac, respec-
tively, are geometrically and therefore thermodynamically
different. Then we split the total area into two, adopting M
= �V ,Ap ,Ac ,Le ,R�. For P and �p, we obtain expressions
identical to Eqs. �123� and �124�. Other EOSs are

��c = − Z2
−12a2�1 − cIR

−2� , �132�

�� = Z2
−12�2�1 − cIIR

−2� , �133�

�CR = − Z2
−1R−3�cIIIAc + cIVLe� , �134�

where cI=F�s� /48, cII=G�s�� /14, cIII=� /96�F�s�
+sF��s� /2�, and cIV=� /210�G�s�+sG��s� /2�. All of these
coefficients are positive smooth functions with small values,
e.g., cI�0.03, which shows that �p��c. We can also extract
the curvature dependence of �,

�c

�p
− 1 = −

1

48
R−2 + O�R−4� . �135�

Taking X= �Lh /2,R� for this geometry, we see three simple

choices for X̂. The piston expansion X̂= �1,0� provides

�PX̂ = �p
2

R
. �136�

For the lateral X̂= �0,1� and isotropic X̂= �1,1� expansions,
we obtain

�PX̂ = �p
2

Lh
+ �c

1

R
+ �

2

LhR
+ CR

1

Ac
, �137�

�PX̂ = �p
Le

A
+ �c

Le + 2�Lh

A
+ �

4�

A
+ CR

1

A
. �138�

For the cylinder with maximum area at fixed volume, Lh /2
=R and Eq. �138� reduces to

�PX̂ = ��p + 2�c�
2

3R
+ � +

CR

4�
� 2

3R2 , �139�

which may be still obtained analyzing the cylindrical pore

from the beginning with Lh /2=R, X= �R� and X̂= �1�.

C. The spherical and spherical+core pores

The spherical pore has Le=0, which reduces the mea-
sures to M= �V ,A ,R�. The expression for P is identical to
Eq. �123� to which we add

�� = − Z2
−12a2�1 − 18−1R−2� , �140�

�CR = − Z2
−12a2A9−1R−3. �141�

For X= �R� and X̂= �1�, the difference in pressures is

�PX̂ = �
2

R
+

CR

A
, �142�

and the same result is obtained for any other choice of X and

X̂. Note that using Eqs. �140� and �141� we may transform
CR /A to obtain

�PX̂ = � 2

R
+ �CR� +

��

�R
. �143�

Equation �143� is very similar to the Laplace equation for a
macroscopic fluid in contact with a spherical wall.25,39,48

Now, we will analyze the 2-HS system in a spherical pore
with a hard core. The shape of this pore involves two sur-
faces with different curvatures. Therefore, as we did for the
cylindrical cavity, we consider two separate surface area
measures. We adopt M= �V ,Ae ,Ai ,Re ,−Ri�, where −Ri is the
�negative� radius of curvature of the internal surface, and
naturally, labels e and i design the properties of the external
and internal surfaces, respectively. The pressure P is given in
Eq. �123�, while other EOSs are

��e = − Z2
−12a2�1 − 18−1Re

−2� , �144�

��i = − Z2
−12a2�1 − 18−1Ri

−2� , �145�

�CRe
= − Z2

−12a2Ae9
−1Re

−3, �146�

�C−Ri
= Z2

−12a2Ai9
−1Ri

−3. �147�

In these equations we recognize that the opposite signs in
both radius of curvatures do not affect surface tension ex-
pressions, but invert the sign in curvature term. Adopting the
length parameters X= �Re ,−Ri�, we can analyze three simple

transformations X̂= �1,0�, X̂= �0,1�, and X̂= �1,1�. For the
first two cases, we find

�PX̂ = �e
2

Re
+

CRe

Ae
, �148�

�PX̂ = − �i
2

Ri
+

C−Ri

Ai
. �149�

Here the effect of the negative curvature radius in the
Laplace-type equations is apparent. The last transformation
gives

�PX̂ = �e
2Re

Re
2 + Ri

2 − �i
2Ri

Re
2 + Ri

2 +
CRe

+ C−Ri

A
. �150�

For all the studied simple geometrical confinement, we
obtained several relations between intensivelike magnitudes
that resemble the Laplace equation. We must stress that pre-
vious to implementing the thermodynamic study of the sys-
tem, we needed to choose both a set M and an identification
rule �see Eq. �117��. Both choices affect the thermodynamic
description. In the Appendix a different choice for M is
taken, which produces other sets of EOS.
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In Fig. 9 we plot pressure for work, pressure, surface
tension, and other EOSs for the cube, the cylinder with Lh

=2R, and the spherical cavities �subfigures �a�, �b�, and �c�,
respectively� as functions of the rough density. In continuous

line we plot P̄w,X̂, in dashed line P, in dot-dashed line �,
dot-dotted-dashed line shows �, and dotted line shows CR.
The vertical lines show the 
̄�3 value where the plateau of
constant density 
0 �and constant pressure P= P0� disappears.
The most remarkable feature is that Figs. 9�a�–9�c� are very
similar in the density range �0,0.5�. A very small difference

in P̄w,X̂ at 
̄�3=0.5 is due to the expected geometric depen-
dence of the ratio V /A. In Fig. 9�b� both wall-fluid surface
tensions, �p and �c, are plotted with dot-dashed and dot-
dash-dashed lines, respectively, but are indistinguishable. A
clear difference between the three figures appears in the cur-
vature term CR �dotted line�, which is not present for the
cube cavity at Fig. 9�a�. In Fig. 9�b�, CR mix two curvature
contributions, one due to the curved surface and other due to
the curved edges. Still, in Fig. 9�c� a pure surface curvature
effect produces CR. A second difference is the vertical line
that shows the end of the plateau, which is a local property of

the 2-HS system. Note that F�X� �and also F�M�� is an ana-
lytic function at this point because their analytic domain ex-
tend to the end of region 1. The nonanalytic point for Figs.
9�a�–9�c� corresponds to maximum densities 
̄�3=2, 2.55,
and 3.82, respectively. Beyond the vertical plateau-end-line,
the identification of the thermodynamic pressure P with the
plateau’s pressure P0 breaks down because the central pla-
teau of constant density disappears. If we wish to retain the
identity beyond this point, we can regard the analytic con-
tinuation of Eqs. �43� and �70�. This approach may conduce
to a nonmonotonic behavior of P related in some cases �for
the spherical cavity� with a negative 
0, although the total

work P̄w,X̂ is not influenced by this question.
In consonance with Eq. �135�, we visualize the possibil-

ity of analyzing a cavity that mixes planar and curved spheri-
cal surfaces. Such truncated-spherical cavity should have a
Z2 involving a complex dependence on some set of param-
eters X. By virtue of Eq. �77�, we infer that each surface
makes its own contribution to Z2, allowing one to obtain both
the wall-fluid surface tension related to the spherical surface
�c and that corresponding to the planar one �p. Then �c

should be essentially given by Eq. �140� and �p by Eq. �124�
with a common unknown function Z2, therefore

�c

�p
− 1 = −

1

18
R−2 + O�R−4� . �151�

The Tolman length �, which describes the dependence of �
with the curvature, is proportional to the first order term in
R−1 in Eqs. �135� and �151�. Therefore, �=0 for the 2-HS
system confined by any of the studied curved walls. This
result is in fairly contradiction with �	�0 given in Eq. �75�,
obtained from local properties of the system. This discrep-
ancy could be related to the incorrectness of Eq. �75� or with
the nonequivalence of both approaches. The other interesting
cavity is the half-cylinder, it mixes curved and linear right
angled edges. Even when we ignore Z2, taking Eqs. �125�
and �133� we can obtain the curvature dependence of �,

�c

�p
− 1 = −

�

14
R−2 + O�R−4� . �152�

The idea of building mixed shape cavities allow us to ex-
plore several confinement conditions involving complex geo-
metrical shapes. As was already stated in Ref. 16 and dis-
cussed in Sec. II, some results of PW are easily mapped from
the 2-HS system confined in a bounded region to the 2-HS
system confined to the conjugated unbounded region. This is
a consequence of the inside-outside symmetry. Particularly,
all the expressions that are independent of Z1 and Z2 are
symmetric with respect to an inside-outside transformation.
Therefore, Eqs. �135�, �151�, and �152� may also be applied
to the conjugated system where both particles are outside �.
In general, the thermodynamic description of the conjugated
system is obtained by mapping Z1 and Z2 �see Sec. II� and

inverting the overall sign of P, P̄w,X̂, and �PX̂.

D. Extrapolation to systems with many HS

In Ref. 16, it was recognized that some properties of the
2-HS systems can be mapped exactly to the many-HS sys-
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FIG. 9. Magnitudes related to the thermodynamic work: pressures, wall-
fluid surface tensions, line tensions, and curvature-work. From top to bot-
tom: �a� is for a cube cavity, �b� is for a symmetric cylindrical cavity, and �c�
is for a spherical cavity. The power n is chosen in each case to give a
dimensionless magnitude. See additional comments in the text.
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tems in the low density regime. We simply follow the argu-
ments of that work. In large inhomogeneous systems, the
thermodynamic limit is frequently considered, and some-
times, becomes convenient to introduce a mathematical sur-
face where the surface tension is supposed to act. This is the
so-called Gibbs dividing surface. In our previous analysis,
we have not introduced a Gibbs dividing surface. Even so, if
we are forced to define it, we must assume that our Gibbs
dividing surface is placed in coincidence with the surface of
diverging external potential, e.g., for the spherical cavity it is
the surface of a sphere with radius R. The wall-fluid surface
tension of a HS fluid in contact with a curved wall and its
limiting zero curvature value at the same density relate by

�c�R�
�c�	�

− 1 = − cVR−2 + O�R−4� + O�
� , �153�

where the geometric dependent coefficient is cV�sph�=1 /18
and cV�cyl�=1 /48+O�R−2�. Both results apply not only to
the HS fluid inside the cavity but also for the fluid surround-
ing a fixed hard core. This symmetry is clear for the spherical
surface, from the study of a fluid inside the spherical cavity
with a spherical core �see Eqs. �144� and �145��. However, it
is a consequence of the more general inside-outside symme-
try. The central characteristics of Eq. �153� is its zero order in
density and second order in the radius of curvature R. We are
now able to extract an interesting property of the HS fluid in
contact with a curved hard wall. From Eq. �153�, the usual
definition of the substrate-fluid Tolman length � �a magni-
tude independent of the radius of curvature� is �c /�p−1=
−2� /R+O2�R−1�. Therefore, using a thermodynamic ap-
proach, we find

� = 0 + O�
� �154�

for both spherical and cylindrical surfaces. It still applies for
HS fluid systems confined inside the closed surface, and also,
for fluids outside it. Using a different procedure, we identify
�	 �see Eq. �75�� with the first �density independent� term of
the Tolman length. Again, the inconsistency between both
values justifies a deeper analysis of the hypothesized equiva-
lence between both approaches. Our exact result for � is in
contradiction with the constant value �=−� /4 obtained in
Eq. �35� of Ref. 42 using a thermodynamic derivation. This
difference would be consequence of the unusual volume
definition adopted which does not reflect the volume avail-
able to the liquid’s molecules �see Eq. �8� in Ref. 42 and the
comment below Eq. �6� in Ref. 25�. In Ref. 25, Blokhuis et
al. analyzed the behavior of a liquid system of particles in-
teracting with a HS+attractive potential that mimics the Lon-
don dispersion forces in contact with a curved hard wall.
Using density functional calculations, a limiting behavior of
��0 independent of the temperature is found �see Fig. 2 in
that work�, in good agreement with Eq. �154�. In the same
sense, our result for � agrees with Fig. 9 of Ref. 49. Other
magnitudes can also be evaluated. The line tension expressed
to first non-null order in density is

�� = 
2�2

2
. �155�

In consonance with Eq. �152�, the first order correction on
the line tension due to the curvature of the edge with a right
dihedral angle is

��R�
��	�

− 1 = −
�

14
R−2 + O�R−4� + O�
� , �156�

which appears to be a novel result. The first non-null curva-
ture dependence for the density at contact is


�r = 0,R� − 
�r = 0,	� � 
2a2�3

2
cVIR

−1 � �29cVI

4�
�R−1

+ O�R−3� + O�
� , �157�

with the packing fraction �= �� /6��3
 and cVI=1,2 for cyl-
inder and spherical cavities, respectively. For a convex wall,
we must invert the sign or simply change R→−R. Equation
�157� is in concordance with first density order of Eq. �36� in
Ref. 42 which analyzes a fluid in contact with a convex hard
cavity, but it is a new result for the HS fluid in a spherical
cavity and also for the fluid in contact with a convex or
concave cylindrical walls.

VI. FINAL REMARKS

The analytical evaluation of the canonical partition func-
tion for the 2-HS confined system was performed for several
cavities with a simple geometry. The cavities considered
were the cuboidal, cylindrical, and ellipsoidal pores. The ob-
tained expressions cover all density ranges from infinite di-
lution to the jammed densest configuration. The one-body
distribution function and pressure tensor were also analyzed.
As a by-product, we have obtained expressions for the vol-
ume of intersection between a sphere and a dihedron with
right angle, and between a sphere and a right angle vertex.
Thus we derived the expression for the intersecting volume
between a sphere and a box. To the best of our knowledge,
these expressions were not previously published. The three
studied cavities were compared with the spherical and the
spherical with a hard core cavities, hence the study of simple
pore’s geometry is completed. The general behavior of all the
available CIs was analyzed by a graphical representation,
which shows how the X-parameter space breaks into several
open analytic domains. Attention was also paid to the CI
solution for large cavities, to the characterization of the
nonanalytic domain and the dimensional crossovers.

Finally, we have focused on the thermodynamic proper-
ties of the 2-HS confined system. Several questions about the
free energy dependence on geometrical parameters X and its
thermodynamic meaningfulness were discussed. We show
the necessity of introducing a set of thermodynamic mea-
sures M based in extensivelike magnitudes. These neat de-
fined measures constitute the basis of a consistent method
developed to make the thermodynamic study. We find that
pressures, surface tension, and similar intensivelike magni-
tudes are then obtainable analytically. A common feature was
the arising of an exact expression resembling the Laplace
equation that establishes the equilibrium between these quan-
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tities. Finally, several connections to the many-HS system in
contact with curved hard walls were found. We have evalu-
ated the first curvature corrections to the surface tension,
Tolman length, and line tension in the low density limit.

The solved integrals to obtain the CI of 2-HS system
also shows the complete dependence of b2�pore�, the first
nontrivial cluster integral, for the many HS system in the
cavity but also outside it. For large enough cavity, b2�pore� is
analytic. Even so, for smaller cavity size, b2�pore� is a
nonanalytic function of the X and M-parameters. We are
convinced that any cluster integral bj�pore� behaves simi-
larly. Cluster integrals are basic functions appearing in the
virial expansion of the so-called real gases EOS, thus, the
study of the nonanalicities of bj�pore� could be of some in-
terest.

The performed study of free energy dependence of two-
body simple systems on the geometry of the container does
not close the prospection. Indeed, it shows that next steps
should focus in the free energy contributions of dihedral
edges �straight and curved ones�, nonright vertex and cone
vertex. One conclusion of PW is that this future inspection
should be numerical.
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APPENDIX: THERMODYNAMIC PROPERTIES WITH A
DIFFERENT M

In Sec. V we have discussed why the thermodynamic
properties of the systems depend on the adopted set of mea-
sures. Here, we investigate on this dependence, adopting a
different set of measures to that used in Secs. V A–V C.
Now, we utilize a measure set M currently used for the study
of systems with spherical interfaces. We adopt M= �V ,A�
and add to this the parameters used for the description of the
studied geometric confinement. So far, we will restrict our-
selves to the full symmetric cavities: cubic, cylindrical, and
spherical, only one characteristic length parameter is needed.
The unique parameter is X= �R�, where L=2R for the cube
and Lh=2R for the cylinder. Following the same ideas de-
picted in Sec. V, taking an area common factor in Eq. �77� it
transforms to

Vb2�pore� = Vb2 − A�a2 − �2LeA−1 + c2,1A−1

− c2,2LeR−2A−1� = Vb2 − Aa�R� . �A1�

Here, the expression between parenthesis only depends on R.
We then analyze with M= �V ,A ,R� the isotropic expansion

X̂= �1�. For all the cavities, we obtain Eq. �123� for the pres-
sure and

�� = − Z2
−12a�R� , �A2�

�CR = − Z2
−12A

da

dR
. �A3�

We may highlight that a�R� is a known function, and there-
fore, � and CR are analytically known in the three analyzed
cavities. The Laplace-type equation is

�PX̂ = �
2

R
+ CR

1

A
= � 2

R
+ �CR� +

��

�R
. �A4�

The last expression without the �CR term was obtained in
some refined studies of spherical cavities in the bulk of fluid
systems, and also, in studies of spherical drops surrounded
by its vapor. Notably, in our systems, which do not need to
be spherical, we find for large R values �CR�R−6. For large
cavities, it is a high-order term.
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