
Annals of Pure and Applied Logic 163 (2012) 961–972

Contents lists available at SciVerse ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

Completeness results for memory logics
Carlos Areces a,∗, Santiago Figueira b,c, Sergio Mera b

a INRIA Nancy Grand Est, France
b Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
c CONICET, Argentina

a r t i c l e i n f o

Article history:
Available online 16 November 2011

MSC:
03C80
03B45
03B70
03C52

Keywords:
Modal logics
Hybrid logics
Memory logics
Completeness

a b s t r a c t

Memory logics are a family of modal logics in which standard relational structures are
augmented with data structures and additional operations to modify and query these
structures. In this paper we present sound and complete axiomatizations for some
members of this family. We analyze the use of nominals to achieve completeness, and
present one example in which they can be avoided.

© 2011 Elsevier B.V. All rights reserved.

1. Modal logics with memory

Modal logics [9,7] can be considered nowadays as languages specially designed to describe properties of relational
structures. They try to find a balance between expressive power, easy of use, and computational complexity. Many attempts
have been made in recent years to increase modal logic expressivity by adding some notion of state to standard relational
structures. This is a natural need, since modal logics are used in many different scenarios as tools for modeling behavior.

One example of such logics are epistemic logicwith dynamic operators. These languages are used to express the evolution
of knowledge by means of knowledge-changing actions. Such logics are often called Dynamic Epistemic Logics (DEL) [17],
and a large number of DELs have been proposed [10,14–16]. These logics differ considerably in expressive power among
themselves, but the common idea is to represent knowledge evolution by accessing and changing the model structure
through logic operators. For example, representing the fact that an agent obtains the information that ϕ is true in state
w amounts to eliminating all possible successor states where ϕ does not hold.

Other examples of logics which have the ability to model behavior are some of the languages used by the software
verification community. The logic XCTL of Harel et al. [11], for example, is a temporal logic with explicit global clocks which
are accessed and controlled through logic operators. Also from the software verification community, we could mention
the extension of temporal logic with a concrete domain (e.g., the natural numbers with some operations like addition,
comparison, etc.) which is accessed via the so-called freeze operator [1,12]. In the extended language, we can model
qualitative properties using the temporal operators, and concrete properties – such as weight, temperature, etc. – using
the new machinery. To cite yet another example, concrete domains have also been added to description logics, with much
the same aims [13].

∗ Corresponding author.
E-mail addresses: carlos.areces@loria.fr (C. Areces), santiago@dc.uba.ar (S. Figueira), smera@dc.uba.ar (S. Mera).

0168-0072/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2011.09.005

http://dx.doi.org/10.1016/j.apal.2011.09.005
http://www.elsevier.com/locate/apal
http://www.elsevier.com/locate/apal
mailto:carlos.areces@loria.fr
mailto:santiago@dc.uba.ar
mailto:smera@dc.uba.ar
http://dx.doi.org/10.1016/j.apal.2011.09.005

962 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Wewould like to take a step back, and analyze some of the basic intuitions that most of the formal languages mentioned
above have in common. Wewant to try to investigate the idea of adding an explicit state to a model, and being able to access
(andmodify) it via logical operators. Andwewould like to take this idea in its simplest form, in order to be able to understand
it in detail.

We can take a standard relational structure and complement it with a data structure, that will keep the state information
wewant tomodel.Wewill also add to the logical language a collection of operations tomodify and access the data structure.
Formally, given a relational structure ⟨D, (Rr)r∈Rel, L⟩ where D is a non empty domain, (Rr)r∈Rel is a set of relations over D,
and L : Atom → 2D is a labeling function that assigns atomic properties to elements of D, we extend the structure with a
set S ⊆ D. We can think of S as a set of states that are ‘known’ to us, and it will represent our current ‘memory’. Even in this
simple setting we can define the following operators:

⟨D, (Rr)r∈Rel, L, S⟩, w |H ⃝rϕ iff ⟨D, (Rr)r∈Rel, L, S ∪ {w}⟩, w |H ϕ
⟨D, (Rr)r∈Rel, L, S⟩, w |H ⃝k iff w ∈ S.

As it is clear from the definition above, the ‘remember’ operator ⃝r (a unary modality) just marks the current state as being
‘known’ or ‘already visited’, by storing it in our ‘memory’ S. On the other hand, the zero-ary operator⃝k (for ‘known’) queries
S to check if the current state has already been visited. Notice that the extension of S is dynamic and it can vary during the
evaluation of a formula; while the ‘concrete’ operation we can apply to S is simple membership.

Other operators can naturally be added, for example:

⟨D, (Rr)r∈Rel, L, S⟩, w |H ⃝fϕ iff ⟨D, (Rr)r∈Rel, L, S\{w}⟩, w |H ϕ
⟨D, (Rr)r∈Rel, L, S⟩, w |H ⃝eϕ iff ⟨D, (Rr)r∈Rel, L,∅⟩, w |H ϕ.

I.e., we can use the forget operator ⃝f to eliminate the current point of evaluation from the memory S, while the erase
operator⃝e completely wipes out thememory S. We have introduced this family of logics, that we calledmemory logics, and
investigated its expressive power in [2–4].

The language we have just described is very flexible, and it can be used to easily characterize model properties. For
example if all states in the domain of a model M satisfy the formula ⃝e⃝r ⟨r⟩⃝k then the relation Rr is reflexive (we wipe out
the memory, memorize the current point of evaluation and verify that it is accessible). Similarly, if they satisfy ⃝e⃝r [r]⟨r⟩⃝k
then Rr is symmetric. Actually, using ⃝f , ⃝e , ⃝r and ⃝k we can express properties similar to how it is done using binders in
different hybrid languages [5,6].

The two families of memory and hybrid logics are intimately related, but there are differences among them. In [3,4], for
example, we have shown that ML(⃝r ,⃝k),1 the modal language extended with ⃝r and ⃝k , is strictly more expressive than
the basic modal logic but strictly less expressive than the hybrid logic HL(↓). If we add the ⃝e operator to ML(⃝r ,⃝k), the
resulting language is still strictly less expressive than the hybrid logic HL(↓). Furthermore, we also know that if we add
⃝f to ML(⃝r ,⃝k) we have at most the expressive power of HL(↓). It is an open problem whether this inequality is strict
although we believe it is. These two last results are not yet published. The former follows using an argument similar to the
proof of Theorem 6 of [3] and the latter follows using a translation as the one used in the proof of Theorem 5 of [3].

In this article we are interested in providing complete axiomatizations for memory logics. With this aim in mind, we
will extend the language of memory logics with further ingredients from the language of hybrid logics. In particular, we
will include nominals (atomic symbols which are true at a unique point in the relational structure) and the @ operator
(which allows us to control the point of evaluation). As discussed in [8], the hybrid machinery can be used to prove general
completeness results, and to axiomatize logics which are otherwise difficult to characterize.

The rest of the paper is organized as follows. In the next section we formally introduce the different logics we will
investigate. In Section 3we present a sound and complete axiomatization forHL(@,⃝r ,⃝k), the basicmodal logic extended
with nominals, @, and the ⃝r and ⃝k memory operators. In Section 4 we discuss completeness for languages including the
⃝f and ⃝e operators.

As it will be clear from the details that we present in the corresponding sections, nominals and @ play a crucial role in
these axiomatic characterizations. Moreover, the axiomatizations we present are non-finite. On the other hand, the results
are fairly general, as they characterize not only the base casewhere the languages are interpreted over the class of all possible
models, but also when we restrict ourselves to different subclasses (with the proviso that these classes can be defined using
‘pure’ axioms).

In [3] we prove that the satisfiability problem of ML extended with ⃝r and ⃝k is undecidable, and we introduce a
decidable logic including ⃝r and ⃝k (strictly more expressive than ML) defining additional constrains on how the modal
and thememory operators interact.Wewill show a sound and complete axiomatization for this logic in Section 5.Moreover,
this axiomatization does not require the hybrid machinery.

We conclude in Section 6 with some final remarks.

1 Our convention for naming logics is as follows. We call ML the basic modal logic, with the standard operators; we use HL for the modal language
extended with only nominals; and we then list the additional operators included in the language. For example HL(@,⃝r ,⃝e ,⃝k) is the modal language
extended with nominals, and the @, ⃝r , ⃝k and ⃝e operators.

C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972 963

2. Syntax and semantics of memory logics

In this section we formally introduce the languages mentioned above, together with some basic notation and notions
related to completeness.

Definition 1 (Syntax). Let Prop = {p1, p2, . . .} (the propositional symbols), Nom = {n1, n2, . . .} (the nominal symbols) and
Rel = {r1, r2, . . .} (the relational symbols) be pairwise disjoint, countable infinite sets. Let Atom = Prop ∪ Nom. The set
Forms of formulas in the signature ⟨Prop,Nom,Rel⟩ is defined as:

Forms ::= ⊤ | p | i | ⃝k | ¬ϕ | ϕ1 ∧ ϕ2 | ⟨r⟩ϕ | @iϕ | ⃝rϕ | ⃝fϕ | ⃝eϕ,

where p ∈ Prop, i ∈ Nom, r ∈ Rel and ϕ, ϕ1, ϕ2 ∈ Forms. We take [r]ϕ as a shorthand for ¬⟨r⟩¬ϕ, and use the standard
definitions for Boolean operators like ∨, →, etc.

Definition 2 (Semantics). Given a signature S = ⟨Prop,Nom,Rel⟩, a model for S is a tuple ⟨D, (Rr)r∈Rel, L, S⟩, satisfying
the following conditions: (i) D ≠ ∅; (ii) each Rr is a binary relation on D; (iii) L : Atom → 2D is a labeling function such that
L(n) is a singleton whenever n ∈ Nom; and (iv) S ⊆ D.

Given the model M = ⟨D, (Rr)r∈Rel, L, S⟩ andw ∈ D, the semantics for the different operators is defined as follows:

M, w |H ⊤ always
M, w |H p iff w ∈ L(p) p ∈ Atom

M, w |H ¬ϕ iff M, w |̸H ϕ
M, w |H ϕ ∧ ψ iff M, w |H ϕ and M, w |H ψ

M, w |H ⟨r⟩ϕ iff there isw′ such that Rr(w,w
′) and M, w′

|H ϕ
M, w |H @iϕ iff M, v |H ϕ where L(i) = {v}
M, w |H ⃝rϕ iff ⟨D, (Rr)r∈Rel, L, S ∪ {w}⟩, w |H ϕ
M, w |H ⃝k iff w ∈ S

M, w |H ⃝fϕ iff ⟨D, (Rr)r∈Rel, L, S\{w}⟩, w |H ϕ
M, w |H ⃝eϕ iff ⟨D, (Rr)r∈Rel, L,∅⟩, w |H ϕ.

Given a model M, we say that ϕ is valid on M and write M |H ϕ if for all states w in the domain of M we have that
M, w |H ϕ.

In the rest of the paper the following notation will be useful. Let M = ⟨D, (Rr)r∈Rel, L, S⟩ be a model and w ∈ D, then
we define

M[+w] = ⟨D, (Rr)r∈Rel, L, S ∪ {w}⟩

M[−w] = ⟨D, (Rr)r∈Rel, L, S\{w}⟩.

For [o1w1, . . . , onwn] a nonempty ordered list with wi ∈ D and oi ∈ {+,−}, let M[o1w1, . . . , onwn] = (M[o1w1])
[o2w2, . . . , onwn], where M[] = M. We will usually write [w1, . . . , wn] instead of [+w1, . . . ,+wn].

Definition 3 (Satisfiability, Validity, Completeness). Let C be a class of models. We say that ϕ is satisfiable in C if there is a
model M ∈ C and a state w in the domain of M such that M, w |H ϕ. We say that ϕ is valid in C if ¬ϕ is not satisfiable in
C. The notions of satisfiability and validity can be extended to sets of formulas in the usual way. For example, we say that a
set of formulas Γ is satisfiable in a class of models C if there is a model M ∈ C and a statew in the domain of M such that
for all formulas ϕ ∈ Γ we have M, w |H ϕ. We will note T (C) the set of all valid formulas in C.

Given an axiomatization A, a formula ϕ is a theorem of A if it is an axiom in A, or it can be obtained by a finite number
of applications of inference rules in A from axioms of A. We write T (A) for the set of all theorems in A.

We say that a formula ϕ is consistent with respect to an axiomatization A (or A-consistent) if ¬ϕ is not a theorem of
A. The notion of consistency can be extended to a set of formulas Γ by requiring that for no finite subset Γ f , the formula
Γ f

→ ¬⊤ be a theorem of A.
Given an axiomatization A and a class of models C we say that A is sound for C if T (A) ⊆ T (C), and that it is complete

for C if T (C) ⊆ T (A). Completeness can be equivalently defined in terms of consistency and satisfiability: A is complete
for C if every formula consistent in A is satisfiable in C.

Finally, we say that an axiomatization A is strongly complete with respect to C, if every A-consistent set of formulas is
satisfiable in C.

In this article we will present a number of axiomatizations and prove them (strongly) complete with respect to
different classes of models. The different logical languages involved will be defined in terms of the operators introduced
in Definitions 1 and 2; and we will be interested mainly in the class of all models, and the class {⟨D, (Rr)r∈Rel, L, S⟩ | S = ∅}

of models with no previously ‘remembered’ states. This last class is a natural choice: in the absence of the ⃝e operator,
evaluating formulas on suchmodels provides additional expressivity, and the intuitivemeaning of the remember and known
operators are naturally captured. For example the formula ⃝r ⟨r⟩⃝k characterizes reflexivity of Rr over this class (that is, let
M = ⟨D, (Rr)r∈Rel, L, S⟩ be an arbitrary model, except that S = ∅, then M |H ⃝r ⟨r⟩⃝k if and only if Rr is reflexive). This no
longer holds when S is arbitrary. See [3] for further details.

964 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Axioms:
CT All classical tautologies Intro ⊢ (i ∧ p) → @ip
K@ ⊢ @i(p → q) → @ip → @iq Self-dual@ ⊢ @ip ↔ ¬@i¬p
K[r] ⊢ [r](p → q) → ([r]p → [r]q) Ref ⊢ @ii
Sym ⊢ @ij ↔ @ji Nom ⊢ (@ij ∧ @jp) → @ip
Agree ⊢ @j@ip ↔ @ip Back ⊢ ⟨r⟩@ip → @ip
Rem ⊢ @i(⃝rϕ ↔ ϕ[⃝k /(⃝k ∨ i)])
Rules:
MP If ⊢ ϕ and ⊢ ϕ → ψ then ⊢ ψ Gen[r] If ⊢ ϕ then ⊢ [r]ϕ
Name ⊢ j → ϕ then ⊢ ϕ (j not in ϕ) Gen@ If ⊢ ϕ then ⊢ @iϕ
Paste If ⊢ (@i⟨r⟩j ∧ @jϕ) → ψ then ⊢ (@i⟨r⟩ϕ) → ψ

(j ≠ i and j is not in ϕ or ψ)
SortedSub1 If ⊢ ϕ then ⊢ ϕ[p/ψ] for any p ∈ Prop
SortedSub2 If ⊢ ϕ then ⊢ ϕ[i/j] for any i, j ∈ Nom

The expression ϕ[a/b] is the result of uniformly replacing all occurrences of a in ϕ by b.

Fig. 1. Axiomatization for HL(@,⃝r ,⃝k).

Aswementioned in the introduction, wewill also be interested in a logic inwhich the behavior of the remember operator
is highly coupled with the modal transitions to ensure decidability. In this logic, every time we make a modal step, we are
constrained to remember the current state. We change the semantic definition of ⟨r⟩ to be:

⟨D, (Rr)r∈Rel, L, S⟩, w |H ⟨r⟩ϕ iff ∃w′
∈ D, Rr(w,w

′) and
⟨D, (Rr)r∈Rel, L, S ∪ {w}⟩, w′

|H ϕ.

We call this logic ML− (HL− for the hybrid case). As we proved in [4], ML−(⃝r ,⃝k) is decidable and strictly more
expressive than ML.

3. Completeness for HL(@, ⃝r , ⃝k)

This section is devoted to prove a completeness result for HL(@,⃝r ,⃝k). Our axiomatization is shown in Fig. 1. It is an
extension of the axiomatization for HL(@) presented in [7].

The axiom characterizing the behavior of thememory operator is Rem. To show soundness of the axiomatization, we only
have to look at this new axiom. Intuitively, the axiom says that, when standing in a state named by i, the act of remembering
the current state is equivalent to increase the extension of ⃝k with i throughout the formula. Formally:

Lemma 1. Let M be a model andw ∈ M such that M, w |H i. Then, for all v ∈ M, M[w], v |H ϕ iff M, v |H ϕ[⃝k /(⃝k ∨ i)].

Proof. By induction on ϕ. For the base case, if ϕ is a proposition symbol or a nominal, then since ϕ = ϕ[⃝k /(⃝k ∨ i)] we
have M[w], v |H ϕ iff M, v |H ϕ. For the ⃝k case we have to prove M[w], v |H ⃝k iff M, v |H ⃝k ∨ i.
(⇒) Assume that M[w], v |H ⃝k . If v = w, then M, v |H i, and therefore M, v |H ⃝k ∨ i. If v ≠ w, then M, v |H ⃝k , and

hence M, v |H ⃝k ∨ i.
(⇐) Let us assume that M, v |H ⃝k ∨ i. If v = w, then M[w], v |H ⃝k . On the other hand, if v ≠ w, then we know that

M[w], v |H ¬i, and therefore M, v |H ⃝k . We conclude M[w], v |H ⃝k .
The conjunction, negation, diamond, @ and remember cases are straightforward, using the inductive hypothesis and the

fact that the replacement operation [⃝k /(⃝k ∨ i)] distributes over ∧, ¬, ⟨r⟩, @ and ⃝r . �

Corollary 2. Rem is sound over the class of all models.

Proof. Take an arbitrary model M and let w ∈ M be such that M, w |H i. By definition M, v |H @i⃝rϕ iff M[w], w |H ϕ.
Applying the previous lemma, this happens iff M, w |H ϕ[⃝k /(⃝k ∨ i)] iff (by definition) M, v |H @iϕ[⃝k /(⃝k ∨ i)]. �

It is worth noting that having nominals in the language is a key feature to describe the ⃝r /⃝k interaction with modal
operators, and the Rem axiom strongly uses this feature. The possibility to identify with a nominal the state in which a
remember operation is taking place allows us to fully describe the behavior of this interaction.

We now turn to completeness. We will build a Henkin model using named maximal consistent sets (MCSs) for an
arbitrary consistent set (see [7] for further details).

Definition 4. An MCS is named if and only if it contains a nominal. We call any nominal belonging to an MCS a name for
that MCS. Also, if Γ is an MCS and i is a nominal, then we call {ϕ | @iϕ ∈ Γ } a named set yielded by Γ . Furthermore we say
that a model is named if every state in the model is the denotation of some nominal (for all w ∈ D there is some nominal i
such that L(i) = {w}).

C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972 965

The idea behind the construction presented in [7] is that we can extract all the information we need to build a named
canonical model from a single MCS. We start by noting that hidden inside any MCS there is a collection of named MCSs
with a number of relevant properties.

Lemma 3. Let Γ be an MCS. For every nominal i, let ∆i be {ϕ | @iϕ ∈ Γ }. Then, (i) for every nominal i, ∆i is an MCS that
contains i; (ii) for all nominals i and j, if i ∈ ∆j, then∆i = ∆j; (iii) for all nominals i and j, @iϕ ∈ ∆j iff @iϕ ∈ Γ ; and (iv) if i is
a name for Γ then Γ = ∆i.

Proof. We only sketch the proof, the full details can be found in [7]. Claim (i) can be proved using Ref (to guarantee that
i ∈ ∆i), Gen@ and Self-dual@ (to prove that∆i is anMCS). Claim (ii) is proved using Sym andNom, Claim (iii) follows by Agree.
And Claim (iv) is obtained by Intro and Self-dual@. �

Given a consistent set of formulasΣ , we can always expand it to an MCSΣ+ using the standard Lindenbaum’s Lemma.
The problem is that nothing guarantees that this MCS will be named. In addition, as we want to extract named MCSs from
named sets yielded by Σ+, we have to ensure that there are enough named MCSs to use as existential witnesses during
the construction of the Henkin model. Here is where the Name and Paste rules are useful. Expanding the language with new
nominals, the Name rule is going to solve our first problem, and the Paste rule solves the second. We call anMCS Γ pasted iff
@i⟨r⟩ϕ ∈ Γ implies that for some nominal j, @i⟨r⟩j∧@jϕ ∈ Γ . Name and Paste guarantee that any consistent set of formulas
can be extended to a named and pasted MCS.

Lemma 4 (Extended Lindenbaum Lemma). Let S = ⟨Prop,Nom,Rel⟩ be a signature, let Nom′ be a countably infinite collection
of nominals disjoint from Nom, and let S′ be the signature obtained by extending S with Nom′. Then every HL(@,⃝r ,⃝k)-
consistent set of formulas in S can be extended to a named and pasted MCS in S′.

Proof. Full details can be found in [7]. The proof follows the standard Lindenbaum’s construction with the following
modifications. Take a consistent set of formulasΣ , and name it by adding a new nominal k (use Name to prove consistency).
Using an enumeration of all the formulas, we expand Σ step-by-step with a formula that is consistent with the expanded
set at each point. Because we want the final MCS to be pasted, at the (m + 1)-th step, when we are considering Σm

and the formula ϕm+1, if Σm
∪ {ϕm+1} is inconsistent, we set Σm+1

= Σm. Else, if ϕm+1 has the form @i⟨r⟩ϕ, we set
Σm+1

= Σm
∪ {ϕm+1} ∪ {@i⟨r⟩j ∧ @j⟨r⟩ϕ}, where j is new (relying on the Paste rule for consistency). If ϕm+1 does not

have the form @i⟨r⟩ϕ, we setΣm+1
= Σm

∪ {ϕm+1} as usual. Finally, we take the infinite union of all theΣ i. �

Now we can define the model we need, using the named sets yielded by a named and pasted MCS.

Definition 5. Let Γ be a named and pastedMCS. The named model yielded by Γ is MΓ
= (DΓ , (RΓr)r∈Rel, L

Γ , SΓ). Here DΓ
is the set of all named sets yielded by Γ , RΓr (u, v) holds iff for all formulas ϕ, ϕ ∈ v implies ⟨r⟩ϕ ∈ u, LΓ (a) = {w ∈ WΓ

|

a ∈ w} for any atom a, and SΓ = {w | ⃝k ∈ w}.

Note that MΓ is a well defined model, since by items (i) and (ii) of Lemma 3, LΓ assigns to every nominal a singleton
subset of DΓ . Using the fact that Γ is named and pasted, we can prove the following Existence Lemma.

Lemma 5 (Existence Lemma [7]). Let Γ be a named and pasted MCS, and let M = ⟨D, (Rr)r∈Rel, L, S⟩ be the named model
yielded by Γ . Suppose u ∈ M and ⟨r⟩ϕ ∈ u. Then there is a v ∈ M such that Rr(u, v) and ϕ ∈ v.

Now we are ready to prove the Truth Lemma that will lead us to the desired completeness result. Before that, to treat
the ⃝r case properly, we have to redefine the complexity of the formulas, to be able to handle the substitutions made by the
Rem axiom.

Definition 6. We define the complexity of a formula as comp(ϕ) = 2(k + 1)(r + 1)(d + 1) + v, where k, r and d are the
number of occurrences of ⃝k , ⃝r and ⟨r⟩ respectively, and v is the number of occurrences of all the other possible operators.

Note that with this definition, comp(⃝rϕ) > comp(ϕ[⃝k /(⃝k ∨ i)]).

Lemma 6 (Truth Lemma). LetM = ⟨D, (Rr)r∈Rel, L, S⟩ be the namedmodel yielded by a named and pastedMCS, and let u ∈ D.
Then, for all formulas ϕ, ϕ ∈ u iff M, u |H ϕ.

Proof. By Induction on the complexity comp of ϕ. The atomic, Boolean and modal cases are obvious (the Existence Lemma
is used for the modal case, and the ⃝k case follows directly from the definition of SΓ). We analyze the satisfaction operators.
Suppose M, u |H @iψ . This happens iff M,∆i |H ψ (by items (i) and (ii) of Lemma 3, ∆i is the only MCS containing i, and
hence, by the atomic case of the present lemma, the only state in M where i is true) iff ψ ∈ ∆i (by inductive hypothesis)
iff @iψ ∈ ∆i (using the fact that i ∈ ∆i together with Intro for the left-to-right direction and Intro and Self-dual@ for the
right-to-left direction) iff @iψ ∈ u (by Agree).

To finish let us analyze the case for ⃝r . Given u ∈ M, we know that for some nominal iwe have u = ∆i, so by definition,
M, u |H i and i ∈ u. Suppose M, u |H ⃝rψ . This happens iff M, u |H @i⃝rψ (because M, u |H i) iff M, u |H @iψ[⃝k /(⃝k ∨ i)]
(by Corollary 2) iff M, u |H ψ[⃝k /(⃝k ∨ i)] (again because M, u |H i) iff ψ[⃝k /(⃝k ∨ i)] ∈ u (by inductive hypothesis) iff
@iψ[⃝k /(⃝k ∨ i)] ∈ u (because i ∈ u, using Intro for the left-to-right direction, and Self-dual@ and Intro for the right-to-left
direction) iff @i⃝rψ ∈ u (by the Rem axiom) iff ⃝rψ ∈ u (because i ∈ u, applying again Intro and Self-dual@). �

966 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Theorem 7 (Completeness for HL(@,⃝r ,⃝k)). Every MCS in HL(@,⃝r ,⃝k) is satisfiable in a countable named model.

Proof. Let Σ be a consistent set of formulas from HL(@,⃝r ,⃝k). We use the Extended Lindenbaum Lemma to expand it
to a named and pasted setΣ+ in an extended countable language. Let M be the named model yielded byΣ+. By item (iv)
of Lemma 3, because Σ+ is named, Σ+ is an element in the domain of M. By the Truth Lemma, M,Σ+

|H Σ . The model
is countable because each state is named by some nominal in the extended language, and there are only countably many of
these. �

This establishes strong completeness as desired. But in fact, we have donemore. Because our Henkinmodel is named, we
can prove a more general result.

Definition 7. If a formula ϕ contains no propositional symbols (that is, its atoms are nominals or ⃝k), we say that ϕ is
⃝k -pure. Furthermore, if ϕ is a⃝k -pure formula, we say thatψ is a⃝k -pure instance of ϕ ifψ is obtained from ϕ by uniformly
substituting nominals for nominals. A formula ϕ is pure if its atomic subformulas are only nominals.

The axiomatization we presented in Fig. 1 for HL(@,⃝r ,⃝k) has the following property: for any set of pure formulas
Π , if P is the logic obtained by adding the formulas in Π as axioms, then P is complete with respect to the class defined
by Π .2 This result can be extended to ⃝k -pure formulas for the case of HL∅(@,⃝r ,⃝k), the logic obtained over the class
{⟨D, (Rr)r∈Rel, L, S⟩ | S = ∅} of models with no previously remembered states.

We first state a property that will help us achieve the completeness result for pure axioms.

Lemma 8. Let M = ⟨D, (Rr)r∈Rel, L, S⟩ be a named model.

1. Let ϕ be a pure formula, and suppose that for all pure instances ψ of ϕ, M |H ψ . Then for any L′ and S ′, ⟨D, (Rr)r∈Rel, L
′, S ′

⟩

|H ϕ.
2. Let S = ∅ and ϕ be a ⃝k -pure formula. Suppose that for all ⃝k -pure instances ψ of ϕ, M |H ψ . Then for any L′,

⟨D, (Rr)r∈Rel, L
′, S⟩ |H ϕ.

Proof. We only discuss item 2. Suppose that the hypothesis holds, but for some labeling L′, ⟨D, (Rr)r∈Rel, L
′,∅⟩ |̸H ϕ. We

can take ρ, a ⃝k -pure instance of ϕ, such that ρ is obtained from ϕ replacing each nominal i by j, where L′(i) = L(j). By an
induction on the formula complexity, it is easy to see that (D, (Rr)r∈Rel, L,∅) |̸H ρ. This is a contradiction. �

With the help of Lemma 8, and since we showed that we can build named models from HL(@,⃝r ,⃝k)-MCSs, a wide
range of strong completeness results can be established (with the same proof as the one given in [7]).

Theorem 9. LetΠ be a set of pure formulas and let A be the axiomatization obtained by adding formulas inΠ as axioms to the
axiomatization shown in Fig. 1. Then, every A-consistent set of formulas is satisfiable in a countable named model in the class
defined byΠ .

Proof. Given a A-consistent set of formulasΩ , we can use the Extended Lindenbaum’s Lemma to extend it to a named and
pasted A-MCS Ω+. The named model MΩ that Ω+ gives rise to will satisfy Ω at Ω+. In addition, as every formula in Π
belongs to every A-MCS, we have that MΩ

|H Π . Therefore, by Lemma 8, MΩ is in the class of models defined byΠ . �

To finish this sectionwewill discuss an extension of the axiomatization presented above to characterizeHL∅(@,⃝r ,⃝k).

Theorem 10. The system obtained by extending the axiomatization in Fig. 1with the axiom (Empty) ⊢ ¬⃝k is sound and strongly
complete for HL∅(@,⃝r ,⃝k).

Proof. Soundness of Empty is obvious for the class of HL∅(@,⃝r ,⃝k)-models. The completeness proof is as the one for
HL(@,⃝r ,⃝k), but in addition, thanks to Empty, all maximal consistent sets∆i are such that ¬⃝k ∈ ∆i. Therefore, the final
model yielded by Γ , MΓ

= ⟨DΓ , (RΓr)r∈Rel, L
Γ , SΓ ⟩, is such that SΓ = ∅, and thus, it is a HL∅(@,⃝r ,⃝k)-model. �

Proposition 1. For the case of HL∅(@,⃝r ,⃝k), the result of adding Π , a set of pure formulas, can be extended to a set Π of
⃝k -pure formulas.

Proof. Trivial, using Lemma 8, and the same proof as in Theorem 9. �

4. Completeness for the erase and forget operators

We now turn to languages containing the ⃝e and ⃝f operators. We will first discuss completeness for HL(@,⃝r ,⃝e ,⃝k),
then for HL(@,⃝r ,⃝f ,⃝k), and finally for the language HL(@,⃝r ,⃝e ,⃝f ,⃝k).

4.1. Axiomatizing HL(@,⃝r ,⃝e ,⃝k)

We take as a starting point the axiomatization for HL(@,⃝r ,⃝k) presented in Fig. 1. The first thing we should notice is
that the Rem axiom is no longer sound. For example, take the valid formula @i⃝e (⃝k ∨ i) and use Rem to conclude @i⃝r⃝e⃝k .

2 These general completeness results are standard in hybrid logics (see [8]).

C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972 967

Axioms:
All the axioms from HL(@,⃝r ,⃝k) except Rem
Rem’ ⊢ @i(⃝rϕ ↔ ϕ⋆i)
Erase1 ⊢ ⃝e¬⃝k
Erase2 ⊢ ⃝e s ↔ s s ∈ Prop ∪ Nom
Erase3 ⊢ ⃝e¬p ↔ ¬⃝e p
Erase4 ⊢ ⃝e (p ∧ q) ↔ (⃝e p ∧ ⃝e q)
Erase5 ⊢ ⃝e ⟨r⟩p ↔ ⟨r⟩⃝e p
Erase6 ⊢ ⃝e@ip ↔ @i⃝e p
Erase7 ⊢ @i(⃝e⃝rϕ ↔ ⃝eϕ⋆i)
Rules:
All the rules from HL(@,⃝r ,⃝k)

Fig. 2. Axiomatization for HL(@,⃝r ,⃝e ,⃝k).

This is clearly a contradiction, since after wiping out the memory, ⃝k cannot be true. Observe that the problem lies in the
interaction between ⃝r and ⃝e . The replacement operation defined by Rem cannot be carried out throughout the whole
formula: it should avoid replacements within the scope of an ⃝e . More formally, for each formula ϕ and nominal iwe define
the formula ϕ⋆i as follows:

p⋆i = p p ∈ Prop ∪ Nom

⃝k ⋆i = ⃝k ∨ i
(¬ϕ)⋆i = ¬ϕ⋆i

(ϕ1 ∧ ϕ2)
⋆
i = ϕ1

⋆
i ∧ ϕ2

⋆
i

(⃝rϕ)⋆i = ⃝rϕ⋆i
(⟨r⟩ϕ)⋆i = ⟨r⟩ϕ⋆i
(@jϕ)

⋆
i = @jϕ

⋆
i

(⃝eϕ)⋆i = ⃝eϕ

Analogously to Lemma 1, we can use (·)⋆ to characterize the behavior of the ⃝r operator and its interaction with the ⃝e
operator.

Lemma 11. Let M be a model andw ∈ M such that M, w |H i. Then M, w |H ⃝rϕ iff M, w |H ϕ⋆i .

This result naturally suggests an axiom Rem’ (shown in Fig. 2) that replaces Rem. To characterize the ⃝e operator we
should notice first that it behaves globally and that it does not change the evaluation point. This implies that there is no
interaction between ⃝e and ¬,∧, ⟨r⟩ and @. To describe the interaction between ⃝e and ⃝r we can again make use of the
operation (·)⋆. The detailed axiomatization is in Fig. 2.

Soundness of this axiomatization is straightforward. The completeness proof uses the same techniques introduced in
Section 3. The proof of the Truth Lemma is carried out by induction in the complexity of the formula, and the new axioms
handle the case for ⃝e by appropriately reducing the complexity in order to use the inductive hypothesis, as it is done in
Lemma 6.

So now we can give the strong completeness result for HL(@,⃝r ,⃝e ,⃝k). The proof of this theorem follows exactly the
same technique used in Theorem 7.

Theorem 12 (Completeness for HL(@,⃝r ,⃝e ,⃝k)). Every MCS of formulas in HL(@,⃝r ,⃝e ,⃝k) is satisfiable in a countable
named model.

Since it is clear that Lemma 8 still holds in HL(@,⃝r ,⃝e ,⃝k), and the canonical model we built is named, it is easy to
see that one can also establish a stronger completeness result in terms of pure formulas for HL(@,⃝r ,⃝e ,⃝k), in the same
way as stated in Theorems 9 and 10.

Theorem 13 (Completeness for HL(@,⃝r ,⃝e ,⃝k)). LetΠ be a set of pure formulas and let A be the axiomatization obtained
by adding formulas in Π as axioms to the axiomatization shown in Fig. 2. Then, every A-consistent set of formulas is satisfiable
in a countable named model in the class defined byΠ .

4.2. Axiomatizing HL(@,⃝r ,⃝f ,⃝k)

Let us consider an axiomatization for HL(@,⃝r ,⃝f ,⃝k). The main complication, compared with the case we just
discussed, is that the ⃝f operator has a local behavior, and clearly depends on the point of evaluation. Hence, describing
its interaction with the ⃝r operator will be more involved. We will require two rewriting functions (·)r and (·)f . Using these
two functions, we can obtain a very simple axiomatization of HL(@,⃝r ,⃝f ,⃝k) (see Fig. 3).

968 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Axioms:
All the axioms from HL(@)
Rem ⊢ @i(⃝rϕ ↔ ϕr

i)

Forg ⊢ @i(⃝fϕ ↔ ϕ
f
i)

Rules:
All the rules from HL(@)

Fig. 3. Axiomatization for HL(@,⃝r ,⃝f ,⃝k).

For each formula ϕ ∈ HL(@,⃝r ,⃝f ,⃝k) and nominal i, we define the formula ϕr
i as follows:

pri = p p ∈ Prop ∪ Nom

⃝k r
i = (⃝k ∨ i)

(¬ϕ)ri = ¬ϕr
i

(ϕ1 ∧ ϕ2)
r
i = (ϕ1

r
i ∧ ϕ2

r
i)

(⃝rϕ)ri = ⃝rϕr
i

(⟨r⟩ϕ)ri = ⟨r⟩ϕr
i

(@jϕ)
r
i = @jϕ

r
i

(⃝fϕ)ri = ⃝f ((i → ϕ) ∧ (¬i → ϕr
i))

Lemma 14. For every pointed model (M, w) such that M, w |H i, and for all v ∈ M, M[+w], v |H ϕ iff M, v |H ϕr
i .

Proof. By induction on ϕ. For the base case, if ϕ is a proposition symbol or a nominal, say a, then since ari = a we have
M[+w], v |H a iff M, v |H a. For the ⃝k case we have to prove M[+w], v |H ⃝k iff M, v |H ⃝k ∨ i.
(⇒) Assume that M[+w], v |H ⃝k . If v = w, then M, v |H i, and therefore M, v |H ⃝k ∨ i. If v ≠ w, then M, v |H ⃝k ,

and hence M, v |H ⃝k ∨ i.
(⇐) Let us assume that M, v |H ⃝k ∨ i. If v = w, then M[+w], v |H ⃝k . On the other hand, if v ≠ w, then we know that

M[+w], v |H ¬i, and therefore M, v |H ⃝k . We conclude M[+w], v |H ⃝k .
Let us analyze the ϕ = ⃝fψ case. Suppose that v = w, therefore M[+w], w |H ⃝fψ iff M[+w,−w], w |H ψ iff

M[−w], w |H ψ iff (because M[−w], w |H i) M[−w], w |H (i → ψ) ∧ (¬i → ψ r
i) iff (by definition of ⃝f) M, w |H

⃝f ((i → ψ) ∧ (¬i → ψ r
i)). On the other hand, suppose w ≠ v. Therefore, M[+w], v |H ⃝fψ iff M[+w,−v], v |H ψ

iff (because v and w are different states) M[−v,+w,], v |H ψ iff (by inductive hypothesis) M[−v], v |H ψ r
i iff (because

M[−v], v |H ¬i) M[−v], v |H (i → ψ) ∧ (¬i → ψ r
i) iff (by definition of ⃝f) M, v |H ⃝f ((i → ψ) ∧ (¬i → ψ r

i)).
The conjunction, negation, diamond, @ and remember cases are straightforward, using the inductive hypothesis and the

fact that the translation from ϕ to ϕr
i distributes over ∧, ¬, ⟨r⟩, @ and ⃝r . �

Corollary 15. Let M by a model, andw ∈ M. Then M, w |H @i(⃝rϕ ↔ ϕr
i).

In the same way, we can define a formula ϕf
i to deal with the ⃝f case:

pfi = p p ∈ Prop ∪ Nom

⃝k f
i = (⃝k ∧ ¬i)

(¬ϕ)
f
i = ¬ϕ

f
i

(ϕ1 ∧ ϕ2)
f
i = (ϕ1

f
i ∧ ϕ2

f
i)

(⃝fϕ)fi = ⃝fϕf
i

(⟨r⟩ϕ)fi = ⟨r⟩ϕf
i

(@jϕ)
f
i = @jϕ

f
i

(⃝rϕ)fi = ⃝r ((i → ϕ) ∧ (¬i → ϕ
f
i))

Lemma 16. For every pointed model (M, w) such that M, w |H i, and for all v ∈ M, M[−w], v |H ϕ iff M, v |H ϕ
f
i .

Proof. By induction on ϕ. The only cases that are worth analyzing are ⃝k and ⃝rψ . The other cases are equivalent to the
proof of Lemma 14. For the ⃝k case we have to prove M[−w], v |H ⃝k iff M, v |H ⃝k ∧ ¬i.
(⇒) Assume that M[−w], v |H ⃝k . If v = w, this is absurd, so v ≠ w. Therefore M, v |H ⃝k , and hence M, v |H ⃝k ∧ ¬i.
(⇐) Let us assume that M, v |H ⃝k ∧ ¬i. If v = w, then M, v |H i, so this is absurd. Therefore v ≠ w, and then we know

that M[−w], v |H ⃝k , and therefore M[−w], v |H ⃝k ∧ ¬i.
Let us analyze the ϕ = ⃝rψ case. Suppose that v = w, therefore M[−w], w |H ⃝rψ iff M[−w,+w], w |H ψ

iff M[+w], w |H ψ iff (because M[+w], w |H i) M[+w], w |H (i → ψ) ∧ (¬i → ψ
f
i) iff (by definition of ⃝r)

C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972 969

M, w |H ⃝r ((i → ψ)∧ (¬i → ψ
f
i)). On the other hand, supposew ≠ v. Therefore,M[−w], v |H ⃝rψ iffM[−w,+v], v |H

ψ iff (because v and w are different states) M[+v,−w], v |H ψ iff (by inductive hypothesis) M[+v], v |H ψ
f
i iff (because

M[+v], v |H ¬i) M[+v], v |H (i → ψ) ∧ (¬i → ψ
f
i) iff (by definition of ⃝r) M, v |H ⃝r ((i → ψ) ∧ (¬i → ψ

f
i)). �

Corollary 17. Let M be a model, andw ∈ M. Then M, w |H @i(⃝fϕ ↔ ϕ
f
i).

Soundness of Rem and Forg in the axiomatization ofHL(@,⃝r ,⃝f ,⃝k) in Fig. 3 are a direct consequence of Corollaries 15
and 17.

To achieve completeness, we first have to give an adequate notion of complexity of formulas in such a way that the Truth
Lemma for this logic can be shown. As in Section 3, we look for a function comp : Forms → N such that comp(⃝rϕ) >
comp(ϕ[⃝k /(⃝k ∨ i)]). But in this setting, to account for the new axioms of Fig. 3, we have stronger restrictions: we need to
find a function such that comp(⃝rϕ) > comp(ϕr

i) and comp(⃝fϕ) > comp(ϕf
i). The complexity given in Definition 6 is not

suitable because the lengths of ϕr
i and ϕf

i are much larger than the length of ϕ. We next show some upper bounds for the
lengths of ϕr

i and ϕ
f
i and then we define a suitable complexity function.

Observe that some right-hand formulas in the definition of ϕr
i and ϕ

f
i are abbreviations of formulas using ∧ and ¬ as the

only boolean connectives. Having this in mind, it can easily be shown the following equalities concerning |ϕ|, the length of
a formula ϕ:

|(⃝fϕ)ri | = 15 + |ϕ| + |ϕr
r |

|(⃝rϕ)fi | = 15 + |ϕ| + |ϕ
f
i |

|(ϕ ∧ ψ)∗i | = 3 + |ϕ∗

i | + |ψ∗

i | for ∗ ∈ {r, f }
|(Ďϕ)∗i | = 1 + |ϕ∗

i | for Ď ∈ {¬, ⟨r⟩,@j} and ∗ ∈ {r, f }
|⃝k r

i | = 8

|⃝k f
i | = 6

It can be shown by induction in ϕ that max{|ϕr
i |, |ϕ

f
i |} ≤ (|ϕ| + 7)2. Let nr(ϕ) denote the nesting depth of ⃝r in the formula

ϕ, i.e. themaximumnumber of occurrences of⃝r along the paths of the syntactic tree of ϕ. In the sameway, let nf (ϕ) denote
the nesting depth of ⃝f in ϕ. Observe that nr(ϕ) = nr(ϕ

r
i) and nf (ϕ) = nf (ϕ

f
i).

Let c(ϕ) : Forms → R be defined as

c(ϕ) = 23(nr (ϕ)+nf (ϕ)) · log |ϕ|.

The readermay verify that c(⃝rϕ) > c(ϕr
i) and c(⃝fϕ) > c(ϕf

i). Furthermore, for all the subformulasψ of a formula ϕ, c(ψ)
is strictly increasing in |ψ |. Therefore, comp : Forms → N defined as

comp(ϕ) = 2c(ϕ)
= |ϕ|

23(nr (ϕ)+nf (ϕ))

is a suitable complexity function.
With the complexity function properly defined, strong completeness follows using the same techniques introduced in

Section 3. As in the case for HL(@,⃝r ,⃝e ,⃝k), it is easy to see that the result holds for any pure axiomatic extension.

Theorem 18 (Completeness for HL(@,⃝r ,⃝f ,⃝k)). LetΠ be a set of pure formulas and let A be the axiomatization obtained
by adding formulas in Π as axioms to the axiomatization shown in Fig. 3. Then, every A-consistent set of formulas is satisfiable
in a countable named model in the class defined byΠ .

4.3. Axiomatizing HL(@,⃝r ,⃝e ,⃝f ,⃝k)

Finally, putting together the ideas from the previous two axiomatizationsweobtain a sound and complete axiomatization
for HL(@,⃝r ,⃝e ,⃝f ,⃝k). The first step is to extend the definition of ϕr

i and ϕ
f
i to handle the case of ⃝e :

(⃝eϕ)ri = ⃝eϕ

(⃝eϕ)fi = ⃝eϕ

Note that Lemmas 14 and 16 still hold. Now we only need to add the axioms we used to characterize ⃝e with minor
changes. Observe that the complexity function defined in Section 4.2 is appropriate for this case also. The final axiomatization
is shown in Fig. 4.

Theorem 19 (Completeness for HL(@,⃝r ,⃝e ,⃝f ,⃝k)). Let Π be a set of pure formulas and let A be the axiomatization
obtained by adding formulas in Π as axioms to the axiomatization shown in Fig. 4. Then, every A-consistent set of formulas
is satisfiable in a countable named model in the class defined byΠ .

970 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Axioms:
All the axioms from HL(@)
Rem ⊢ @i(⃝rϕ ↔ ϕr

i)

Forg ⊢ @i(⃝fϕ ↔ ϕ
f
i)

Erase1 ⊢ ⃝e¬⃝k
Erase2 ⊢ ⃝e s ↔ s s ∈ Prop ∪ Nom
Erase3 ⊢ ⃝e¬p ↔ ¬⃝e p
Erase4 ⊢ ⃝e (p ∧ q) ↔ (⃝e p ∧ ⃝e q)
Erase5 ⊢ ⃝e ⟨r⟩p ↔ ⟨r⟩⃝e p
Erase6 ⊢ ⃝e@ip ↔ @i⃝e p
Erase′

7 ⊢ @i(⃝e⃝rϕ ↔ ⃝eϕr
i)

Erase8 ⊢ ⃝e⃝fϕ ↔ ⃝eϕ
Rules:
All the rules from HL(@)

Fig. 4. Axiomatization for HL(@,⃝r ,⃝e ,⃝f ,⃝k).

Axioms:
CT All classical tautologies
K[r] ⊢ [r](p → q) → ([r]p → [r]q)
Rem−

⊢ ⃝rϕ ↔ ϕ♯

Rules:
MP If ⊢ ϕ and ⊢ ϕ → ψ then ⊢ ψ
Gen[r] If ⊢ ϕ then ⊢ [r]ϕ
Sub If ⊢ ϕ then ⊢ ϕ[p/ψ] for any p ∈ Prop

Fig. 5. Axiomatization for ML−(⃝r ,⃝k).

5. The case for ML−(⃝r , ⃝k)

The last logic that we are going to discuss is ML−(⃝r ,⃝k). In the previous section we mentioned the importance of
nominals to describe the interaction between memory and modal operators. In this section we will show that if we restrict
ourselves to the logic in which we are constrained to remember the current state every time we make a modal transition,
it is possible to define a sound and complete axiomatization where nominals can be avoided. The key ingredient to do this
is that in this logic we can describe the interaction between ⃝r and ⃝k at a propositional level. This is not a coincidence.
Because this logic has the tree model property [3,4], we can assume that we evaluate ML−(⃝r ,⃝k)-formulas on trees, and
since there are no cycles, the remember operator has no real effect beyond the current state.

Given a formula ϕ, we define the formula ϕ♯ as the result of replacing all the occurrences of ⃝k that are in ϕ at modal
depth zero by ⊤. Formally:

p♯ = p p ∈ Prop
⃝k ♯ = ⊤

(¬ϕ)♯ = ¬ϕ♯

(ϕ1 ∧ ϕ2)
♯
= ϕ

♯

1 ∧ ϕ
♯

2
(⃝rϕ)♯ = ⃝rϕ♯

(⟨r⟩ϕ)♯ = ⟨r⟩ϕ

Lemma 20. M, w |H ⃝rϕ iff M, w |H ϕ♯.
Proof. We proceed by induction. The case for ⃝k , the propositional symbols and Boolean connectives are straightforward.
Weanalyze the other cases. For the caseϕ = ⃝rψ .M, w |H ⃝r⃝rψ iffM, w |H ⃝rψ iff (by inductive hypothesis)M, w |H ψ♯

iffM, w |H (ψ♯)♯ iff (by inductive hypothesis)M, w |H ⃝r (ψ♯) iffM, w |H (⃝rψ)♯. For the case ϕ = ⟨r⟩ψ .M, w |H ⃝r ⟨r⟩ψ
iff (by definition) M[w], w |H ⟨r⟩ψ iff (by definition of ⟨r⟩) there is a v ∈ M, Rr(w, v) such that M[w], v |H ψ iff (by
definition of ⟨r⟩) M, w |H ⟨r⟩ψ iff (by definition of ♯) M, w |H (⟨r⟩ψ)♯. �

The axiomatization for ML−(⃝r ,⃝k) (see Fig. 5) is an extension of the axiomatization for the basic modal logic [7], plus
the axiom Rem−

⊢ ⃝rϕ ↔ ϕ♯.
Soundness of Rem− follows from Lemma 20. Wewill prove completeness with respect to the class of acyclic models, and

therefore for the class of all models. We will use a step-by-step construction. I.e., instead of building the entire canonical
model, we will carry out a stepwise selection from MCSs of the canonical model of ML−(⃝r ,⃝k) as our basic building
blocks.3

3 Alternatively, one can take the standard canonical model and then unravel it to obtain a tree, and therefore acyclic, model.

C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972 971

We define Mc
= ⟨Dc, (Rc

r)r∈Rel, L
c, Sc⟩, the ML−(⃝r ,⃝k) canonical model, in the usual sense (see [7] for details). That

is, Dc is the set of all maximal consistent sets of formulas of ML−(⃝r ,⃝k), Rc
r (Γ ,∆) iff for all ϕ ∈ ∆, ⟨r⟩ϕ ∈ Γ , Γ ∈ Lc(p)

iff p ∈ Γ and Sc = {Γ | ⃝k ∈ Γ }.

Definition 8. A network N = ⟨N, (Rr)r∈Rel, v⟩ is a triple where N is a countable non-empty set of elements, each Rr is a
binary relation on N , and v is a function that maps elements in N to maximal consistent sets.

We say that a network is coherent if (C1)

r∈Rel Rr defines an acyclic graph and (C2) Rc
r (v(s), v(t)) for all s, t ∈ N such

that Rr(s, t). A network is saturated if whenever ⟨r⟩ψ ∈ v(s) for some s ∈ N , then there is a t ∈ N such that Rr(s, t) and
ψ ∈ v(t).

Wewant networks to play the role ofmodels, sowehave to check thatwehave imposed the right conditions on a network
to achieve this.

Definition 9. Let N = ⟨N, (Rr)r∈Rel, v⟩ be a network. We define the induced labeling LN (p) = {s ∈ N | p ∈ v(s)}, the
induced set of remembered states SN = {s ∈ N | ⃝k ∈ v(s)}, and the induced model MN = ⟨N, (Rr)r∈Rel, LN , SN ⟩.
FN = ⟨N, (Rr)r∈Rel⟩ is called the underlying frame of N .

We are now ready to prove a Truth Lemma.

Lemma 21 (Truth Lemma). Let N = ⟨N, (Rr)r∈Rel, v⟩ be a coherent and saturated network. Then, for all ϕ and s ∈ N,

MN , s |H ϕ iff ϕ ∈ v(s).

Proof. Before we prove this lemma, let us observe the following property: let M = ⟨D, (Rr)r∈Rel, L, S⟩ be an acyclic model,
and letw, v ∈ D be such that Rr(w, v). Then for all formulas ϕ, M[w], v |H ϕ iff M, v |H ϕ.

We now proceed by induction on ϕ. The propositional case, the ⃝k case and the Boolean cases are straightforward, given
the definition of MN . Let us suppose that MN , s |H ⃝rψ . This happens iff (by Lemma 20) MN , s |H ψ♯ iff (by the inductive
hypothesis) ψ♯

∈ v(s) iff (by Rem− axiom) ⃝rψ ∈ v(s).
The ⟨r⟩ case: for the left-to-right direction, ifMN , s |H ⟨r⟩ψ , then there exists t ∈ N such that Rr(s, t) andMN [s], t |H ψ .

Therefore,MN , t |H ψ . By inductive hypothesis,ψ ∈ v(t). Because the network is coherent, and Rr(s, t), then Rc
r (v(s), v(t)),

and we conclude ⟨r⟩ψ ∈ v(s). For the other direction, let us suppose that ⟨r⟩ψ ∈ v(s). Because the network is saturated,
there is a t ∈ N such that ψ ∈ v(t) and Rr(s, t). By the inductive hypothesis, MN , t |H ψ , so MN [s], t |H ψ , and therefore
by definition, MN , s |H ⟨r⟩ψ . �

Summing up, we have reduced the problem of finding a model for an MCS ∆ to a search for a coherent and saturated
network for ∆. The idea here is to start with a coherent network and, one step at a time, remove the defects that are
preventing the network from being saturated.

Definition 10. LetN be a network.We say thatN has a saturation defect if there is a node s ∈ N and a formula ⟨r⟩ψ ∈ v(s)
such that there is no t ∈ N such that R(s, t) and ψ ∈ v(t).

Because a coherent network may have saturation defects, we have to say more about what is the meaning of repairing a
defect. We are going to extend a network with a saturation defect with another where the defect is corrected.

Definition 11. LetN0 = ⟨N0, R0, v0⟩ andN1 = ⟨N1, R1, v1⟩ be twonetworks.We say thatN1 extendsN0 ifFN0 is a subframe
of FN1 and v0 agrees with v1 on N0.

The following lemma states that a saturation defect of a finite coherent network can always be repaired.

Lemma 22 (Repair Lemma). Let N be a finite and coherent network with a saturation defect. Then there is a network N ′

extending N without that defect.

Proof. Because N has a a saturation defect, there is a node s ∈ N and a formula ⟨r⟩ψ ∈ v(s) such that there is no t ∈ N ,
with Rr(s, t) and ψ ∈ v(t). We define N ′ as

N ′
= N ∪ {s′} with s′ ∉ N

R′
r = Rr ∪ {(s, s′)}
v′

= v ∪ {(s′,∆)}

where∆ is anMCS containingψ such that Rc
r (v(s),∆) (the existence of such∆ can be proved through an Existence Lemma

similar to Lemma 5). Clearly, N ′ is a coherent network extending N and does not have the previous defect. �

Now we can prove the desired strong completeness result. We start with a singleton network, and we extend it step by
step to a larger network using the Repair Lemma. We obtain the saturated network we want by taking the union of our
sequence of networks.

Theorem 23. The axiomatization is strongly complete with respect to the class of ML−(⃝r ,⃝k)models.

972 C. Areces et al. / Annals of Pure and Applied Logic 163 (2012) 961–972

Proof. Let S = {si | i ∈ ω}. Enumerate the potential saturation defects (the set S×Forms). Given a consistent setΣ , expand
it to an MCS Σ+. The initial network is N 0

= ⟨{s0},∅, (s0,Σ+)⟩, which is finite and coherent. Given a network N i, i ≥ 0,
where theminimal saturation defect is D, we define N i+1 as the extension of N i (following the Repair Lemma) without that
defect. If N i has no saturation defects, then N i+1

= N i. Let N ω
= ⟨N, (Rr)r∈Rel, v⟩ be:

N =

n∈ω

Nn Rr =

n∈ω

Rn
r v =

n∈ω

vn.

It is clear that N ω is saturated. Suppose this is not so; let d be the minimal saturation defect (with respect to the
enumeration) of N ω , say d = dk. By construction, there must be an approximation N i of N ω of which d is also a defect.
There only can be k defects that are less than d, so d will be repaired before the stage k + i of the construction. This is a
contradiction, so N ω is a coherent and saturated network, and therefore MN ω , s0 |H Σ . �

6. Conclusions

In this paper we presented several axiomatizations for some members of the memory logic family. We showed how
nominals can be an effective tool to achieve completeness: by allowing to describe the precise interaction between ⃝r and
⃝k we could give a completeness result for HL(@,⃝r ,⃝k). Small variations of this axiomatization leads us to completeness
results for other languages, as we showed for HL∅(@,⃝r ,⃝k) and HL(@,⃝r ,⃝e ,⃝k).

Our intentionwas to give the basic techniques to characterizememory operators using nominals, and not to exhaustively
list all possible languages. Observe that, for example, the logic HL−(@,⃝r ,⃝k) can be easily axiomatized by replacing the
Back axiom presented in Fig. 1 by ⊢ @i⟨r⟩@jϕ → @jϕ[⃝k /(⃝k ∨ i)] (and similarly with the Paste rule).

We also showed that nominals are not needed when we add constraints on how ⟨r⟩ interacts with ⃝r , giving a
completeness result for ML−(⃝r ,⃝k). The idea behind this result lies in the fact that ML−(⃝r ,⃝k) has the tree model
property and hence, we can describe the interaction between ⃝r and ⃝k at a propositional level, independently of the modal
operators.

We have not yet found suitable axiomatizations for certain memory logics. Languages without the tree model property,
and which do not have nominals seem to be particularly hard to axiomatize. For example, we have not yet been able to
devise complete axiomatizations for ML(⃝r ,⃝k) and ML−

∅
(⃝r ,⃝k).

Acknowledgement

Sergio Mera is partially supported by a grant of Fundación YPF.

References

[1] R. Alur, T. Henzinger, A really temporal logic, in: Journal of the ACM, IEEE Computer Society Press, 1989, pp. 164–169.
[2] C. Areces, Hybrid logics: the old and the new, in: Proceedings of LogKCA-07, San Sebastian, Spain, 2007, pp. 15–29.
[3] C. Areces, D. Figueira, S. Figueira, S. Mera, Expressive power and decidability for memory logics, in: Logic, Language, Information and Computation,

in: LNCS, vol. 5110, Springer, Berlin, Heidelberg, 2008, pp. 56–68.
[4] C. Areces, D. Figueira, S. Figueira, S. Mera, The expressive power of memory logics, The Review of Symbolic Logic 4 (2) (2011) 290–318.
[5] C. Areces, B. ten Cate, Hybrid logics, in: Blackburn et al. [9], pp. 821–868.
[6] P. Blackburn, Representation, reasoning, and relational structures: a hybrid logic manifesto, Logic Journal of the IGPL 8 (3) (2000) 339–625.
[7] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.
[8] P. Blackburn, M. Tzakova, Hybrid completeness, Logic Journal of the IGPL 6 (4) (1998) 625–650.
[9] P. Blackburn, F. Wolter, J. van Benthem (Eds.), Handbook of Modal Logics, Elsevier, 2006.

[10] J. Gerbrandy, Bisimulations on planet Kripke, Ph.D. Thesis, University of Amsterdam, iLLC Dissertation series DS-1999-01, 1999.
[11] E. Harel, O. Lichtenstein, A. Pnueli, Explicit clock temporal logic, in: Proceedings of LICS’90, 1990, pp. 402–413.
[12] T. Henzinger, Half-order modal logic: how to prove real-time properties, in: Proceedings of the Ninth Annual Symposium on Principles of Distributed

Computing, ACM Press, 1990, pp. 281–296.
[13] C. Lutz, The complexity of reasoning with concrete domains, Ph.D. Thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002.
[14] J. Plaza, Logics of public communications, in: 4th International Symposium on Methodologies for Intelligent Systems, 1989, pp. 201–216.
[15] J. van Benthem, Logics for information update, in: TARK’01: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge,

Morgan Kaufmann Publishers Inc., 2001, pp. 51–67.
[16] J. van Benthem, J. van Eijck, B. Kooi, Logics of communication and change, Information and Computation 204 (11) (2006) 1620–1662.
[17] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic, Kluwer academic publishers, 2007.

	Completeness results for memory logics
	Modal logics with memory
	Syntax and semantics of memory logics
	Completeness for HL(@,r r, k k)
	Completeness for the erase and forget operators
	Axiomatizing HL(@,r r,e e,k k)
	Axiomatizing HL(@,r r,f f,k k)
	Axiomatizing HL(@,r r,e e,f f,k k)

	The case for ML-(r r, k k)
	Conclusions
	Acknowledgement
	References

