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We study the deconfinement and chiral restoration transitions in the context of non-local PNJL models,
considering the impact of the presence of dynamical quarks on the scale parameter appearing in the
Polyakov potential. We show that the corresponding critical temperatures are naturally entangled for
both zero and imaginary chemical potential, in good agreement with lattice QCD results. We also analyze
the Roberge–Weiss transition, which is found to be first order at the associated endpoint.
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The detailed understanding of the behavior of strongly interact-
ing matter at finite temperature and baryon density represents an
issue of great interest in particle physics [1]. From the theoreti-
cal point of view, this problem can be addressed through lattice
QCD calculations [2–4], which have been significantly improved in
the last years. However, this ab initio approach is not yet able to
provide a full understanding of the QCD phase diagram. One well-
known difficulty is given by the so-called sign problem, which
arises when dealing with finite real chemical potentials. Thus, it
is worth to develop alternative approaches, such as the study of
effective models that show consistency with lattice QCD results
and can be extrapolated into regions not accessible by lattice tech-
niques. One of these effective theories, proposed quite recently, is
the so-called Polyakov–Nambu–Jona-Lasinio (PNJL) model [5–11],
an extension of the well-known NJL model [12] in which quarks
are coupled to the Polyakov loop (PL), providing a common frame-
work to study both the chiral and deconfinement transitions. As a
further improvement over the (local) PNJL model, extensions that
include covariant non-local quark interactions have also been con-
sidered [13–15]. The non-local character of the interactions arises
naturally in the context of several successful approaches to low-
energy quark dynamics, and leads to a momentum dependence in
the quark propagator that can be made consistent [16] with lattice
results. It has been shown [17–20] that non-local models provide
a satisfactory description of hadron properties at zero tempera-
ture and density. Moreover, it has been found that, under certain
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conditions, it is possible to derive the main features of non-local
PNJL models starting directly from QCD [21]. Related Polyakov–
Dyson–Schwinger equation models have also been recently con-
sidered [22].

The aim of the present work is to analyze the relation between
the deconfinement and chiral restoration transitions at both zero
and imaginary chemical potential μ in the context of non-local
chiral quark models. One of the problems of the standard (local)
PNJL model is that once the PL potential is adjusted to repro-
duce the pure gauge lattice QCD results, it is found [8] that the
critical temperature for the chiral and deconfinement transitions
at vanishing chemical potential, Tc ≈ 220 MeV, is somewhat too
high in comparison with the presently most accepted lattice re-
sult, namely Tc = 173(8) MeV for two light flavors [4]. A solution
to this difficulty follows from the observation made in the con-
text of the Polyakov quark–meson model [23], where it is claimed
that in the presence of dynamical quarks one should decrease the
parameter T0 which sets the scale of the PL potential. However,
in contradiction to lattice results, in the PNJL model this sort of
rescaling leads to a rather noticeable splitting between the de-
confinement and chiral restoration temperatures. This splitting can
be avoided only after the inclusion of extra eight-quark interac-
tions [24], or by assuming that the quark–quark coupling constant
is some ad hoc function of the Polyakov loop [25]. Here we show
that in the case of the non-local SU(2) PNJL model the critical
temperature can be made naturally compatible with lattice QCD
estimates, without spoiling the entanglement between deconfine-
ment and chiral restoration transition temperatures even for imag-
inary chemical potential. It should be stressed that the extension
to imaginary chemical potential deserves significant theoretical in-
terest, since lattice calculations [26–28] become free of the sign
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problem and the corresponding results can be compared with ef-
fective model predictions. Moreover, the behavior in the region of
imaginary chemical potential is expected to have implications on
the QCD phase diagram at finite real values of μ. Lattice calcula-
tions, as well as analyzes based on the exact renormalization group
equations [29], suggest a close relation between the deconfinement
and chiral restoration transitions for imaginary chemical potentials.
Thus, we extend our study of these transitions to the region of
imaginary μ, where we also analyze the characteristics of the so-
called Roberge–Weiss (RW) transition [30], in particular, at the RW
endpoint.

Let us briefly describe the model under consideration, namely
a non-local SU(2) chiral quark theory that includes couplings to
a background color gauge field. The Euclidean effective action is
given by [31]

S E =
∫

d4x

{
ψ̄(x)(−iγμDμ + m̂)ψ(x)

− G S

2

[
ja(x) ja(x) − j P (x) j P (x)

] + U
(
Φ

[
A(x)

])}
, (1)

where ψ is the N f = 2 fermion doublet ψ ≡ (u,d)T , m̂ = mq12×2
is the current quark mass matrix in the isospin limit, and Dμ ≡
∂μ − i Aμ is a covariant derivative, Aμ being color gauge fields. The
non-local currents ja(x), j P (x) are given by

ja(x) =
∫

d4z G(z)ψ̄

(
x + z

2

)
Γaψ

(
x − z

2

)
,

j P (x) =
∫

d4z F (z)ψ̄

(
x + z

2

)
i
←→
/∂

2κp
ψ

(
x − z

2

)
, (2)

where Γa = (1, iγ5 �τ ), and the functions F (z) and G(z) are non-
local form factors that characterize the interactions. Notice that
even if we take for convenience the same coupling parameter G S

for both interaction terms, the relative strength between them is
controlled by the mass parameter κp .

To proceed we perform a standard bosonization of the the-
ory, introducing bosonic fields σ1,2(x) and πa(x), and integrating
out the quark fields. We will work within the mean field ap-
proximation (MFA), in which these bosonic fields are replaced
by their vacuum expectation values σ1,2 and πa = 0. Since we
are interested in studying the characteristics of the chiral phase
transition, we extend the bosonized effective action to finite tem-
perature T and chemical potential μ. This can be done by using
the Matsubara formalism. Concerning the gauge fields Aμ , we as-
sume that quarks move on a constant background field φ = A4 =
i A0 = igδμ0Gμ

a λa/2, where Gμ
a are the SU(3) color gauge fields.

Then the traced Polyakov loop, which in the infinite quark mass
limit can be taken as order parameter of confinement, is given
by Φ = 1

3 Tr exp(iφ/T ). We will work in the so-called Polyakov
gauge, in which the matrix φ is given a diagonal representation
φ = φ3λ3 + φ8λ8. This leaves only two independent variables, φ3
and φ8. The mean field traced Polyakov loop reads then

Φ = 1

3

[
exp

(
− 2i√

3

φ8

T

)
+ 2 exp

(
i√
3

φ8

T

)
cos

(
φ3

T

)]
. (3)

Within this framework the mean field thermodynamical poten-
tial ΩMFA at finite temperature and arbitrary (in general, complex)
chemical potential is given by

ΩMFA = −4T
∑

c=r,g,b

∞∑
n=−∞

∫
d3 �p

(2π)3
ln

[
(ρc

n,�p)2 + M2(ρc
n,�p)

Z 2(ρc
n,�p)

]

+ σ 2
1 + κ2

p σ 2
2 + U

(
Φ,Φ∗, T

)
. (4)
2G S
Here, M(p) and Z(p) are given by

M(p) = Z(p)
[
mq + σ1 g(p)

]
, Z(p) = [

1 − σ2 f (p)
]−1

, (5)

where g(p) and f (p) are Fourier transforms of G(z) and F (z). We
have also defined
(
ρc

n,�p
)2 = [

(2n + 1)π T − iμ + φc
]2 + �p2, (6)

where the quantities φc are given by the relation φ = diag(φr, φg,

φb), i.e. φr = φ3 + φ8/
√

3, φg = −φ3 + φ8/
√

3, φb = −2φ8/
√

3.
To proceed we need to specify the explicit form of the Polyakov

loop effective potential U (Φ,Φ∗, T ). Following Ref. [9] we take

U
(
Φ,Φ∗, T

) =
{
−1

2
a(T )ΦΦ∗ + b(T ) ln

[
1 − 6ΦΦ∗ + 4Φ3

+ 4
(
Φ∗)3 − 3

(
ΦΦ∗)2]}

T 4, (7)

where the coefficients are parameterized as

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

. (8)

The values of ai and b3 are fitted [9] to lattice QCD results, which
in absence of dynamical quarks lead to a deconfinement temper-
ature T0 ≈ 270 MeV. However, as mentioned above, it has been
argued [23] that in the presence of light dynamical quarks this
value has to be modified accordingly, e.g. T0 
 208 MeV for N f = 2
and T0 
 180 MeV for N f = 3. Effects of this change in T0 will be
discussed below. In addition, it is seen that ΩMFA turns out to be
divergent, thus it has to be regularized. Here we use the same pre-
scription as e.g. in Ref. [32], namely

ΩMFA
reg = ΩMFA − Ω free + Ω free

reg + Ω0, (9)

where Ω free is obtained from Eq. (4) by setting σ1 = σ2 = 0, and
Ω free

reg is the regularized expression for the quark thermodynamical
potential in the absence of fermion interactions:

Ω free
reg = −4T

∫
d3 �p

(2π)3

×
∑

c=r,g,b

∑
s=±1

Re ln

{
1 + exp

[
−εp + s(μ + iφc)

T

]}
, (10)

with εp =
√

�p2 + m2
q . The last term in Eq. (9) is just a constant

fixed by the condition that ΩMFA
reg vanishes at T = μ = 0.

The mean field values σ1,2 and φ3,8 can be obtained from a set
of four coupled “gap” equations that follow from the minimization
of the regularized thermodynamical potential,

∂ΩMFA
reg

∂σ1
= ∂ΩMFA

reg

∂σ2
= ∂ΩMFA

reg

∂φ3
= ∂ΩMFA

reg

∂φ8
= 0. (11)

Once the mean field values are obtained, the behavior of other
relevant quantities as functions of the temperature and chem-
ical potential can be determined. We concentrate in particu-
lar in the chiral quark condensate 〈q̄q〉 = ∂ΩMFA

reg /∂mq , which
together with the modulus of the Polyakov loop |Φ| will be
taken as order parameters of the chiral restoration and decon-
finement transitions, respectively. For simplicity, the associated
susceptibilities will be defined as χcond = d〈q̄q〉/dT and χP L =
d|Φ|/dT .

In order to fully specify the model under consideration we have
to fix the model parameters as well as the form factors g(q) and
f (q) that characterize the non-local interactions. Here we consider
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Fig. 1. Order parameters for the deconfinement and chiral restoration transitions
(upper panel) and the corresponding susceptibilities (lower panel) as functions of
T for three characteristic values of T0, namely T0 = 270, 208 and 180 MeV. Curves
correspond to set C.

three parameter sets A, B and C, which have been introduced in
Ref. [16]. Set A corresponds to the relatively simple case in which
there is no wave function renormalization (WFR) of the quark
propagator, i.e. f (p) = 0, Z(p) = 1, and g(p) has a Gaussian be-
havior, g(p) = exp(−p2/Λ2

0). In set B we consider a more general
case that includes quark WFR, taking also an exponential shape
for the corresponding form factor, f (p) = exp(−p2/Λ2

1). Finally, in
set C we take Lorentzian-like form factors, chosen in such a way
that one can well reproduce the momentum dependence of mass
and WFR functions obtained in lattice calculations. The parameter
values for sets A, B and C, together with the corresponding predic-
tions for several meson properties, can be found in Ref. [16].

Let us analyze the deconfinement and chiral transitions at van-
ishing chemical potential in the framework of the model presented
above. Taking T0 as a parameter, and solving numerically Eqs. (11)
for sets A, B and C, it is found that both the deconfinement and
chiral restoration temperatures are coincident in a wide range of
values of T0. This is illustrated in Fig. 1, where we show the
behavior of the relevant order parameters and the corresponding
susceptibilities for the lattice inspired parameterization set C. We
consider three characteristic values T0 = 270, 208 and 180 MeV,
corresponding to the presence of 0, 2 and 3 dynamical fermions,
respectively [23]. It is clear that for this set both transitions are
crossover-like, and they occur at basically the same critical tem-
perature, as it is indicated by the peaks of the corresponding
susceptibilities. It is interesting to notice that, in agreement with
recent lattice results with physical quark masses [33], the rise of
the Polyakov loop with the temperature appears to be smoother
than that obtained in local models. One might notice that as long
as T0 decreases χcond tends to become asymmetric around Tc , be-
ing somewhat broader on the high temperature side. Though this
could be considered as an indication that for smaller values of T0
Fig. 2. Critical temperature as a function of T0 for our parameter sets A, B and C.
Solid and dashed lines stand for first order and crossover-like transitions, respec-
tively. Note that below T0 ∼ 190 MeV the curves for sets B and C almost overlap.
However, while for set B the transition in that region is first order (solid line), for
set C it is crossover-like (dashed line).

chiral symmetry is restored at a slightly higher temperature, even
at T0 = 180 MeV the splitting between the main peak and what
might be considered as a second broad peak is less than 10 MeV.
In addition, it is worth to point out that although the coincidence
of the deconfinement and chiral restoration critical temperatures
holds for all three parameter sets A, B and C, the character of
the transitions may be different from one another. This is shown
in Fig. 2, where we plot the values of the critical temperatures
as functions of T0 for sets A, B and C. We see that for set A,
which does not include WFR, the transition becomes a first or-
der one for values of T0 below 
 235 MeV. On the other hand,
for the exponential parameterization with WFR, set B, this hap-
pens at a lower value T0 
 180 MeV. Finally, as already mentioned,
for the lattice inspired parameterization set C the transitions are
crossover-like for all considered values of T0. It should be stressed
that for T0 = 208 MeV (corresponding to our N f = 2 model) the
resulting critical temperatures are in good agreement with lattice
QCD estimates. Indeed, we get Tc(0) = 173, 171 and 173 MeV for
sets A, B and C, respectively. It is important to remark that the
nature of deconfinement and chiral restoration transitions for two
light flavors in lattice QCD is still under debate. While most stud-
ies [34–38] favor a second order transition in the chiral limit, there
are also claims for a first order transition [39,40]. Given that in the
context of the present non-local model the parameterizations that
include WFR appear to be more realistic, the second order sce-
nario turns out to be preferred. It is also worth to mention that
in the standard Pisarski–Wilczek scenario the order of the phase
transition for two flavor QCD is closely related with the fate of the
anomaly at the transition point [41].

We consider now the situation at nonzero imaginary chemical
potential. As it is well known, Roberge and Weiss found [30] that
the thermodynamical potential of QCD in presence of an imagi-
nary chemical potential μ = iθT is a periodic function of θ with
period 2π/3. This means that QCD is invariant under a combi-
nation of a Z3 transformation of the quark and gauge fields and
a shift θ → θ + 2kπ/3, with integer k, in the chemical poten-
tial. Recently, it has been shown that this so-called extended Z3
transformation is also a symmetry of the local Polyakov–Nambu–
Jona-Lasinio model [42]. Indeed, in the context of this model the
thermodynamical potential is invariant under the transformations
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Φ(θ) → Φ(θ)exp(−i2kπ/3),

Φ∗(θ) → Φ∗(θ)exp(i2kπ/3), θ → θ + 2kπ/3. (12)

The RW periodicity is a remnant of the Z3 symmetry in the pure
gauge limit. In QCD with dynamical quarks, if the temperature is
larger than a certain value T RW it can be seen that three Z3 vacua
appear. These vacua can be classified through their Polyakov loop
phases, given by ϕ , ϕ + 2π/3 and ϕ + 4π/3. Roberge and Weiss
showed that for T > T RW there is a first order phase transition
at θ = π/3 mod 2π/3, in which the vacuum jumps to one of
its Z3 images. This is known as the “Roberge–Weiss transition”,
and the point at the end of the RW transition line in the (T , θ)

plane, i.e. (T , θ) = (T RW ,2π/3), is known as the “RW endpoint”.
The order of the RW transition at the RW endpoint has been sub-
ject of considerable interest recently in the framework of lattice
QCD [43–46] due to the implications it might have on the QCD
phase diagram a finite real μ. According to lattice calculations, it
appears that for two light flavors the RW endpoint is first order
for realistically small values of the current quark mass. Following
these considerations it is important to check whether the thermo-
dynamical potential of the non-local PNJL models studied in this
work does respect the extended Z3 symmetry. In fact, it is easy to
show that this is the case. The last two terms in Eq. (4) are ob-
viously invariant under the transformations in Eq. (12), whereas
to check the invariance of the first term it is convenient to write
these transformations in the equivalent way

φ3(θ) → φ3(θ), φ8(θ) → φ8(θ) − 2kπ T /
√

3,

θ → θ + 2kπ/3. (13)

Thus it can be easily proven that any sum of the form∑
c=r,g,b F [(ρc

n,�p)2], where F is an arbitrary function, turns out
to be invariant under the extended Z3 transformations. The invari-
ance of the terms introduced in the regularization procedure [cf.
Eq. (9)] can be shown in the same way.

Having checked that our non-local PNJL models possess the ex-
tended Z3 invariance we turn now to the results of the numerical
analysis of the behavior of the different order parameters as func-
tions of T and θ using the value T0 = 208 MeV corresponding
to two light flavors. We first keep T fixed, verifying that the ex-
pected periodicity of the different thermodynamical quantities as
functions of θ is indeed satisfied. Moreover, for T > T RW we find
the mentioned RW first order phase transition at θ = π/3, which
is signalled by a discontinuity in the phase of the Polyakov loop
field. The values obtained for T RW are 191 MeV, 188 MeV and
191 MeV for sets A, B and C, respectively, in good agreement with
the lattice QCD estimate T RW = 185(9) [28]. Concentrating on the
sector 0 � θ � π/3 we observe that for values of the temperature
Tc(θ = 0) � T � T RW the order parameters for both deconfine-
ment and chiral symmetry show signals of a phase transition at
a given value of θ . This is clearly seen in Fig. 3 where we plot
the behavior of order parameters and susceptibilities as functions
of T taking now θ fixed at two representative values θ = π/6
and π/3. The plots correspond to parameter set C. We note that
while for θ = π/6 both deconfinement and chiral restoration are
crossover-like, they are first order for θ = π/3. As in the case of
θ = 0 (see the curves corresponding to T0 = 208 MeV in Fig. 1),
for both values of θ the deconfinement and chiral restoration
transitions occur at the same temperature, given by the peaks
of the susceptibilities or the positions of the discontinuities. Al-
though one might argue that there is a certain tendency of the
chiral susceptibility to decay more slowly or even, in the case
of θ = π/3, to display a very broad peak on the high tempera-
ture side, one can hardly conclude that both transitions apart from
Fig. 3. Order parameters for the deconfinement and chiral restoration transitions
(upper panel) and corresponding susceptibilities (lower panel) as functions of T for
θ = π/6 and θ = π/3. Curves correspond to set C.

each other more than about 20 MeV, even for θ = π/3. The sit-
uation is quite similar for parameter set B (which also includes
WFR), whereas for set A one gets just first order transitions for all
values of θ in the range of temperatures considered. The depen-
dence of the critical temperature Tc as a function of θ is shown
in Fig. 4 for our three parameter sets. For comparison, we also
show the corresponding lattice results given in Ref. [28], which
include an error of about 10% due to the uncertainty in the lat-
tice determination of Tc(θ = 0). As already mentioned, while for
set A both the deconfinement and chiral restoration transitions are
always first order, in the case of sets B and C there is a criti-
cal value θC E P ∼ 0.7 × π/3 below which the transitions become
crossover-like. Thus, we find that for all three parameterizations
the corresponding transition lines are first order when they meet
the RW endpoint. This implies that the RW endpoint is a triple
point, the RW transition being also first order there. The character
of the RW transition at the RW endpoint is clearly seen in Fig. 5,
where we plot the behavior of the phase of the extended Polyakov
loop Ψ at θ = π/3 as a function of T (the figure corresponds to
set C). The extended Polyakov loop, defined by Ψ = exp(iθ)Φ , is by
construction invariant under the transformations in Eq. (12), and
its phase ψ can be taken as order parameter of the RW transi-
tion [42].

Finally, it is interesting to analyze the behavior of χcond =
d〈q̄q〉/dT in comparison with that of the more conventional chi-
ral susceptibility χch = d〈q̄q〉/dmq . Following Refs. [22–25] we have
so far, for simplicity, used the first one. However, as argued in
Ref. [47], different observables might behave differently in the
crossover region. In fact, especially at real finite chemical poten-
tial, the μ dependence of the splittings between the transition
temperatures obtained from different observables might serve as
an indicator of the existence and location of a critical end point
(CEP). To illustrate our results we display in Fig. 6 the behavior of
χcond, χch and χΦ for the case of set C, considering temperature
ranges of 30 MeV around the position of the corresponding peaks.
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Fig. 4. Critical temperature as a function of θ for parameter sets A (left), B (center) and C (right). Solid and dashed lines stand for first order and crossover-like transitions,
respectively. Dots correspond to lattice QCD results. Vertical solid lines correspond to the first order RW transition.
Fig. 5. Phase of the extended Polyakov loop Ψ = exp(iθ)Φ as a function of T for
θ = π/3. Curves correspond to set C.

We take several representative values for the chemical potential,
in the regions of both imaginary and real μ. As in the case of the
model with T0 = 270 MeV, previously studied in Ref. [31], one also
finds a CEP in the region of finite real chemical potential. For T0 =
208 MeV this point is located at (μ, T ) = (213 MeV,140 MeV),
while in the imaginary μ region the value of θCEP given above
leads to a CEP located at (μ, T ) = (132i MeV,180 MeV). The upper
left panel and the lower right panel in Fig. 6 correspond to values
of μ close to these critical endpoints. In general, though not dis-
tinguishable in the figure, after a detailed analysis one can find
small differences in the positions of the peaks of the susceptibil-
ities. At μ = 0 the peak of χcond is found to be about 0.02 MeV
above that of χch, while the peak of χΦ is located 0.05 MeV be-
low. These values are only a few times larger than our numerical
uncertainty, that we estimate to be about 0.01 MeV. As one gets
into the region of finite real μ we first observe an enhancement
of the splittings. This happens up to μ 
 130 MeV, where we find
that the peaks of χcond and χΦ are located about 0.06 MeV and
0.20 MeV below that of χch, respectively. However, as μ increases
further towards the CEP we find that the splittings get reduced,
a behavior that can be taken as a signal of the presence of the
CEP. For example, at μ = 180 MeV the splittings get reduced by a
factor of 1/3 in comparison with the values at μ = 130 MeV, and
already at μ = 210 MeV (i.e. 3 MeV below the CEP) we find that
both splittings vanish within our level of uncertainty. In the re-
gion of imaginary chemical potential we find that the separations
between the peaks of the different susceptibilities always decrease
from their values at μ = 0, and once again become zero as one ap-
proaches the corresponding CEP. We have also performed the anal-
ysis for the simpler exponential parameterization set B. Though in
this case the splittings are even smaller than in the case of set C,
the faster convergence of the integrals and sums allows a better
numerical precision. The behavior of the splittings as functions of
μ is qualitatively similar to the one described above, both in the
real and imaginary chemical potential regions. In particular, they
vanish as one approaches the critical endpoints. Finally, we no-
tice that in the region of imaginary chemical potential the already
mentioned tendency of the peaks of χcond to become broader in
the high temperature side is somewhat stronger in the case of the
chiral susceptibility. In fact, χch shows a widening that includes a
second low, broad peak. The separation between this second peak
and the main peak is found to be about 14 MeV in the vicinity
of the CEP, becoming smaller as μ approaches to zero (e.g. both
peaks are separated by 11 MeV and 7 MeV for μ = 100i MeV and
μ = 50i MeV, respectively). The second broad peak in χch is not
observed in the region of real μ (see figure).

In summary, we have considered the impact of the feedback
of the dynamical quarks on the parameter T0 appearing in the
Polyakov potential, as proposed in Ref. [23]. This has been done
here in the context of non-local PNJL models, considering three dif-
ferent types of non-local form factors. We have studied the decon-
finement and chiral restoration transitions, determining the corre-
sponding critical temperatures and the character of the transitions.
The results are found to be in agreement with those obtained in
lattice QCD, showing a strong entanglement between both criti-
cal temperatures for zero and imaginary chemical potential. In our
context this arises as a consequence of the natural dependence
of effective quark interactions on the Polyakov loop through the
appearance of the background color field in the argument of non-
local form factors. The determination of the critical temperatures
in the crossover region has been carried out by analyzing different
susceptibilities. It is seen that in general there is a small splitting
between the positions of the corresponding peaks, which tends to
vanish as one approaches the critical endpoints, both in the re-
gion of real and imaginary chemical potential. Finally, we have also
analyzed the Roberge–Weiss transition, which is found to be first
order at the RW endpoint for all three parameter sets.
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Fig. 6. Behavior of the susceptibilities χch, χcond [normalized to the condensate at T = μ = 0, 〈q̄q〉0 = −(326 MeV)3] and χΦ as functions of the temperature, for different
representative values of the chemical potential. Results correspond to set C.
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