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1. Introduction

In finite dimension, the Lagrangian Grassmannian Λ(n) of the Hilbert space H = Rn
× Rn with the canonical complex

structure J(x, y) = (−y, x) was introduced by V.I. Arnold in 1967 [1]. These notions have been generalized to infinite
dimensional Hilbert spaces (see [2]) and have found several applications to Algebraic Topology, Differential Geometry and
Physics.

In classical finite dimensional Riemannian theory it is well-known the fact that given two points there is a minimal
geodesic curve that joins them and this is equivalent to the completeness of the metric space with the geodesic distance;
this is the Hopf–Rinow theorem. In the infinite dimensional case this is no longer true. In [3] and [4], McAlpin and Atkin
showed in two examples how this theorem can fail.
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In [5] E. Andruchow and G. Larotonda introduced a linear connection in the Lagrangian Grassmannian and focused on
the geodesic structure of this manifold. There they proved that any two Lagrangian subspaces can be joined by a minimal
geodesic.

In this paper we study a restricted version of the Lagrangian Grassmannian given by the action of the Hilbert–Schmidt
symplectic group. We will focus on the geometric study and we will discuss which metric can be defined in each tangent
space and which geometric properties it verifies. In particular we will find the geodesic curves of this structure and we will
describe it in terms of exponentials of operators, moreover we will study the completeness of the geodesic distance. If we
identify theHilbert–Schmidt Lagrangian Grassmannianwith a quotient of the Hilbert–Schmidt symplectic group it is natural
to consider the quotient norm in the tangent spaces. The principal goal of this paper is to prove that the Hilbert–Schmidt
Lagrangian Grassmannian is a complete metric space with the geodesic distance when we use this metric.

The case of the Fredholm Lagrangian Grassmannian of an infinite dimensional symplectic Hilbert space H , modeled on
the space of compact operators, was studied by J.C.C. Eidam and P. Piccione in [6]. See also the paper by A. Abbondandolo
and P. Majer [7] for the general theory of infinite dimensional Grassmannians, and the book by G. Segal and A. Pressley for
further references on the subject [8].

2. Background and definitions

In this paper we will focus in another Grassmannian, descripted using charts modeled on the algebra of Hilbert–Schmidt
operators. We will consider the transitive action of the reduced (Hilbert–Schmidt) symplectic group on our Grassmannian.
We will show that there exist smooth cross sections for this action. In [7] the authors built local cross sections using the
polar decomposition of the sum of two symmetries. Here, wewill use the polar decomposition of another auxiliary element.
Since both formulas coincide the local sections are the same, but our formulation allows for an easier verification of the fact
that the local sections fall into the unitary group U2(HJ) = {u ∈ U(H) : uJ = Ju and u − 1 is a Hilbert–Schmidt operator}.
In this setting, it will be possible to study Riemannian metrics related to the infinite trace of H .

To begin with, we will follow the notation and definitions of [9], so first we recall some of those. Let H be an infinite
dimensional real Hilbert space and let B(H) be the space of bounded operators. Denote by B2(H) the Hilbert–Schmidt
class

B2(H) =

a ∈ B(H) : Tr(a∗a) < ∞


where Tr is the usual trace in B(H). This space is a Hilbert space with the inner product

⟨a, b⟩ = Tr(b∗a).

The norm induced by this inner product is called the 2-norm and denoted by

∥a∥2 = Tr(a∗a)1/2,

the usual operator norm will be denoted by ∥ ∥.
If A ⊂ B(H) is any subset of operators we use the subscript s (resp as) to denote the subset of symmetric (resp. anti-

symmetric) operators of it, i.e. As = {x ∈ A : x∗
= x} and Aas = {x ∈ A : x∗

= −x}.
We fix a complex structure; that is a linear isometry J ∈ B(H) such that,

J2 = −1 and J∗ = −J.

The symplectic formw is given byw(ξ, η) = ⟨Jξ, η⟩. We denote by GL(H) the group of invertible operators and by Sp(H)
the subgroup of invertible operators which preserve the symplectic form, that is g ∈ Sp(H) if w(gξ, gη) = w(ξ, η).
Algebraically

Sp(H) =

g ∈ GL(H) : g∗Jg = J


.

This group is a Banach–Lie group (see [9]) and its Banach–Lie algebra is given by

sp(H) =

x ∈ B(H) : xJ = −Jx∗


.

Denote by HJ the Hilbert space H with the action of the complex field C given by J , that is; if λ = λ1 + iλ2 ∈ C and ξ ∈ H
we can define the action as λξ := λ1ξ + λ2Jξ and the complex inner product as ⟨ξ, η⟩C = ⟨ξ, η⟩ − iw(ξ, η).

Let B(HJ) be the space of bounded complex linear operators in HJ . A straightforward computation shows that B(HJ)
consists of the elements of B(H)which commute with J .

Following the notation of [9], we consider the Hilbert–Schmidt subgroup of Sp(H)

Sp2(H) = {g ∈ Sp(H) : g − 1 ∈ B2(H)} .

There it was proved that this group has a differentiable structure modeled on B2(H). Some of the this facts have been
well-known for general Schatten ideals, more precisely the Banach–Lie group structure was noted in the book [10]. The Lie
algebra of Sp2(H) is

sp2(H) =

x ∈ B2(H) : xJ = −Jx∗


.
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The Lagrangian GrassmannianΛ(H) is the set of closed linear subspaces L ⊂ H such that J(L) = L⊥. Clearly Sp(H) acts
onΛ(H) by means of g.L = g(L). Since the action of the unitary group U(HJ) is transitive onΛ(H) (see [11] Theorem 3.5),
it is clear that the action of Sp(H) is also transitive onΛ(H), so we can think ofΛ(H) as an orbit for a fixed L0 ∈ Λ(H), i.e.

Λ(H) = {g(L0) : g ∈ Sp(H)}.

We denote by PL ∈ B(H) the orthogonal projection onto L. It is customary to parametrize closed subspaces via orthogonal
projections, L ↔ PL, in order to carry on geometric or analytic computations. We shall also consider here an alternative
description of the Lagrangian subspaces using projections and symmetries. That is, L is a Lagrangian subspace if and only if
PLJ + JPL = J , see [2] for a proof. Another description of this equation using symmetries is ϵLJ = −JϵL, where ϵL = 2PL − 1
is the symmetric orthogonal transformation which acts as the identity in L and minus the identity in L⊥.

The isotropy subgroup at L is

Sp(H)L = {g ∈ Sp(H) : g(L) = L}.

It is obvious that this subgroup is a closed subgroup of Sp(H). In the infinite dimensional setting, this does not guarantee a
nice submanifold structure; in Proposition 3.8wewill prove that Sp(H)L is a Banach–Lie subgroup of Sp(H). We can restrict
the natural action of the symplectic group inΛ(H) to the Hilbert–Schmidt symplectic group and it will also be smooth. As
before, we can consider the isotropy group at L

Sp2(H)L = {g ∈ Sp2(H) : g(L) = L}.

Wewill also prove in Proposition 3.8 that this subgroup is a Banach–Lie subgroup of Sp2(H), with the topology induced by
the metric ∥g1 − g2∥2.

If T is any operator we denote by GrT its graph, i.e. the subset GrT = {v+ Tv : v ∈ Dom(T )} ⊂ H ⊕ H . Fix a Lagrangian
subspace L0 ⊂ H , we consider the subset ofΛ(H)

OL0 = {g(L0) : g ∈ Sp2(H)} ⊆ Λ(H).

Wewill see that this set is strictly contained inΛ(H) and thus the action of Sp2(H) on the Lagrangian Grassmannian is not
transitive. Perhaps amore natural approachwould be to consider the set of pairs (L1, L2) of Lagrangians such that L2 = g(L1)
for some g ∈ Sp2(H). However the orbit approach makes the presentation of the metrics simple. The purpose of this paper
is the geometric study of this orbit; its manifold structure and relevant metrics.

3. Manifold structure of OL0

We start proving that the subset OL0 is strictly contained inΛ(H), to do it we need the following lemma.

Lemma 3.1. Let g ∈ Sp2(H) then Pg(L0) − PL0 ∈ B2(H).

Proof. To prove it, we use the formula of the orthogonal projector over the range of an operator Q given by

PR(Q ) = QQ ∗(1 − (Q − Q ∗)2)1/2. (3.1)

This formula can be obtained using a block matrix representation. If we denote by Q the idempotent associated with g(L0),
i.e. Q := gPL0g

−1 and if we suppose that g = 1 + k and g−1
= 1 + k′ where k, k′

∈ B2(H)we have

QQ ∗
= (1 + k)PL0(1 + k′)(1 + k′∗)PL0(1 + k∗)

= (PL0 + PL0k
′
+ kPL0 + kPL0k

′)  
Q

(PL0 + PL0k
∗
+ k′∗PL0 + k′∗PL0k

∗)  
Q∗

= PL0 + PL0k
∗
+ PL0k

′∗PL0 + · · ·  
∈ B2(H)

= PL0 + T ∈ PL0 + B2(H).

It is clear that Q − Q ∗
∈ B2(H), then (Q − Q ∗)2 ∈ B1(H). From the spectral theorem we have,

1 − (Q − Q ∗)2 = 1 +


i

λiPi = P0 +


i

(λi + 1)Pi

where (λi) ∈ ℓ1 and P0 is the projection to the kernel. Taking square roots, we have

(1 − (Q − Q ∗)2)1/2 = P0 +


i

(λi + 1)1/2Pi

= P0 +


i

[(λi + 1)1/2 − 1]Pi +


i

1Pi

= 1 +


i

[(λi + 1)1/2 − 1]Pi = 1 + T ′
∈ 1 + B2(H)
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where ((λi + 1)1/2 − 1) ∈ ℓ2, because (λi) ∈ ℓ1 and limx→0
((x+1)1/2−1)2

x = 0. Then by the formula (3.1) we have

Pg(L0) = (PL0 + T )(1 + T ′) ∈ PL0 + B2(H). �

Corollary 3.2. The inclusion OL0 ⊂ Λ(H) is strict.

Proof. Suppose that Λ(H) = OL0 , since L⊥

0 is Lagrangian, there exists g ∈ Sp2(H) such that L⊥

0 = g(L0), then using its
orthogonal projector and the above lemma we have,

1 − PL0 = PL⊥0 = Pg(L0) = PL0 + T

for some T ∈ B2(H). Therefore, 2PL0 −1 = −T ∈ B2(H) and this is a contradiction because 2PL0 −1 is an unitary operator.
�

To build a manifold structure over OL0 , we will consider the charts of Λ(H) given by the parametrization of Lagrangian
subspaces as graphs of functions and we will adapt this charts to our set. This charts were used in [12] to describe the
manifold structure ofΛ(H); in the followings steps we recall this charts and we fix the notation.

Given L ∈ Λ(H), we have the Lagrangian decomposition H = L ⊕ L⊥ and we denote by

Ω(L⊥) = {W ∈ Λ(H) : H = W ⊕ L⊥
}.

In [2] it was proved that these sets are open inΛ(H). We consider the map φL : Ω(L⊥) → B(L)s given by

W = GrT −→ J|L⊥T

where T : L → L⊥ is the linear operator whose graph isW , more precisely

T = π1|W ◦ (π0|W )
−1

where π0, π1 are the orthogonal projections to L and L⊥.

Remark 3.3. The map φL is onto: Let ψ ∈ B(L)s, we consider the operator T := −J|Lψ (T maps L into L⊥) and W := GrT .
Since ψ is a symmetric operator, W is a Lagrangian subspace and H = GrT ⊕ L⊥; for this W ∈ Ω(L⊥) and it is a preimage
of ψ .

The maps {φL}L∈Λ(H) constitute a smooth atlas for Λ(H), so that Λ(H) becomes a smooth Banach manifold (see [13]). For
every W ∈ Λ(H) we can identify the tangent space TWΛ(H) with the Banach space B(W )s, this identification was used
in [12] and [13]. ForW ∈ Ω(L⊥), the differential dφL of the chart atW is given by

dWφL(H) = η∗Hη (3.2)

for all H ∈ B(W )s, where η : L → W is the isomorphism given by the restriction to L of the projection W ⊕ L⊥
→ W . It is

easy to see that the inverse dψφ−1
L of this map at a point ψ = φL(W ) is given by

B(L)s
dψφ

−1
L

−→ B(W )s
H −→ (η−1)∗Hη−1.

Since the symplectic group acts smoothly we can consider for fixed L ∈ Λ(H) the smooth map πL : Sp(H) → Λ(H) given
by g → g(L). Its differential map at a point g ∈ Sp(H) is given by

TgSp(H) = sp(H)g ∋ Xg → Pg(L)JX |g(L) ∈ B(g(L))s,

see [12] and [13] for a proof. Throughout this paper, we will denote by d1πL the differential at the identity. If L ∈ OL0 we can
restrict the map πL to the subgroup Sp2(H) obtaining a surjective map onto OL0 ,

πL|Sp2(H) : Sp2(H) → OL0 .

Theorem 3.4. The set OL0 is a submanifold of Λ(H) and the natural map i : OL0 ↩→ Λ(H) is an embedding.

Proof. We will adapt the above local chart φL to our set. Let L = g(L0) ∈ OL0 , first we see that φL(Ω(L⊥) ∩ OL0) ⊂ B2(L)s.
Indeed, if W belongs toΩ(L⊥) ∩ OL0 then we can write W = GrT = h(L0) for some h ∈ Sp2(H) and since L0 = g−1(L) we
have that W = hg−1(L) and it is obvious that we can write now W = g̃(L) with g̃ ∈ Sp2(H). If we write g̃ = 1 + k where
k ∈ B2(H) then the orthogonal projection π1 restricted toW can be written as

π1|W (w) = π1(g̃ l) = π1(l + kl) = π1(k(l)) = π1(k(g̃−1w))

where W ∋ w = g̃(l) and l ∈ L. Thus we have

π1|W = π1 ◦ k ◦ g̃−1
|W ∈ B2(W , L⊥).



178 M. López Galván / Journal of Geometry and Physics 99 (2016) 174–183

Then it is clear that φL(W ) = J|L⊥T ∈ B2(L)s. Now we have the restricted chart

φL|Ω(L⊥)∩OL0
: Ω(L⊥) ∩ OL0 −→ B2(L)s.

To conclude we will see that this restricted map is also onto. Let ψ ∈ B2(L)s and as we did in Remark 3.3 we consider the
operator T := −J|Lψ , then the only fact to prove is that

GrT = {v + (−J|Lψ)v : v ∈ L} ∈ OL0 .

To prove it we define f := 1 − J|LψPL ∈ 1 + B2(H); it is invertible with inverse given by 1 + J|LψPL and it is clear that
GrT = f (L). Now we have to show that f is symplectic. Indeed, let ξ, η ∈ H

w((1 − J|LψPL)ξ , (1 − J|LψPL)η) = w(ξ, η)+ w(ξ,−J|LψPLη)+ w(−J|LψPLξ, η)+ w(J|LψPLξ, J|LψPLη)  
=0

and since J is an isometry we have

w(ξ,−J|LψPLη)+ w(−J|LψPLξ, η) = ⟨Jξ,−J|LψPLη⟩ + ⟨J(−J|LψPL)ξ , η⟩
= −⟨ξ, ψPLη⟩ + ⟨ψPLξ, η⟩.

If ξ = ξ0 + ξ⊥

0 and η = η0 + η⊥

0 are the respective decompositions in L ⊕ L⊥, then by the symmetry of ψ the above
equality results in

−⟨ξ, ψPLη⟩ + ⟨ψPLξ, η⟩ = ⟨ξ0 + ξ⊥

0 , ψη0⟩ + ⟨ψξ0, η0 + η⊥

0 ⟩

= −⟨ξ0, ψη0⟩ + ⟨ψξ0, η0⟩ = 0.

Then

w((1 − J|LψPL)ξ , (1 − J|LψPL)η) = w(ξ, η)

and f ∈ Sp2(H). Since L = g(L0)we have

GrT = f (L) = fg(L0) ∈ OL0 . �

As in the case of the full Lagrangian Grassmannian, for every L ∈ OL0 we can identify the tangent space TLOL0 with the Hilbert
space B2(L)s.

Since the differential of the inclusion map is an inclusion map, it is clear that the differential of the adapted charts is the
restriction of the differential of full charts given by Eq. (3.2). So, if W ∈ Ω(L⊥) ∩ OL0 then the differential of the adapted
chart is given by dWφL|Ω(L⊥)∩OL0

(H) = η∗Hη where H ∈ B2(W )s and its inverse is

B2(L)s
dψφ

−1
L |

Ω(L⊥)∩OL0
−→ B2(W )s = TWOL0

H −→ (η−1)∗Hη−1. (3.3)

Remark 3.5. The differential of the map πL|Sp2(H) at a point g ∈ Sp2(H) is the restriction of the differential map dgπL at
TgSp2(H) i.e.

dgπL|Sp2(H) : TgSp2(H) = sp2(H)g ∋ Xg → Pg(L)JX |g(L) ∈ B2(g(L))s.

Indeed, we have the following commutative diagram

Sp(H)
πL // Λ(H)

Sp2(H)
� ?

i2

OO

πL|Sp2(H)

// OL0

� ?

i1

OO

If we differentiate at a point g ∈ Sp2(H) the equation πL ◦ i2 = i1 ◦ πL|Sp2(H) and use that the differential of the inclusion
maps i1 and i2 at h(L0) and at h respectively is inclusions, we have dgπL|Sp2(H)(Xg) = dgπL(Xg) for every X ∈ sp2(H).

In the followings steps we will obtain the main result of this section, the Lie subgroup structure of the isotropy group. To
do it we will use the above submanifold structure constructed over OL0 . IfM and N are smooth Banach manifolds a smooth
map f : M → N is a submersion if the tangent map dxf is onto and its kernel is a complemented subspace of TxM for all
x ∈ M . This fact is equivalent to the existence of smooth local section (see [14]). The next proposition is essential for the
proof.
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Proposition 3.6. The map πL0 : Sp(H) → Λ(H) and its restriction πL0 |Sp2(H) : Sp2(H) → OL0 are smooth submersions when
we consider inΛ(H) (resp. in OL0 ) the above manifold structure.

Proof. First we will prove that the map πL0 |Sp2(H) : Sp2(H) → OL0 has local cross sections on a neighborhood of L0, the
proof is adapted from [5] and [7]. Using the symmetry over R(Q )we have

ϵR(Q ) = 2PR(Q ) − 1 = 2(PL0 + B2)− 1 = ϵL0 + B2. (3.4)

For L ∈ OL0 close to L0, we consider the element gL = 1/2(1 + ϵLϵL0); it is invertible (in fact, it can be shown that it is
invertible if ∥ϵL − ϵL0∥ < 2) and it commutes with J , so it belongs to GL(HJ). From Eq. (3.4) we have

ϵLϵL0 ∈ (ϵL0 + B2(H))ϵL0 ∈ 1 + B2(H)

and then it is clear that gL ∈ 1 + B2(HJ). Thus gL is complex and invertible in a neighborhood of ϵL0 . Note that

gLϵL0 = 1/2(ϵL0 + ϵL) = ϵLgL

and also that g∗g commutes with ϵL0 . If |x| = (x∗x)1/2 denotes themodulus and gL = uL |gL| is the polar decomposition, then
uL = gL(gL∗gL)−1/2

∈ U(HJ) ⊂ Sp(H). We define the local cross section for L close to L0 as

σ(L) = uL.

Now we have to prove that πL0 |Sp2(H)(σ (L)) = L. If we identify the subspace with the symmetry this is equivalent to prove
that ϵπL0 |Sp2(H)(σ (L))

= ϵL. Indeed,

ϵπL0 (uL)
= uLϵL0u

∗

L = gL(g∗

L gL)
−1/2ϵL0(g

∗

L gL)
−1/2g∗

L = gLϵL0g
−1
L = ϵL.

Let us prove that it takes values in Sp2(H). SinceC1+B2(HJ) is a *-Banach algebra and gL ∈ GL2(HJ) by the Riesz functional
calculus we have that uL = gL |gL|−1

∈ C1+B2(HJ). Thus uL = β1+ bwith b ∈ B2(HJ). On the other hand, note that gL∗gL
is a positive operator which lies in the C*-algebra C1 + K(HJ). Therefore its square root is of the form r1 + k with r ≥ 0
and k compact. Then

gL∗gL = (r1 + k)2 = r2.1 + k′

and since gL∗gL ∈ GL2(HJ)we have

r21 + k′
= 1 + b′

with b′
∈ B2(HJ). Since C1 and K(HJ) are linearly independent, it follows that r = 1. Then it is clear that uL ∈ U2(HJ) ⊂

Sp2(H) and σ is well defined. To conclude the proof we now show that the local section σ is smooth. If L lies in a small
neighborhood of L0 we have

L = φ−1
L0
(ψ) = Gr−J|Lψ = (1 − J|L0ψPL0)(L0) = g(L0) ∈ Ω(L0⊥) ∩ OL0 .

The idempotent of range L is

Q := gPL0g
−1

= (1 − J|L0ψPL0)PL0(1 + J|L0ψPL0) = PL0 − J|L0ψPL0

and it is smooth as a function of ψ . Since the formula of the orthogonal projector (3.1) is smooth, the local expression of σ
will also be smooth. Indeed, the symmetry in the chart will be

ϵL = 2PR(gPL0 g−1) − 1 = 2QQ ∗(1 − (Q − Q ∗)2)1/2 − 1

and it is clearly smooth as a function of ψ , because Q and the operations involved (product, involution, square root) are
smooth. Then it is clear that the invertible element gL and its unitary part uL are smooth too. Finally the local expression
σ ◦ φ−1

L0
is smooth as a function ofψ . Since the full Lagrangian Grassmannian can be expressed as an orbit for a fixed L0, the

proof of smoothness of the local section of πL0 is analogous to that of the restricted map πL0 |Sp2(H). �

Corollary 3.7. If L is any subspace in the full Lagrangian Grassmannian or in OL0 then the map πL : Sp(H) → Λ(H) and its
restriction πL|Sp2(H) : Sp2(H) → OL0 have local cross sections on a neighborhood of L.

Proof. The above map σ can be translated using the action to any L = g(L0). That is,

σL(h(L0)) = gσ(g−1h(L0))g−1

where h(L0) lies on a neighborhood of L. �
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Proposition 3.8. The isotropy groups Sp(H)L and Sp2(H)L of the symplectic group and of the restricted symplectic group are
Lie subgroups of them with their respective topology. Their Lie algebras are

sp(H)L = {x ∈ sp(H) : x(L) ⊆ L}
sp2(H)L = {x ∈ sp2(H) : x(L) ⊆ L}.

Proof. Since themaps d1πL and d1πL|Sp2(H) are submersions then by the inverse function theorem,we have that the isotropy
groups are Lie subgroups and their Lie algebras are ker d1πL and ker d1πL|Sp2(H) respectively. A short computation shows us
that ker d1πL = {x ∈ sp(H) : x(L) ⊆ L} and ker d1πL|Sp2(H) = {x ∈ sp2(H) : x(L) ⊆ L}. Indeed, if PLJX |L = 0 then JX |L ∈ L⊥

and thus −X |L ∈ J(L⊥) = L. �

Remark 3.9. The Lie algebra sp2(H)L consists of all operators x ∈ sp2(H) that are L invariant, so we can give another
characterization of this algebra using the orthogonal projection PL. That is,

sp2(H)L = {x ∈ sp2(H) : xPL = PLxPL}. (3.5)

In block matrix form, this operators correspond to the upper triangular elements of sp2(H).

4. Metric structure in OL0

In this section we will introduce a Riemannian structure on OL0 using the Hilbert–Schmidt inner product. We will prove
that this Riemannian structure coincides with the Riemannian structure given by the quotient norm. We also study the
completeness of the geodesic distance and moreover we will find the corresponding geodesic curves.

4.1. The ambient metric

Given v,w ∈ TWOL0 = B2(W )s, we define the inner product

⟨v,w⟩W := trW (w∗v) =

∞
i=1

⟨w∗vei, ei⟩

where {ei} is an orthonormal basis of the subspaceW . The ambient metric for v ∈ TWOL0 = B2(W )s is

A(W , v) := trW (v∗v)1/2. (4.6)

Using the orthogonal projection overW , it can be expressed by ∥vPW∥
2
2. Indeed, if {ei} is an orthonormal basis for H then

∥vPW∥
2
2 =


i

⟨vPW ei, vPW ei⟩ =


i

⟨v∗vPW ei, PW ei⟩

=


i

⟨v∗vPW ei, ei⟩ = tr(v∗vPW ) = trW (v∗v). (4.7)

To each point W ∈ OL0 , we associate the inner product ⟨·, ·⟩W on the tangent space TWOL0 . This correspondence allows us
to introduce a Riemannian structure on the manifold OL0 . The fact to prove here is that the metric varies differentiably.

Proposition 4.1. The Riemannian structure is well defined.

Proof. Let L ∈ OL0 and consider a neighborhood U := Ω(L⊥) ∩ OL0 of it. For any W ∈ U , we can write it in the local chart
W = φ−1

L ψ = Gr(−J|Lψ). Let ηW : L → W be the restriction of the orthogonal projection W ⊕ L⊥
π
→ W , then its local

expression;

ηW (v) = π(v) = π((v − J|Lψ(v))+ J|Lψ(v))
= (1 − J|Lψ)(v) for all v ∈ L,

and then it can be expressed by the compression of the operator 1− J|LψPL into the subspace L i.e. ηW = (1− J|LψPL)|L. If we
write the local expression of the metric using the classical differential structure of the tangent bundle with the differential
of the chart φ−1

L given in the formula (3.3), for every v ∈ TU we have

A(W , v) = ∥dψφ−1
L (H)PW∥2 = ∥(η−1

W )∗Hη−1
W PW∥2, (4.8)

whereψ ∈ φL(U) andH ∈ B2(L)s is the preimage of v. Since the projector PW = PGr(−J|Lψ)
is smooth and the local expression

of ηW is also smooth as a function of ψ and by smoothness of the operations involved (inverse, involution, product, trace)
the formula (4.8) is smooth. �
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4.2. The geodesic distance

The length of a smooth curve measured with the ambient metric will be denoted by

LA(γ ) =

 1

0
A(γ (t), γ̇ (t))dt.

Given two Lagrangian subspaces S and T in OL0 , we denote by dA the geodesic distance using the ambient metric,
dA(S, T ) = inf{LA(γ ) : γ joins S and T in OL0}.

If (Ln) ⊂ OL0 is any sequence we will denote by Ln
OL0
→ L the convergence to some subspace L ∈ OL0 in the topology given

by the smooth structure of OL0 (Theorem 3.4).
There is a naturally defined Hilbert space inner product on the tangent space at 1 of the group Sp2(H), which is identified

with the space of Hilbert–Schmidt operators on H , and this inner product is employed to define a left-invariant and a right-
invariant Riemannian structure on the group.

Given a smooth curve α in Sp2(H)we canmeasure its length with the left or right invariant metric, depending on which
identification of tangent spaces we use in the group. In [9] it was used the left one, hence they use the left invariant metric.
The length of a curve using this metric is LL(α) =

 1
0 ∥α−1α̇∥2. In this paper we will use the right identification of the

tangent spaces, so we have to introduce the right invariant metric. Although formally equivalent this choice will make some
computations easier. Then the length of α is, LR(α) =

 1
0 ∥α̇α−1

∥2.

Remark 4.2. Let G be a Banach–Lie group, if dL and dR denote the geodesic distancewith the left and right invariantmetrics
respectively then,

dL(x−1, y−1) = dR(x, y) ∀ x, y ∈ G.

Indeed, since the geodesic distances are left and right invariant respectively, the only fact left to prove is the equality
dL(x−1, 1) = dR(x, 1) for all x ∈ G. Then, if α is any curve that joins 1 to x−1, the curve β(t) = α(t)−1 joins 1 to x; if
we differentiate we have β̇(t)β(t)−1

= −α(t)−1α̇(t) and then the right length of β coincides with the left length of α.

If ξ : [0, 1] → OL0 is a curve with ξ(0) = L then a lifting of ξ is a map φ : [0, 1] → Sp2(H) with φ(0) = 1 and
φ(t)(L) = ξ(t), for all t ∈ [0, 1]. The next lemma is an adaptation of Lemma 25 in [12].

Lemma 4.3. Every smooth curve ξ : [0, 1] → OL0 with ξ(0) = L admits an isometric lifting, if we consider the right invariant
metric in Sp2(H).
Proof. For each t ∈ [0, 1], set X(t) = −J ξ̇ (t)Pξ(t) ∈ sp2(H) and consider the solution of the ODE

φ̇(t) = X(t)φ(t)
φ(0) = 1. (4.9)

A simple computation using Remark 3.5 shows that both t → φ(t)(L) and ξ(t) are integral curves of the vector field
ν(t)(L) = PLJX(t)|L ∈ TLOL0 = B2(L)s both starting at L, therefore the two curves coincide. Now, it is easy to see that
the solution of the differential equations (4.9) is an isometric lifting of ξ . Indeed, if we take norms in the equation we have,

∥φ̇(t)φ−1(t)∥2 = ∥ − J ξ̇ (t)Pξ(t)∥2 = ∥ξ̇ (t)Pξ(t)∥2 = A(ξ(t), ξ̇ (t)). �

The geodesic curves given by the left invariant metric in the group Sp2(H) were calculated in [9]. There it was proved
that if g0 ∈ Sp2(H) and g0v0 ∈ g0.sp2(H) are the initial position and the initial velocity then

α(t) = g0etv
∗
0 et(v0−v

∗
0 ) ⊂ Sp2(H)

is a geodesic of the Riemannian left invariant metric. This fact can be used to find the geodesic of the Riemannian connection
induced by the ambient metric A.

Theorem 4.4. Let ξ : [0, 1] → OL0 be a geodesic curve of the Riemannian connection induced by the ambient metric A with
initial position ξ(0) = L and initial velocity ξ̇ (0) = w ∈ Tξ(0)OL0 = B2(L)s. Then

ξ(t) = et(v
∗
−v)e−tv∗(L)

where v ∈ sp2(H) is a preimage of −w by d1πL.
Proof. Since ξ is a geodesic curve, it is locally minimizing. Using Lemma 4.3 there exists an isometric lifting φ ⊂ Sp2(H)
with initial condition φ(0) = 1. By the isometric property φ results locally minimizing with the right invariant metric and
then φ−1 results locally minimizing with the left invariant metric. Hence the curve φ−1

⊂ Sp2(H) is a geodesic and it is
φ−1(t) = etv

∗

et(v−v
∗) for some v ∈ sp2(H). Then it is clear that φ(t) = et(v

∗
−v)e−tv∗ and ξ(t) = et(v

∗
−v)e−tv∗(L). The only

fact left to prove is that v is a lift of −w. Indeed, since ξ̇ (t) = det(v∗−v)e−tv∗πL

(v∗

− v)et(v
∗
−v)e−tv∗

− et(v
∗
−v)e−tv∗v∗


, then

w = ξ̇ (0) = d1πL(−v) = −d1πL(v). �
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4.3. The quotient metric

Since the action of the Hilbert–Lie group Sp2(H) on the Grassmannian OL0 is smooth and transitive, we identify
OL0 ≃ Sp2(H)/Sp(H)L0 as manifolds. Then it is only natural to consider on our Grassmannian the quotient Riemannian
metric. IfW ∈ OL0 and v ∈ TWOL0 , we put

Q(W , v) = inf{∥z∥2 : z ∈ sp2(H), d1πW (z) = v}.

This metric will be called the quotient metric of OL0 , because it is the quotient metric in the Banach space

TWOL0 ≃ sp2(H)/sp2(H)W .

Indeed, since sp2(H)W = ker d1πW , if z ∈ sp2(H)with d1πW (z) = v then

Q(W , v) = inf{∥z − y∥2 : y ∈ sp2(H)W }.

If QL denotes the orthogonal projection onto sp2(H)W then each z ∈ sp2(H) can be uniquely decomposed as

z = z − QL(z)+ QL(z) = z0 + QL(z)

hence

∥z − y∥2
2 = ∥z0 + QL(z)− y∥2

2 = ∥z0∥2
2 + ∥QL(z)− y∥2

2 ≥ ∥z0∥2
2

for any y ∈ sp2(H)W which shows that

Q(W , v) = ∥z0∥2 (4.10)

where z0 is the unique vector in sp2(H)
⊥

W such that d1πW (z0) = v.
We denote the length for a piecewise smooth curve inOL0 , measured with the quotient norm introduced above as LQ(γ ).

Theorem 4.5. The quotient metric and the ambient metric are equal.

Proof. The proof is a straightforward computation using the definition of the metrics; indeed let W ∈ OL0 and v ∈ TWOL0 ,
by formula (4.10) we have Q(W , v) = ∥z0∥2 where z0 is the unique vector in sp2(H)

⊥

W such that d1πW (z0) = v. Since z0
belongs to sp2(H)

⊥

W , using the decompositionW ⊕ W⊥, we can write

z0 = z0PW − PW z0PW = (1 − PW )z0PW

and then since PW is a Lagrangian projector we have Jz0 = (J − JPW )z0PW = PW Jz0PW . Therefore using the definition of the
ambient metric (4.6) we have,

A(W , v) = ∥vPW∥2 = ∥d1πW (z0)PW∥2 = ∥PW Jz0|WPW∥2

= ∥Jz0∥2 = ∥z0∥2 = Q(W , v). �

Now, it is obvious that the geometry of these Riemannian metrics is the same, in particular the geodesics and the geodesic
distance.

To prove themain theorem in this paperwewill use some facts thatwe obtained in [9]. The key is to use the completeness
of the metric space (Sp2(H), ∥.∥2) and the lift property given in Lemma 4.3.

Theorem 4.6. If (Ln) is a sequence in OL0 and L ∈ OL0 then

1. Ln
OL0
−→ L =⇒ Ln

dQ
−→ L.

2. The metric space (OL0 , dQ) is complete.

3. The distance dQ defines the given topology on OL0 . Equivalently, Ln
OL0
−→ L ⇐⇒ Ln

dQ
−→ L.

Proof. Since dA(S, T ) = dQ(S, T ) for all S, T ∈ OL0 , we can prove the three items with dA to simplify the computations.

1. The map πL has local continuous sections, let n0 such that Ln ∈ U ⊂ OL0 ∀n ≥ n0 (U a neighborhood of L) and

such that σL : U → Sp2(H) is a section for πL. By continuity we have σL(Ln)
∥.∥2
−→ σL(L) = 1 if n ≥ n0. Since

σL(Ln) is close to 1, there is zn ∈ sp2(H) such that σL(Ln) = ezn and since ∥ezn − 1∥2 = ∥σL(Ln) − 1∥2 → 0 we
also have ∥zn∥2 → 0. Let γn(t) = etzn(L) ⊂ OL0 be a curve that joins L and Ln; using the equality (4.7) its length is
LA(γn) =

 1
0 A(γn(t), γ̇n(t))dt =

 1
0 ∥γ̇n(t)Pγn(t)∥2. Since γn(t) = πL ◦ etzn using the chain rule and Remark 3.5 we have

γ̇n(t) = detznπL(znetzn) = Petzn (L)Jzn|etzn (L),

then taking norms and using the symmetric property of the 2-norm (∥xyz∥2 ≤ ∥x∥∥y∥2∥z∥) we have

∥γ̇n(t)Pγn(t)∥2 = ∥Petzn (L)JznPetzn (L)∥2 ≤ ∥zn∥2.

Then it is clear that dA(Ln, L) ≤ LA(γn) → 0.
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2. Let (Ln) be a dA-Cauchy sequence in OL0 and fix ε > 0. Then there exists n0 such that dA(Ln, Lm) ≤ ε if n,m ≥ n0. For
the fixed Lagrangian Ln0 , we have the map

π = πLn0
: Sp2(H) → OL0 , π(g) = g(Ln0).

If n,m ≥ n0 we can take a curve γn,m ⊂ OL0 that joins Ln to Lm (for t = 0 and t = 1 respectively) such that

LA(γn,m) ≤ dA(Ln, Lm)+ ε.

Then by Lemma 4.3, the curves γn0,m are lifted, via π , to curves φm of Sp2(H) with φm(0) = 1 and LR(φm) = LA(γn0,m).
Denote by gm = φm(1) ⊂ Sp2(H) the end point. Then

ε + dA(Ln0 , Lm) ≥ LA(γn0,m) = LR(φm) ≥ dR(1, gm).

For each n,m ≥ n0 we have,

dR(gn, gm) ≤ dR(1, gm)+ dR(1, gn) ≤ 2ε + dA(Ln0 , Lm)+ dA(Ln0 , Ln) ≤ 4ε.

Thus the sequence (gm) ⊂ Sp2(H) is dR-Cauchy and then by Remark 4.2 we have that (g−1
m ) is dL-Cauchy. Using Lemma

7.1 of [9] we have that the sequence (g−1
m ) is a Cauchy sequence in (Sp2(H), ∥.∥2) and then since this metric space is

closed, there exists x ∈ Sp2(H) such that g−1
m

∥.∥2
−→ x. By continuity we have π(gm)

OL0
−→ π(x−1) and since φm is a lift of

γn0,m we also have π(gm) = gm(Ln0) = φm(1)(Ln0) = γn0,m(1) = Lm, so Lm
OL0
−→ π(x−1). Thus using the first item of this

theorem we have dA(Lm, π(x−1)) → 0.

3. Suppose that Ln
dA

−→ L, then it is a dA-Cauchy sequence. If we repeat the argument that we did above, there exists

x ∈ Sp2(H) such that Ln
OL0
−→ π(x−1). By the point first it is dA convergent and therefore Ln

OL0
−→ L. �
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