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a b s t r a c t

We determine families of spherically symmetrical D-dimensional quantum potential
functions V (r) having ground-state wavefunctions that exhibit, either in configuration
space or in momentum space, the form of an isotropic q-Gaussian. These wavefunctions
admit a maximum-entropy description in terms of Sq power-law entropies. We show that
the potentials with a ground state of the q-Gaussian form in momentum space admit the
Coulomb potential −1/r as a particular instance. Furthermore, all these potentials behave
asymptotically as the Coulomb potential for large r for all values of the parameter q such
that 0 < q < 1.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Extended versions of the maximum-entropy principle based upon power-law Sq entropies [1–3] have been found to
provide useful tools for the description of several physical systems or processes [1–16]. Indeed, various important equations
in mathematical physics admit exact solutions of the maximum-Sq form such as, for example, the polytropic solutions to
the Vlasov–Poisson equations [13], time-dependent solutions to some evolution equations involving nonlinear power-law
diffusion terms [14,15], or stationary phase–space distributions for Liouville equations describing anomalous thermostating
processes [16]. The application of information-theoretical ideas to the study of the eigenstates of diverse quantum systems
has attracted the attention of researchers in recent years [17–24].

The standard maximum-entropy principle, based on the optimization of Shannon’s entropic measure under appropriate
constraints, plays a distinguished role within these lines of enquiry. This principle has been successfully applied to
the characterization of the eigenstates of various quantum systems (see, for instance, [23–25] and references therein).
Interesting ideas on the applications of techniques from statistical mechanics to the description of ground-state
wavefunctions have also been recently reported by Souza in Ref. [26]). In particular, it is well known that the probability
densities in both position andmomentum space corresponding to the ground state of the isotropic D-dimensional quantum
harmonic oscillator are Gaussians, which are probability densities maximizing the Shannon entropy under the constraints
imposed by normalization and the expectation value of the square r2 of the radial coordinate.

It would be of considerable interest to extend to the Sq-based framework the maximum-entropy approach to the
description of the eigenstates of quantum systems. This formalism has already been applied to the study of various
quantum phenomena (see, for example, Refs. [27,28]) and also of chemical processes (see Ref. [29] for the study of an
extended Arrhenius law in this formalism). However, its application to characterize the probability densities associated
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with quantum eigenstates remains largely unexplored. The maximum-entropy formalism based on the Sq entropies leads
to a generalization of the Gaussian probability density, which is given by the so-called q-Gaussians [1,2]. These q-Gaussians
constitute some of the simplest and most important examples of maximum-Sq distributions. An important remark is that
this formalism based on the Sq entropy should not be confusedwith the q-calculus, also called quantum calculus, which is an
important field in special functions theory nowadays, and which concerns computation with non-commutating variables,
the parameter q measuring the degree of non-commutativity (see Ref. [30] for a good introduction, and [31] for a more
technical approach of the q-polynomials).

The aim of the present work is to determine the form of those spherically symmetric quantum potentials V (r) whose
ground-state wavefunctions (in position or in momentum space) are associated with q-Gaussian densities.

2. q-Gaussian ground states in configuration space

We are going to consider a spinless particle of mass m in a D-dimensional configuration space. The eigenfunctions ψ(r)
associated with a potential V (r) obey then the Schrödinger equation,

−
h̄2

2m
∇

2ψ + Vψ = Eψ, (1)

where ∇
2 is the D-dimensional Laplacian operator, h̄ is Planck’s constant, and E is the energy eigenvalue. We assume in the

rest of this paper thatm = h̄ = 1. Sincewe are going to consider spherically symmetric potentials, the Schrödinger equation
for the concomitant ground states (which are spherically symmetric) simplifies to

−
1

2rD−1

∂

∂r


rD−1 ∂ψ

∂r


+ Vψ = Eψ, (2)

where

r =


D−

i=1

x2i

1/2

(3)

is the radial coordinate.
Let us consider a D-dimensional spherical q-Gaussian wavefunction in the configuration space

ψ (r) = C

1 − (q − 1) βr2

 1
2(q−1)
+

, (4)

where q andβ are positive parameters, C is an appropriate normalization constant, andwith the notation (x)+ = max (x, 0).
If q < 1, the q-Gaussian wavefunction (4) remains non-vanishing for all r ∈ RD. On the other hand, when q > 1, the
q-Gaussian vanishes at r = 1/

√
(q − 1)β and is set to zero for r > 1/

√
(q − 1)β (see below for a discussion on the physical

meaning of this cut-off). The space probability density ρ(r) = |ψ (r) |2 associated with the wavefunction (4) maximizes
Tsallis’ power-law entropic functional

Sq =
1

q − 1


1 −

∫
ρqdr


(5)

under the constraints given by normalization and by the expectation value of r2 [2] (it can also be regarded as a probability
density maximizing Rényi’s functional under the same constraints).

Using (4) in (1), and after some algebra, we find that the wavefunction is the ground state of the potential

V =
β

2


−D + βr2 (D (q − 1)+ 3 − 2q)

1 − (q − 1) βr2
2


, (6)

with eigenenergy equal to 0.
When q ≤ 1, the potential function (6) is finite for all r ∈ RD. On the other hand, when q > 1, the potential function is

singular when r adopts the particular value

rw =


1

(q − 1)β
. (7)

Physically, this means that when q > 1 the potential function (6) has an ‘‘infinite wall’’ at r = rw and the quantum particle
is confined within the region r ≤ rw . In this case, the q-Gaussian wavefunction (4) vanishes at r = rw , andmust be set equal
to zero when r ≥ rw . This constitutes an example of the so-called Tsallis cut-off condition [2,13].
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In the limit q → 1, the q-Gaussian wavefunction (4) becomes a standard Gaussian, and the potential function (6) reduces
to the D-dimensional isotropic harmonic oscillator potential (notice that the origin of the energy scale is shifted)

V (r) = −
Dβ
2

+
1
2
β2r2. (8)

The one-dimensional instance of the potential (6) has been studied in Ref. [32]. This potential exhibits the interesting feature
of approximate shape invariance (see Ref. [32] for details). This approximate symmetry becomes exact in the limit q → 1.

3. q-Gaussian ground states in momentum space

We now look for solutions of the Schrödinger equation having the form of a q-Gaussian in momentum space

ψ̃ (p) = C

1 − (q − 1) βp2

 1
2(q−1) , (9)

where

p2 =

D−
i=1

p2i . (10)

As in the previous case of q-Gaussians in configuration space, q and β are positive parameters, and C is a normalization
constant.We are going to consider q-Gaussians inmomentum spacewith q < 1. Our aim is to determine potential functions
V (r) having a ground state that, in momentum space, has the form (9). In order to do this, it will prove convenient not to
work directlywith the Schrödinger equation inmomentum space but, instead, to determine first the Fourier transformψ (r)
of ψ̃ (p) and then to consider Schrödinger’s equation in configuration space.

The Fourier transform of the q-Gaussian wave function (9) is

ψν (r) =
21−ν

Γ (ν)
rνKν (r) , (11)

where Kν is the modified Bessel function of the second kind and r = |r|. The parameter ν is given by

ν = −
D
2

−
1

2 (q − 1)
. (12)

Theorem. The function ψν (r) is a solution of the Schrödinger equation associated with a potential

Vν (r) = −
1
2


1 +

D
2 (ν − 1)


ψν−1 (r)
ψν (r)

. (13)

As a special case, when the parameter ν = d +
1
2 is half integer, this potential is of the form

Vd+ 1
2
(r) = −

1
2


1 +

D
2d − 1


pd−1 (r)
pd (r)

, (14)

where pd (r) is the Bessel polynomial of degree d.

Proof. The derivation rule for the function ψν (r) is

1
r
∂

∂r
ψν (r) = −

1
2 (ν − 1)

ψν−1 (r) , (15)

so the Laplace operator reads

1
rD−1

∂

∂r


rD−1 ∂ψν

∂r


=

1
rD−1


(D − 1) rD−2 ∂ψν

∂r
+ rD−1 ∂

2ψν

∂r2


. (16)

The first term is

−
(D − 1)
2 (ν − 1)

ψν−1 (r) (17)

and the second term is

∂2ψν

∂r2
= −

1
2 (ν − 1)

∂

∂r
(rψν−1 (r)) = −

1
2 (ν − 1)

ψν−1 (r)+
1

4 (ν − 1) (ν − 2)
r2ψν−2 (r) , (18)
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so the Laplace operator applied to ψν is

1
rD−1

∂

∂r


rD−1 ∂ψν

∂r


=


−

D
2 (ν − 1)

ψν−1 (r)+
1

4 (ν − 1) (ν − 2)
r2ψν−2 (r)


. (19)

Moreover, the function Bessel function Kν obeys the difference equation

rKν (r) = rKν−2 (r)+ 2 (ν − 1) Kν−1 (r) , (20)

so

rνKν (r) = r2rν−2Kν−2 (r)+ 2 (ν − 1) rν−1Kν−1 (r) (21)

and

ψν (r) = r2
1

4 (ν − 1) (ν − 2)
ψν−2 (r)+ ψν−1 (r) . (22)

We deduce that

∆ψν (r) =
1

rD−1

∂

∂r


rD−1 ∂ψν

∂r


=


−

D
2 (ν − 1)

− 1

ψν−1 (r)+ ψν (r) . (23)

Consequently,

−
1
2
∆ψν (r)+

[
−

1
2


1 +

D
2 (ν − 1)


ψν−1 (r)
ψν (r)

]
ψν (r) = −

1
2
ψν (r) , (24)

which means that ψν (r) is an eigenfunction of the potential Vν(r) given by Eq. (13), with eigenvalue equal to −
1
2 . �

4. Special cases and asymptotics

4.1. Asymptotics

The asymptotics for large r of the potential (13) can be computed using [33, 9.7.2]

Kν (r) ∼


π

2r
e−r


1 +

4ν2 − 1
8r

+ · · ·


, (25)

so the asymptotics for the potential (13) reads

Vν (r) ∼ −
(2 (ν − 1)+ D)

r


1 +

1
2r
(1 − 2ν)+ · · ·


. (26)

We see then that, for large values of r , the asymptotic behavior of the potential Vν (r) is dominated by a Coulomb-like term.

4.2. Special cases

1. Coulomb potential: taking ν =
1
2 , and remarking that ψ 1

2
(r) = exp (−r) and ψ

−
1
2
(r) = −

1
rψ 1

2
(r), we deduce that

−
1
2
∆ψ 1

2
(r)−

D − 1
2r

ψ 1
2
(r) = −

1
2
ψ 1

2
(r) , (27)

which is the Schrödinger equation associated with a Coulomb potential. The associated probability density in
configurational space can be obtained as the squared modulus of the inverse Fourier transform of the ground-state
wavefunction in momentum space,

ψ̃ 1
2
(p) ∝


1 + |p|

2− D+1
2 . (28)

The momentum space representation of the eigenfunctions corresponding to the D-dimensional Coulomb potential has
been studied in detail by Aquilanti et al. in Ref. [34].

The q-value characterizing the ground state of the −
1
r potential is different from one. Indeed, it depends on the value

of the space dimension D,

q =
D

D + 1
. (29)
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Table 1
Forms of the potential function Vν (r) and corresponding values of the parameter q, as a function of the space
dimension D, for different half-integer values of the parameter ν.

ν 1
2

3
2

5
2

7
2

q D
D+1

D+2
D+3

D+4
D+5

D+6
D+7

Vν (r) −
1
r −

1
2

 1+D
1+r


−

1
2


(3+D)(r+1)
r2+3r+3


−

1
2


(5+D)(r2+3r+3)
r3+6r2+15r+15



Fig. 1. The potential functions Vν appearing in Table 1, corresponding to ν equal to 3
2 ,

5
3 , and

7
2 (top to bottom), for D = 1 (solid line) and D = 3

(dashed line).

2. In Table 1, we give a few potentials resulting from different half-integer values of ν. These potentials are depicted in
Fig. 1. If ν =

1
2 + d, with d integer, then the entropic parameter q characterizing the q-Gaussian is given by

q =
D + 2d

D + 2d + 1
. (30)

It is interesting that, for a given fixed value of d, we have that q → 1 when D → ∞. That is, when the space dimension
tends to infinity, the q-Gaussian describing the ground state in momentum space approaches a standard Gaussian.

5. Conclusions

We have determined the D-dimensional spherically symmetric potential functions having ground states of the q-
Gaussian form, either in configuration space or inmomentum space. In the case of q-Gaussian ground states in configuration
space, we obtained a bi-parametric family of potentials admitting the D-dimensional isotropic harmonic oscillator as the
particular case corresponding to the limit q → 1. On the other hand, when considering ground states having the shape
of a q-Gaussian in momentum space, we obtained a family of potentials closely related to the D-dimensional Coulomb
(or hydrogen) potential −

1
r . In point of fact, this family admits the standard (D-dimensional) Coulomb potential itself as

a particular instance. Moreover, for large values of r , all the above-mentioned potentials behave asymptotically as −
1
r for

all 0 < q < 1.
Within classical mechanics, it is already well known that there is a close relationship between the potential

function −
1
r (describing Newtonian gravitation) and maximum-Sq distributions. The celebrated polytropic solutions of the

Vlasov–Poisson equations, widely used in the study of self-gravitating astrophysical systems, have indeed the Sq-maxent
form, and the associated velocity distributions are q-Gaussians. It is an intriguing fact that, as we have shown in the present
work, there also exits a close connection between q-Gaussians and the −

1
r potential in quantum mechanics.
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