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Quantum phase diffusion in ac-driven superconducting atomic point contacts
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The impact of quantum fluctuations on the phase diffusion in resistively shunted superconducting quantum
points subject to an external ac voltage is studied. Based on an extension of the classical Smoluchowski equation
to the quantum regime, numerical results for fractional and integer Shapiro resonances are investigated to reveal
characteristic features of quantum effects. It is shown that, typically in the quantum regime, the broadening of
resonances cannot be described simply by an effective temperature.
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I. INTRODUCTION

In recent years there has been a notable advance in the
understanding of electronic transport through superconducting
nanosystems. In particular, the development of fabrication
techniques such as scanning tunneling microscopy, break-
junction, and lithographic methodologies1 has allowed us to
study atomic-size metallic contacts as ideal systems to test fun-
damental properties of charge transfer through superconduct-
ing weak links. These achievements have not only deepened
our understanding of subgap structures in the current-voltage
characteristics but also revealed even microscopic details of the
contact such as transmission coefficients.2–5 Theoretical pre-
dictions based on Green’s-function or mean-field approaches
have been confirmed in various experiments.6,7 In this context,
setups where atomic-size tunnel junctions are subject to
both dc and ac voltages give access to the intimate relation
between phase dynamics, driving, and dissipation, leading to
pronounced Shapiro resonances of integer and fractional order.

Similar to conventional weak links, atomic point contacts
are characterized by two energy scales,8 namely, the coupling
energy between the superconducting domains (Josephson
energy) and the charging energy of the junction. The com-
petition between these two scales is crucially influenced by
the electromagnetic environment so that a realistic model-
ing of charge transport across the contact must necessarily
incorporate its embedding in an actual circuit. Accordingly,
the dynamics of the superconducting phase difference as the
only relevant degree of freedom exhibits a diffusive motion
subject to noise, which, as is well known from the physics
of Josephson junctions,9 can be visualized as the Brownian
motion of a fictitious particle. It turned out that for atomic
point contacts this phase dynamics occurs in an overdamped
regime. The corresponding classical frame is provided by
the Smoluchowski equation, which has already been the
starting point for calculations of current-voltage characteristics
of Josephson junctions in low-impedance environments.10,11

There, only the Josephson energy remains as a relevant
parameter, while charging effects related to inertia drop out.
The impact of quantum fluctuations has been attacked within
a time-dependent perturbation theory in Ref. 12, where the
whole range from coherent to incoherent Cooper pair transfer
in the domain of the Coulomb blockade could be captured.

Later, a generalization of the Smoluchowski approach to
the quantum regime (quantum Smoluchowski) developed by
Ankerhold and coworkers13–16 allowed us to derive the same
physics in a very elegant manner and in close analogy to the
classical description. Quantum noise has been shown to be
inevitably associated with charging effects according to the
uncertainty principle, thus physically ruling the changeover
toward Coulomb blockade dominated transport.

The motivation for the present work is twofold. On the
one hand, it is based on experiments conducted with atomic
point contacts in recent years by the Quantronics group17,18

and, on the other hand, on a corresponding description
in terms of the classical Smoluchowski approach.19 While
experimental results with ac-driven junctions followed the-
oretical predictions for the structure of Shapiro resonances,
substantial discrepancies appeared for their heights and widths.
A plausible explanation is the presence of residual spurious
noise sources, which lead to an effective temperature at the
contact different from the actual base temperature. Here,
we analyze if and to what extent quantum noise must also
be incorporated into this picture. Eventually, this may open
the door to unambiguously characterize quantum effects in
overdamped systems at low temperatures.

This paper is organized as follows. In Sec. II we present
our generalization of the resistively shunted junction (RSJ)
model for contacts of arbitrary transmission in the presence of
microwave radiation and in the presence of quantum fluctua-
tions. In Sec. III the numerical method to solve the generalized
quantum Smoluchowski equation is outlined together with
the relevant scales and approximations. Section IV discusses
results for the I -V characteristics and fractional Shapiro
resonances, and in Sec. V the question of whether quantum
noise can be captured by an effective temperature is addressed.
Section VI is devoted to discussion and conclusions on future
experimental realizations.

II. THE MODEL

We model a superconducting tunnel junction using an
equivalent circuit with so-called lumped-circuit parameters
that includes both the effect of dissipative sources and the
distributed capacity. For weak links the standard resistively
and capacitively shunted junction (RCSJ) model captures
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FIG. 1. Lumped-circuit model of a superconducting weak link
with capacitance C and within a resistive environment R subject to a
dc-bias current Ib and an ac voltage.

the essential physics even in the presence of an external ac
voltage.9 The equivalent circuit, shown in Fig. 1, is formed by a
contact with a resistance R and a capacitance C and is biased by
a dc current Ib. The superconducting phase difference across
the junction denoted by θ is the only relevant degree of freedom
with a current-phase relation I (θ ). Energy dissipation in the
contact is accompanied by Johnson-Nyquist noise In(t); thus
the current conservation relation is

Ib = C
dV

dt
+ I (θ ) + Vtot(t)

R
+ In(t) . (1)

Here, the first term on the right-hand side is the displacement,
and the third term is the dissipative current. Further, Vtot(t) =
V (t) + Vac cos(ωt), with voltage V across the contact and Vac

being an additional ac voltage induced by a microwave field.
According to V = �0θ̇ (�0 = h̄/2e), this equation is in fact
an equation of motion for the phase, i.e.,

Vac(t)

R
+ Ib = �0Cθ̈ (t) + �0

R
θ̇(t) + I (θ ) + In(t) , (2)

which is equivalent to the Brownian motion of a fictitious
particle with mass M ≡ �2

0C, friction constant η ≡ 1/RC,
and classical noise force ZCl(t) ≡ −RIn(t)/�0 in the potential

U (θ,t) = �0

∫ θ

0
I (θ )dθ − �0θ

[
Ib − Vac

R
cos(ωt)

]
. (3)

The noise force has zero mean and obeys

〈ZCl(t)ZCl(t
′)〉 = 2DCl

ηM
δ(t − t ′), (4)

with DCl = kBT ≡ 1/β.
The regime where the capacitance is negligible thus corre-

sponds to the strong-friction domain (Smoluchowski regime)
in the mechanical analog.9 Previous work has shown that this
is indeed the range where phase diffusion in superconducting
atomic point contacts happens to occur.17,19 Strong friction
considerably simplifies the description and for the situation
with zero driving even allows for analytical results. It is
then often convenient to switch from the classical Langevin
equation corresponding to (2), i.e.,

θ̇ = 1

ηM

dU (θ,t)

dθ
+ ZCl(t), (5)

to an equation of motion for the probability distribution P (θ,t),
namely,

∂P (θ,t)

∂t
= 1

ηM

∂

∂θ

[
−∂U (θ,t)

∂θ
+ DCl

∂

∂θ

]
P (θ,t) . (6)

As first pointed out in Ref. 13, this classical Smoluchowski
equation (SE) can be generalized to the low-temperature
domain where quantum fluctuations become substantial.14

The quantum Smoluchowski equation (QSE) has been studied
since then in a variety of applications,16 including particularly
an extension of the classical Ivanchenko-Zil’berman theory
for Josephson junctions in low-impedance environments.10,11

There, quantum fluctuations are related to charging effects
and reveal signatures of Coulomb blockade physics. The QSE
follows from its classical counterpart by replacing DCl →
DQ(θ ) with the position-dependent quantum diffusion
coefficient

DQ(θ ) = kBT

1 − 	βU ′′(θ )
, (7)

with a friction- and temperature-dependent function

	 = 2ρ

[
c + 2π2ρ

βEc

+ �

(
βEc

2π2ρ

)]
, (8)

where � denotes the digamma function and c = 0.5772 . . .

is the Euler’s constant. Further, the charging energy is
Ec = 2e2/C, and we introduced the dimensionless resistance
ρ = R/RQ, with RQ = h/4e2. Usually, ρ � 1 for circuits
operated in the overdamped regime. The classical Smolu-
chowski range corresponds to the high-temperature limit
ηh̄β ≡ βEc/(πρ) � 1, where 	 ≈ βEc/π

2 � 1, while at
low temperatures βEc/(πρ) 	 1 quantum fluctuations are
substantial according to 	 ≈ 2ρ ln(βEc/π

2ρ). The general-
ization of the classical Langevin equation follows from (5)
by replacing ZCl → ZQ ≡ √

β DQ(θ ) ZCl , which describes a
classical stochastic process with multiplicative noise.

In what follows we consider an atomic point contact with
one conduction channel with transmission probability τ ∈
[0,1]. Generalizations are straightforward. As is well known
the current through the contact is then carried by two Andreev
bound states with energies E±(θ,τ ) = ±�

√
1 − τ sin2(θ/2)

(� is the superconducting gap). If we restrict ourselves to
voltages much smaller than � and kBT , there are no Landau-
Zener transitions between Andreev states, and an adiabatic
approximation applies. Thus, the current-phase relation is

I (θ,τ ) = e�

2h̄

τ sin(θ )√
1 − τ sin2(θ/2)

tanh

[
βE+(θ,τ )

2

]
. (9)

This expression simplifies to the known sinusoidal relation
for tunnel junctions in the low transmission limit (τ → 0)
and is proportional to sin(θ/2) in the ballistic limit for
τ → 1. In this latter domain and for externally driven contacts
higher harmonics become relevant such that in addition to
the conventional integer Shapiro steps also fractional ones
appear. This situation has been studied in the classical realm
in Ref. 19. Here, we focus on the low-temperature region where
the classical description must be extended to include quantum
fluctuations, as discussed above.
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Before we proceed, let us specify the domain in parameter
space where the strong-friction approach and the modeling of
the environment in terms of an ohmic resistor apply. With
respect to the first issue we consider circuits of the type
shown in Fig. 1. Then, roughly speaking, the friction constant
must sufficiently exceed all other relevant frequencies. In the
mechanical analog this means η 	 ω2

Jh̄β, ω2
J /η,eVac/h̄,ω,

with plasma frequency ωJ = √
EJ Ec/h̄ and Josephson energy

EJ = �(1 − √
1 − τ ). Note that the last condition η 	 ω

enures that the external driving acts on time scales sufficiently
larger than the relaxation time for momentum, which is of
order 1/η. In terms of circuit parameters one has

Ec

πρ
	 πρEJ ,βEcEJ ,eVac,h̄ω , (10)

with ρ � 1. In addition, as discussed above, the ratio
h̄βη ≡ βEc/(πρ) controls the impact of quantum fluctuations.
Further, the adiabatic description (9) is justified if h̄ω �
2�

√
1 − τ to avoid driving induced mixing of the two Andreev

surfaces.
With respect to the second issue, the modeling of the

environment as being purely ohmic is, of course, a crude
approximation to actual experimental setups. Any realistic
circuit exhibits at least a cutoff frequency �c due to unavoid-
able additional capacitances. The Smoluchowski description
remains valid as long as there is still a time-scale separation
between relaxation in phase [approach of a quasistationary
state for P (θ,t)] and the response time of the environment, i.e.,
η/ω2

0 	 1/�c. In fact, it turns out that inertia effects (finite ca-
pacitance) and a more refined modeling of the electromagnetic
environment lead, for sufficiently large friction, to only minor
deviations from the classical Smoluchowski prediction17,19

(they are relevant for a detailed quantitative analysis of actual
circuits though). For the quantum case considered in what
follows, the same is true if h̄β > 1/�c, with h̄β being, at
low temperatures, the relevant scale for the coarse graining in
time.14

III. CURRENT-VOLTAGE CHARACTERISTICS

Mean values of relevant observables are determined by the
distribution P (θ,t) determined from the QSE. Since most of
the results can only be obtained numerically, we switch in
this section to dimensionless quantities and scale energies in
units of �, frequencies in units of �/h̄, and times in units
of h̄/(�ρ). In particular, this means measuring temperature
in units of �/kB and currents in units of Ic = EJ /�0. The
dimensionless QSE then reads

∂P (θ,t)

∂t
= − ∂

∂θ

[
∂U (θ,t)

∂θ
P (θ,t) + ∂DQ(θ )P (θ,t)

∂θ

]
,

(11)

which is in fact a continuity equation for the probability, i.e.,
∂P/∂t + ∂J/∂θ = 0, with the probability flux

J (θ,t) ≡ ∂U (θ,t)

∂θ
P (θ,t) + ∂DQ(θ )P (θ,t)

∂θ
. (12)

Now, these expressions determine mean values with respect
to phase (· · ·) and time 〈· · ·〉. For the current one has

〈I (θ )〉 =
∫ 2π

0
dθ

∫ ∞

−∞
dtI (θ )P (θ,t), (13)

and the voltage across the contact 〈V 〉 = 〈θ̇〉 follows as

〈V 〉 =
∫ 2π

0
dθ

∫ ∞

−∞
dtJ (θ,t) . (14)

Due to the periodicity of the potential U (θ,t) in phase and time
[cf. Eq. (3)], one expands density and current according to

P (θ,t) =
∑

n,k∈Z

Pn,ke
ikθ+inωt , (15)

J (θ,t) =
∑

n,k∈Z

Jn,ke
ikθ+inωt , (16)

with the normalization condition

Pn,0 = δn,0/2π . (17)

Further, one writes, due to (9),

I (θ ) =
∞∑

m=1

Im(θ,τ ) sin(mθ ) (18)

as well as

DQ(θ ) =
∞∑

m=0

Dm(θ,τ ) cos(mθ ) . (19)

This way, the QSE (11) is cast in an algebraic equation for
the expansion coefficients, namely,

n

k
ωPn,k = IbPn,k − i

Vac

2ρ
(Pn−1,k + Pn+1,k)

+
∞∑

m=1

Im(Pn,k−m − Pn,k+m)

+ ik

∞∑
m′=0

Dm′(Pn,k−m′ + Pn,k+m′ ). (20)

Practically, one works on a two-dimensional grid for n,k with
|n| � Nmax,|k| � Kmax. As already pointed out in Ref. 19 the
corresponding set of Nmax × Kmax coupled equations can be
associated with a non-Hermitian lattice model for particles
on a square lattice. In particular, one observes that there is a
coupling between chains n and n ± 1 proportional to Vac, a
coupling between chains k and k ± m proportional to the mth
harmonic of the Josephson current, and a coupling between
chains k and k ± m′ proportional to the m′th harmonic of the
quantum diffusion coefficient. Note that this latter coupling is
absent in the classical regime.

Now, the orthogonality of circular functions allows us to
express the mean current and voltage as

〈I (θ )〉 =
∑
k∈Z

P0,kI−k, (21)

〈V 〉 = ρ

(
Ib −

∑
k∈Z

P0,kI−k

)
, (22)
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meaning that we only need to calculate P0,k explicitly. In fact,
peaks in this probability coefficient are related to the observed
Shapiro steps of order n/k in the I -V characteristics.

To solve (20) numerically we define vectors
−→
Pn ≡

(. . . ,Pn,k, . . . ,Pn,1,Pn,−1, . . . ,Pn,−k, . . .) and
−→
I ≡ (. . . ,Ik,

. . . ,I1,I−1, . . . ,I−k, . . .) and matrices

(Ln)k,k′ ≡
(n

k
ωPn,k + Ib

)
δk,k′

−Im(δk′,k−m − δk′,k+m)

−ikDm′(δk′,k−m′ + δk′,k+m′), (23)

so that (20) takes the compact form

Ln
−→
P n = Vac

2ρ
(
−→
P n−1 + −→

P n+1) + δn,0
−→
I . (24)

This equation is solved via a recursive procedure (continued
fraction method-upward iteration) by introducing for n > 0
the auxiliary quantity Sn+1

−→
Pn = Vac

2ρ
(
−→
P n+1) and for n < 0

by defining with n ≡ −n the quantity Sn+1
−→
P n = Vac

2ρ
(
−→
P n+1).

Accordingly, one has a simple equation for the relevant
probability coefficients

−→
P 0 = [L0 − S1 − S1] + −→

I , where

S1(1) = − μ

L1(1) − 2μ

L2(1)− μ

L3(3)−···

, (25)

with the abbreviation μ = (Vac/2ρ)2.

IV. RESULTS

We start with a brief discussion of the actual experimental
parameters and proceed with a presentation of the numerical
results.

A. Approximations and parameters ranges

We take typical experimental values for atomic con-
tacts with Al electrodes18 with a superconducting gap � 

180 μeV. Temperatures are varied between about 10 and
100 mK, and the circuit is assumed to have an ohmic
resistance of 200 � such that ρ � 1 and a capacitance on
the order of femtofarads. Typical microwave frequencies are
h̄ω ∼ 10−2� − 100�, with ω > ρ�/h̄ to observe fractional
Shapiro steps. Within this range of parameters the conditions in
(10) are fulfilled, and phase diffusion is supposed to be affected
by quantum fluctuations in the strong-damping regime. In
particular, βEc/πρ 	 1 so that the energy scale related to
friction h̄η by far exceeds the thermal energy scale kBT .

We now solve numerically the recursion (25) where
convergence depends on the maximum number of spatial and
temporal harmonics, the temperature, and the external voltage.
The numerics is quite sensitive at low temperatures and high
voltages, but in the chosen ranges of these parameters accurate
data can be achieved with Nmax = 90 and Kmax = 45.

B. Numerical results

To analyze the Shapiro step structure we calculate numer-
ically, from (21) and (22), mean currents 〈I (θ )〉 and mean
voltages 〈V 〉 (I and V in the figures, respectively) over the
temperature range specified above and for various transmission

FIG. 2. I -V curves for an ac-driven atomic point contact with τ =
0.995 and T = 0.005. Other parameters are ω = 2π × 10−3, η = 5,
Vac = 5 × 10−3, R = 10−3 (dimensionless units; see the beginning
of Sec. III).

coefficients. Figure 2 shows a typical I -V curve with the
first integer and several fractional resonances in the quantum
regime (low temperatures) and for a highly transmissive
junction. While resonances appear in a pattern very similar to
the known classical ones, the role of quantum fluctuations is
revealed when one compares low-temperature results obtained
with the SE and those gained with the QSE, respectively
(Fig. 3). At higher temperatures the diffusion coefficient
DQ → DCl such that both descriptions deliver identical data,

 0
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FIG. 3. (Color online) Fractional Shapiro steps for a high (τ =
0.995, top panel) and lower (τ = 0.99, bottom panel) transmissive
channels. Red solid line (blue solid line with circles) depicts data
obtained with the QSE at T = 0.006(0.02), while black dotted line
(blue solid line with circles) describes results from the SE at T =
0.006(0.02). At a higher temperature T = 0.02 both approaches give
identical curves. Other parameters are as in Fig. 2.
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FIG. 4. Resonant peak height vs temperature for the 1/2 Shapiro
step according to the classical approach (dotted lines) and the quantum
one (solid lines) and transmission coefficients τ = 0.995 (shifted
upward by 0.01), τ = 0.99, and τ = 0.9. Other parameters are as
in Fig. 2.

but there are substantial deviations at low temperatures where
DQ(θ ) > DCl . Indeed, the classical equation predicts much
sharper resonances than the quantum one, where the reduction
in height and the increase in width is more striking at higher
transmissions. This smearing out is basically absent away from
the resonances.

In order to have a better insight into this behavior the
heights of the fractional peak I1/2 [calculated from (I1/2,max −
I1/2,min)/2 as differences between maximal and minimal peak
values] are plotted as functions of temperature in Fig. 4.
As already discussed, quantum fluctuations reduce the peak
heights at lower temperatures and for higher transmissive
channels. Since the overall peak structure is not altered,
one may misleadingly describe a reduced height within the
classical approach by an effectively enhanced temperature.
However, while it is true that the quantum diffusion coefficient
is typically larger than the classical one (DQ > DCl ≡ kBT ),
due to its dependence on the phase θ the QSE can, in general,
not simply be reduced to the SE by replacing T by an effective
temperature (see the next section). Variations of peak heights
with increasing transmission are illustrated in Fig. 5 for several
fractional resonances. Interestingly, mean values In/k saturate

 0

 0.005

 0.01

 0.015

 0.02

 0.02  0.04  0.08  0.16

H
ei

gh
t I

n/
k

1-τ  

2/3

1/3

1/2

FIG. 5. Peak heights In/k vs 1 − τ for resonances with n/k =
1/2, 1/3, and 2/3 (from top to bottom) at temperature T = 0.006.
Solid lines correspond to the quantum case, and dotted lines
correspond to the classical one. Other parameters are as in Fig. 2.

FIG. 6. (top) FWHM vs T for τ = 0.995 and various fractional
resonances together with (bottom) the relative strength of quantum
fluctuations (FWHMQ− FWHMCl)/FWHMCl . Other parameters are
as in Fig. 2

in the quantum case toward the ballistic limit τ → 1 with larger
deviations from the classical data for higher-order steps.

Apart from reduced heights quantum effects appear as a
widening of the resonances. A natural magnitude to quantify
this is the full width at half maximum (FWHM) of the peaks.
As expected, we see in Fig. 6 that the spreading of the quantum
peaks exceeds that of the classical ones at lower temperatures,
with the FWHM taking larger values for higher harmonics.
Both predictions coincide only at relatively elevated tempera-
tures. The relative strength of quantum fluctuations is larger at
lower fractional steps (cf. Fig. 6).

The crucial question is, of course, whether the influence of
quantum fluctuations seen above could actually be detected in
a real experimental setup. In fact, for contacts with different
transmissions experimental data (see, e.g., Ref. 17) also deviate
from the results of the adiabatic classical theory. There are at
least three possible explanations for this discrepancy: Landau-
Zener (LZ) transitions between adiabatic surfaces, charging
effects and associated quantum fluctuations, and spurious
noise. With respect to the first one, it was shown in Ref. 20
that nonadiabatic LZ transitions enhance the magnitude of
the supercurrent peak in almost-ballistic channels. This effect
is stronger at slightly elevated temperatures and in highly
transmissive channels. Physically, nonadiabatic transitions
between E− and E+ surfaces only occur if the diffusive
passage of the phase through the LZ range around θ = π is
sufficiently fast compared to the instantaneous relaxation time
of momentum. Accordingly, LZ transitions are suppressed
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toward very low temperatures, in contrast to what is observed
for quantum fluctuations. Hence, we are left with either
quantum fluctuations or spurious noise or, what is most likely,
both to explain the addressed differences. Spurious noise alone
can be captured by an effective temperature, which is indeed
the strategy that has been followed in Ref. 17. For this purpose,
we analyze in the following to what extent this concept may
also be applicable to effectively include quantum noise.

V. QUANTUM DIFFUSION AND EFFECTIVE
TEMPERATURE

To describe the dynamics of the phase in the vicinity of a
resonance, we consider, instead of the current-biased circuit
in Fig. 1 (Norton representation), the completely equivalent
circuit where the contact is voltage biased (Thevenin rep-
resentation). Within the adiabatic approximation and in the
overdamped quantum range βEc/πρ 	 1 the voltage across
the contact is then given by (again in physical dimensions)

V ≡ �0θ̇(t) = R I (θ (t)) + Vb + Vac cos(ωt) + R ZQ(θ (t)),

(26)

with the voltage bias Vb = IbR and the quantum noise
ZQ(θ ) = √

β DQ(θ ) ZCl .
For a perfect voltage bias (no noise) and in the absence of

external driving the phase evolves as θ (t) = θ (0) + ω0t , with
the Josephson frequency ω0 = 2eVb/h̄. In the presence of an
ac drive the n/k Shapiro resonance appears if kω0 = nω at
a corresponding voltage Vb = 〈V 〉 = (n/k)�0ω. Thus, right
at the center of the n/k resonance no dc current flows, and
according to (26), the diffusive motion of the phase can be
expressed as

θ (t) = 2ν sin(ωt) + n

k
ωt + δ(t), (27)

with δ being the stochastic component of the phase on top of
the dominating deterministic part θ0(t) = 2ν sin(ωt) + n

k
ωt ,

where ν = eVac/h̄ω. Upon inserting this expression in (26)
one arrives at

�0δ̇(t) = RI (θ (t)) + Vb − n

k
�0ω + ZQ(θ (t)). (28)

Apparently, the dynamics of the stochastic part δ is much
slower than that of the deterministic part since |Vb −
(n/k)ω| � (n/k)ω and I (θ ) ≈ 0. This separation of time
scales can be exploited when calculating time-averaged
currents. Namely, plugging the result (27) into the Fourier
expansion (18) of the current leads first to

I (θ (t)) =
∞∑

m=1

Im(τ )

{
sin[mαnk(t)]

[
J0(2mν)

+ 2
∑
p�1

J2p(2mν) cos(2pωt)
]

+ 2 cos[mαnk(t)]

×
∑
p�1

J2p+1(2mν) cos[(2p + 1)ωt]

}
, (29)

with the abbreviation αnk(t) = (n/k)ωt + δ(t) and the Bessel
function Jp. Taking now time averages over one period of
the external drive and accounting for the time-scale separation

between deterministic and stochastic dynamics of the phase,
we obtain

I (θ (t)) ≈ 2
∑
m�1

Im(τ ) sin[mδ(t)]

×
∑
p�1

J2p(2mν)
〈
cos

(mn

k
ωt

)
cos(2pωt)

〉

− 2
∑
m�1

Im(τ ) sin[mδ(t)]

×
∑
p�0

J2p(2mν)
〈
sin

(mn

k
ωt

)
sin(2pωt)

〉
. (30)

Here, the averages can only take two values, namely, 0 or
1/2, depending on the relation between mn

k
,2p, and (2p + 1).

Eventually, this yields the current phase relation in the vicinity
of the n/k Shapiro resonance,

I (θ (t)) ≈
∑
l�1

(−1)lnIlk(τ )Jln(2lkν) sin[lφk(t)] , (31)

where we put m = l k, 2p = l n, with l ∈ N , and introduced
the scaled phase φk(t) = k δ(t).

Expression (31) is then inserted into (28) to provide an
approximate equation of motion for φk . While, in general,
solutions are accessible only numerically, insight is already
gained by keeping just the term with l = 1 in (31), i.e.,

�0φ̇k = k
(
Vb − n

k
�0ω

)
+ R (−1)nkIkJn(2kν) sin(φk)

+ k R ZQ(θ0 + φk/k) . (32)

In contrast to the classical case, here the noise term also
depends on the phase. In the classical regime, one shows that
(32) is identical to the equation of motion for the phase in the
absence of ac driving if parameters are renormalized:17 Ic,eff =
|kIkJn(2kν)|, Teff = k2T , Vb,eff = k(Vb − n

k
�0ω). This way,

one gains replicas of the Ivanchenko-Zil’berman expression
for the dc supercurrent around each n/k peak, namely,

〈I 〉(Vb) = Ic,efffIZ

(
Vb,eff

Ic,eff
,
Ic,eff

Teff

)
, (33)

with fIZ(x,y) = Im{I1−ixy(y)/I−ixy(y)} being the modified
Bessel function of first kind. Now, in the quantum regime in
leading order we may put ZQ(θ ) ≈ ZQ(θ0) = √

βDQ(θ0) ZCl

such that a similar renormalization applies, however, with a
modified temperature scaling, i.e.,

Tq,eff = k2〈βDQ(θ0(t))〉 T > Teff . (34)

This effective temperature depends also on the dissipation
strength, the driving frequency, and the amplitude and is a
nonlinear function of the actual environmental temperature.
We note that the actual experimental data17 do not follow
the scaling of Teff with k, but rather can only be described
by a much higher effective temperature Teff,exp, which even
affects the integer Shapiro resonances and has been attributed
to spurious noise in the circuitry. The above enhancement
due to quantum fluctuations may partially contribute to
Teff,exp; however, it is not able to completely account for the
discrepancy between Teff,exp and Teff .

Beyond the case for l = 1 progress is achieved by assum-
ing |	βU ′′(θ )| � 1, so that one may expand [cf. Eq. (7)]
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βDQ(θ ) ≈ 1 + 	βI ′(θ ) with

I ′(θ ) ≈
∑
l�1

l q(−1)lnIlk(τ )Jln(2lkν) cos(lφk) . (35)

Thus, if contributions with sufficiently large l are relevant, one
may no longer replace cos(lφk) → 1, meaning that quantum
noise cannot be captured by a global effective temperature.
Instead, its phase dependence leads to a local “temperature,”
and n/k resonances are not simply replicas of the supercurrent
peak. To extract signatures of this breakdown of the universal
scaling behavior (34), the residual spurious noise dominating
Teff,exp must be substantially reduced. We note that the findings
of Grabert et al.12 who studied the supercurrent phase diffusion
in the absence of driving in the tunnel limit and at low
temperatures within a time-dependent perturbation theory,
showed also an extension of the Ivanchenko-Zil’berman
expression similar to (33) but with an effective Josephson
energy. This result was later reproduced within the QSE
formulation.15

VI. SUMMARY

In summary, the impact of quantum fluctuations on
fractional Shapiro resonances, a hallmark of nonsinusoidal
current-phase relations, is analyzed for atomic point con-
tacts with highly transmitting channels in the presence of
microwaves. Known experimental I -V results17,21 exhibit
substantial deviations when compared with predictions from a
classical adiabatic theory. While one explanation has been
the appearance of spurious noise in the circuit, here, we

find that quantum fluctuations may give rise to a similar
effect. Departures from the classical approach become relevant
for highly transmissive channels and for sufficiently low
temperatures. An effective description of quantum noise in
terms of an effective temperature only applies to contacts
with almost-sinusoidal current-phase relations, which may
offer a way to distinguish between classical noise and
quantum fluctuations in highly transmissive contacts. As a
prerequisite, however, unspecific spurious noise sources in the
circuitry must be under control, so that contacts are embedded
in heat baths with temperatures of about T ∼ 40 mK or
below.

The results that we have obtained correspond to Al point
contacts with a superconducting gap of �Al ∼ 200 μeV. For
this metal our model predicts that quantum fluctuations play
a pronounced role for very low temperatures (T < 40 mK).
Landau-Zener transitions are negligible if T � TLZ ∼
0.5�Al/kB ≈ 1 K (for transmissions τ > 1 − 10−4).20 Experi-
mentally, signatures of quantum fluctuations are expected to be
even more dominant for materials with larger superconducting
gaps, such as Nb with �Nb ≈ 3600 μeV, leading to a clear
separation between TLZ ≈ 9 K and the temperature range
where typical experiments are performed (between 30 and
150 mK).
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