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The topological effect of noncrossability of long flexible macromolecules is effectively described by a

slip-spring model, which represents entanglements by local, pairwise, translationally invariant interactions

that do not alter any equilibrium properties. We demonstrate that the model correctly describes many

aspects of the dynamical and rheological behavior of entangled polymer liquids, such as segmental mean-

square displacements and shear thinning, in a computationally efficient manner. Furthermore, the model

can account for the reduction of entanglements under shear.
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The rheological properties of macromolecular solutions
and melts have a significant impact on the polymer process-
ing industry. The fact that two polymer chains cannot cross
through each other in the course of their motion does not
alter equilibrium properties, but dramatically changes dy-
namical behavior. Tomodel the rheology of highmolecular-
weight polymers, Edwards and Doi [1] and de Gennes [2,3]
conceived the motion of an entangled chain as reptation
along a tube, formed by constraints imposed by the neigh-
boring molecules. While algorithms have been devised to
analyze entanglements from the perspective of molecular
simulations [4–7], a fully microscopic description of the
rheology of polymeric fluids remains a challenge [8–17].

Typically, one enforces noncrossability in coarse-
grained bead-spring models by combining a harsh repul-
sive pair interaction with stiff, nearly inextensible bonds
between neighboring beads [4,7,18,19]. This direct ap-
proach is invaluable for elucidating the fundamental, mo-
lecular nature of entanglements. It is, however, very
expensive for simulations of highly entangled polymers.
For a typical bead-spring model [18], the simulations of
chains with 20 entanglements in a box of size L ¼ 4Re,
where Re denotes the root-mean-squared end-to-end dis-
tance, require about 1011 molecular dynamics time steps,
or 102–103 processor years with current technology. A
systematic study of structure formation in spatially inho-
mogeneous multicomponent systems, e.g., phase separa-
tion in blends or self-assembly of block copolymers,
however, requires an alternative approach.

To investigate large-scale properties with a particle-
based description, one needs a more coarse-grained model,
with fewer beads per chain and softer effective interac-
tions. The softness allows the efficient simulation of sys-
tems with realistic values for the invariant degree of

polymerization �N � ð�R3
e=NÞ2 [20]. This is inter alia

important for dynamical as well as equilibrium phe-
nomena, because experiments [21,22] and simulations
[4–7] have shown that the tube diameter is proportional

to Re=
ffiffiffiffiffiffiffi
�N

p
. However, since such models allow beads to

overlap, they do not automatically enforce noncrossability
[23]. Padding and Briels proposed to explicitly enforce
noncrossability [24,25], but this approach becomes ineffi-
cient for dense systems.
Many aspects of the rheology of homogeneous polymer

liquids can be accurately reproduced by modeling entan-
glements between chains by ‘‘slip springs,’’ as originally
envisaged by Doi and Edwards. Several authors have de-
vised single-chain slip-link models [26–29], in which the
chain is constrained at a number of points by slip links,
through which the chain can slide. Slip links either have
fixed positions, or their positions are constrained by tethers
that attach them to fixed points in space.Masubuchi and co-
workers [30–32] incorporated entanglement effects into
multichain simulations on an extremely coarse-grained
level by keeping track only of the positions of slip springs
that connect pairs of chains, and treating segments of chains
between slip springs as straight segments of the primitive
path. To avoid unphysical density variations, the model
includes an ad hoc repulsion that acts between slip links.
Despite many successes, single-chain models suffer

from the following limitations. (i) Since the anchor points
are fixed in space, translational invariance is broken and
the generalization to complex flows or large deformations
is not obvious. (ii) There is no spatial correlation between
pairs of slip links that represent constraints imposed on
chains by a binary entanglement between them. (iii) The
number of slip links is conserved and cannot change in
response to rapid flows. In addition to (iii) and the breaking
of translation invariance by the Langevin equation of mo-
tion, the multichain approach [30,32] (iv) cannot describe
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spatial inhomogeneities (e.g., surfaces or interfaces), be-
cause the molecular structure between slip links is not
resolved and (v) the previous implementation of slip
springs alters the equilibrium statistical mechanics in
ways that have thus far not been adequately understood.

In this Letter, we propose a multichain slip-spring model
that overcomes the above-mentioned limitations of earlier
coarse-grained models of entangled liquids, and is suitable
for strong flows and inhomogeneous systems. We represent
topological constraints by local binary interactions be-
tween chains (‘‘slip-springs’’) that are introduced in a
manner that preserves translational and rotational invari-
ance, and leaves all equilibrium properties of the fluid
unaltered. We demonstrate that the resulting model cap-
tures many dynamical consequences of the topological
entanglement in equilibrium and in strong shear flows in
a natural and computationally efficient manner.

We first discuss how slip springs can be introduced into a
polymer liquid without modifying any equilibrium proper-
ties. We consider a system of n polymers, each comprising
N beads. Let ri denote the position of the ith bead.H 0ðfrgÞ
is the potential energy of a bead-spring model without slip
springs, comprising bonded interactions between neigh-
boring beads in a chain and nonbonded pair interactions
between all beads. In our model, entanglements are repre-
sented by slip springs that introduce an additional bonded
potential VssðrÞ between particular pairs of beads separated
by a distance r. The number of slip springs is allowed to
fluctuate, and is controlled by an activity z ¼ expð�=kBTÞ.
Let nij be the number of slip springs between a particular

pair of beads i and j, which is zero for all pairs except those
few that are connected by slip springs. The partition func-
tion of the system of polymers and slip springs is given by

Z ¼
Z

D½frg�e�H 0ðfrgÞ=kBT
Y
i>j

X1
nij¼0

znij

nij!
e�nijVssðjri�rjjÞ=kBT

(1)

where D½frg� sums over all conformations [33]. The trace
over the slip-spring ‘‘occupation numbers’’ can be explic-
itly performed, giving

Z ¼
Z

D½frg�e�H 0ðfrgÞ=kBT exp
�X
i<j

ze�Vssðjri�rjjÞ=kBT
�

(2)

The effect of introducing slip springs on equilibrium prop-
erties is seen to be equivalent to the addition of an attractive
potential

��ðrÞ ¼ �zkBTe
�VssðrÞ=kBT (3)

between all pairs that can be connected by slip springs.
Thus, we can exactly compensate the effect of slip springs
on equilibrium properties by adding a repulsive potential
���ðrÞ to the pair potential of the original Hamiltonian

H 0. The total potential energy of the resulting model is
given by a sum of the HamiltonianH 0 of the unentangled
liquid, a slip-spring bonded potential that acts only be-
tween beads that are connected by slip springs, and an
additional compensating potential ���ðrÞ that acts be-
tween all monomers that are allowed to be connected with
slip springs.
In the present work, neighboring beads along a chain are

bonded together via a harmonic potential VbðrÞ ¼ 1
2 kbr

2,

where r is the distance between particles. In the absence of
slip springs, nonbonded pairs interact by a bare pair po-
tential of the form VnbðrÞ ¼ �

2 ð1� r=�Þ2 for r < � [34].

The slip-spring potential is modeled by a finitely extensible
nonlinear elastic potential VssðrÞ ¼ � 1

2 kssr
2
ss ln½1�

ðr=rssÞ2�, which diverges as r ! rss [35]. We choose a
finite-range potential for the slip springs because the range
of the compensating potential ���ðrÞ is the same as the
range of allowed values of the slip-spring bond length. We
choose rss to be comparable to the range � of the bare
nonbonded interaction to avoid any large increase in the
number of nonbonded neighbor interactions. In the present
work, we use kb ¼ 12kBT=�

2, � ¼ 24kBT, rss ¼ 1:2�,
kssr

2
ss=2 ¼ 17:28kBT, and a bead density ��3 ¼ 2.

The conformation of polymers and slip springs are
updated by a hybrid Monte Carlo (MC) scheme. At each
time step, we choose with fixed probabilities between a
‘‘move’’ that updates the segment positions by a short
molecular dynamics simulation [36] with a dissipative
particle dynamics (DPD) thermostat [37,38] and one of
several MC moves illustrated in Fig. 1 that can move,
create, or destroy slip springs. We use a DPD friction
coefficient � ¼ 0:5kBT�MD=�

2 and an integration time

step of �t ¼ 0:01�MD, where �MD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2=kBT

p
and m

denotes the bead mass. Each such short DPD move is
chosen with a probability 0.5, and propagates the confor-
mations by �MD, corresponding to a bead displacement of
order of the bond length. This integration scheme con-
serves momentum, resulting in hydrodynamic behavior
on long time and length scales. Otherwise, we update the
slip-spring configuration with one of the MC moves. The

FIG. 1 (color online). Monte Carlo updates of slip-spring
conformations: (a) Shuffling of a slip spring along the backbone
of a chain molecule (reptation), (b) grand canonically creating or
deleting a slip spring at a chain end, and (c) transferring one end
of a slip spring from one chain to another bead (constraint
release and re-entanglement).
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‘‘shuffle’’ move [Fig. 1(a)] transfers one end of a slip
spring from one segment to the neighboring one along
the same chain, and is accepted with a Metropolis accep-
tance probability. This move allows reptation of a chain
through a slip spring. The ‘‘create-destroy’’ move shown in
Fig. 1(b) instead allows a slip spring to be deleted or a new
slip spring to be created at a chain end, and is necessary to
maintain a fixed activity for slip springs. To add a slip
spring at the chain end, we select one slip-spring partner

according to its Boltzmann factor e�Vss=kBT among the n0
possibilities with slip-spring lengths �ri, and accept this

move with probability minð1; nNz
nssþ1

Pno
i¼1 e

�Vssð�riÞ=kBTÞ,
where nN is the total number of segments and nss the
number of slip springs before the move. A related accep-
tance condition is applied to the reverse move, slip-spring
deletion, in order to fulfill detailed balance. The transfer
move shown in Fig. 1(c) can be applied when one end of a
slip spring is at the chain end and transfers the other end to
another bead that may belong to another chain. To this end,
one of all possible slip-spring partners within the range of
Vss is chosen with a probability proportional to the

Boltzmann factor e�Vss=kBT . This move mimics the destruc-
tion of an entanglement and the rapid re-creation of a new
entanglement. To rapidly generate equilibrated starting
configurations, we can also use a move (not shown) that
can create or destroy slip springs between any two seg-
ments, anywhere along a chain. In simulations that are used
to study dynamical behavior, however, we allow slip
springs to be created and destroyed only at the chain ends.

We control the slip-spring activity, z, rather than their
number. The inset of Fig. 2 presents the linear dependence
of the average concentration of slip springs on their activity

(see Supplemental Material [39]). As expected, the slip-
spring concentration is almost independent of chain length
N. Figure 2 demonstrates the importance of the compen-
sating potential in a system with a low bead density, ��3 ¼
0:22. In the absence of the compensating potential, upon
increasing the slip-spring activity z, we observe a chain
collapse. With the compensating potential, the chain size
remains independent of z. The effect of the uncompensated
effective attraction induced by slip springs is less dramatic
in denser liquids, but is always present, and can be quali-
tatively important in some situations, e.g., at liquid-vapor
coexistence, where a small additional attraction may cause
cavitation.
While the combination of slip springs and compensating

potential does not affect chain conformations, it has pro-
nounced consequences for the dynamics. In Fig. 3, we
present the mean-square displacement g1ðtÞ for all seg-
ments with and without slip springs for N ¼ 128. The
activity of slip springs is adjusted to z ¼ 35:87, yielding
on average 32 slip springs per chain. Without slip springs,
the single-chain dynamics is very close to Rouse dynamics

[40], for which g1ðtÞ / t1=2 at intermediate times. With slip
springs, the segment motion is significantly slowed down,
and the different power laws predicted by the tube theory
emerge naturally. Note the appearance of a wide regime in

which g1ðtÞ / t1=4, as expected for highly entangled chains
at times between the entanglement and Rouse times.
The tube model is an idealized theory of the dynamics

of entangled polymers. It has two phenomenological

FIG. 2 (color online). Chain dimensions Re as a function
of the activity of slip springs at density �N ¼ 4, without and
with compensating potential ���. Inset: Average number
hnssi=ð2nNÞ of slip springs per monomer as a function of the
slip-spring activity z.

FIG. 3 (color online). Mean-square displacement g1ðtÞ of all
segments and of the molecule’s center of mass g3, with and
without slip springs for N ¼ 128. The activity of slip springs is
z ¼ 35:87, resulting in an average distance between the slip
springs of four segments; hR2

ei ¼ 114� 1�2. The simulation
cell size is L ¼ 20�. The lines show the predictions of the
tube model, where Ne is extracted from the behavior g1 / t1=4

of the entangled system and the measured self-diffusion coeffi-
cient D of the unentangled system.
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parameters: A segment friction coefficient � and an entan-
glement lengthNe. We can infer values for � andNe for our
more microscopic slip-spring model by comparing simu-
lation results for g1ðtÞ to tube model predictions. Since the
segment displacements of our models with and without slip
springs coincide at short times, the friction coefficients for
these two models are approximately equal. We extract a
value for � from the long-time diffusion coefficient
D ¼ limt!1g1ðtÞ=6t of the unentangled system by using
the Rouse model, setting D ¼ kBT=�N. To extract a value
for Ne, we then fit the behavior of g1ðtÞ for the entangled

system (with slip springs) in the intermediate t1=4 regime
[41] (cf., Supplemental Material [39]). This leads to the
estimate Ne ¼ 13:6. We determined Ne by fitting behavior

in this t1=4 regime, rather than from the long-time diffusion
coefficient, because we expect the dynamical behavior at
late time to be significantly affected by contour length
fluctuation effects that are captured by our slip-spring
model, but not by the idealized tube model. Our estimate
implies that, for our model, one entanglement is repre-
sented by roughly three slip springs.

We have used the reverse nonequilibrium molecular
dynamics (RNEMD)method [42] to simulate a steady shear
flow. In this scheme, we divide the simulation cell into two
halves, separated by narrow bands in which controllable
opposing forces are applied by exchanging momenta be-
tween pairs of particles in these two bands. This creates a
sawtooth velocity profile that contains two wide regions
with opposing, nearly homogeneous velocity gradients. The
viscosity, �ð _�Þ ¼ �xz= _�, is calculated from the velocity
gradient _� ¼ @hvxðzÞi=@z in the middle of these regions.

Figure 4 presents the viscosity,� ¼ �xz= _�, as a function
of shear rate. We define the Weissenberg number by Wi �
_�R2

e=D. For a small Wi, we observe a Newtonian plateau
characterized by a viscosity that increases with chain
length, N. Experiments on entangled polymer melts yield
a Newtonian viscosity �0 ¼ lim _�!0�ð _�Þ that varies with
N as �0ðNÞ / Nx, where x ¼ 3:4 [1]. The ratio of the
Newtonian viscosities for the two chain lengths considered
here, N ¼ 32 and 64, gives x ¼ 3:55, which is very similar
to that observed in experiments. For high shear rates, we
observe shear thinning, and � becomes independent of N.
The viscosity obeys a power law, ��Wi�	, with 	’0:64,
in reasonable agreement with experiments [43]. In this
nonlinear regime, we also observe a pronounced deforma-
tion of molecular conformations.

Since we perform the simulations in an ensemble with a
fluctuating number of slip springs, at a constant activity z,
the average number of slip springs per chain can change
with shear rate. Interestingly, we observe a modest de-
crease in the number of slip springs with increasing shear
rate. This is a natural result of flow-induced retraction of
the chain ends in the tube model [1], which tends to sweep
individual entanglements towards the end of the chains,
where they can be destroyed. We have confirmed that this

phenomenon is independent of the frequency of MCmoves
that attempt to create and destroy slip springs at the chains
ends, as long as this frequency exceeds a minimum value
much lower than that used in our simulations. We believe
that the phenomenon is inherent in any model that allows
entanglements to be created and destroyed only at chain
ends, that allows for flow-induced retraction, and that does
not artificially constrain the total number of slip springs.
In summary, we have presented the effect of entangle-

ments in polymer liquids without explicitly enforcing non-
crossability by binary, local slip springs. Our model retains
the equilibrium properties of the original model without
slip springs. Similar to Likhtman’s slip-link model,
our model describes the effect of entanglements on the
single-chain dynamics and viscosity in equilibrium. The
model automatically incorporates contour length fluctua-
tions and constraint release. Because it preserves trans-
lation invariance, our model additionally can be applied to
problems involving flow and strong deformations. We
demonstrate that the model exhibits realistic shear thin-
ning, deformation of conformations, and a decrease of the
number of entanglements at high shear rates. While we
have only considered bulk homopolymer melts, our model
can be generalized to thin films or multicomponent poly-
mer liquids, e.g., homopolymer blends or diblock copoly-
mers materials [44], branched or star molecular
architectures, and entangled networks. The model is also
well suited to study time-dependent flows, such as step
strain and start-up of continuous shear, which is contro-
versial in the literature.
We have benefited from stimulating discussions

with A. E. Lihtkman, A. Ramı́rez-Hernández, and

FIG. 4 (color online). Main panel: Shear viscosity � as a
function of shear rate _� for the system with and without slip
springs. The slip-spring activity results in approximately four
monomers between slip springs in equilibrium. Inset: Decrease
of the number of entanglements per chain with shear rate _� for
N ¼ 32.
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[5] M. Kröger, Comput. Phys. Commun. 168, 209 (2005).
[6] C. Tzoumanekas and D.N. Theodorou, Macromolecules

39, 4592 (2006).
[7] N. Uchidaa, G. Grest, and R. Everaers, J. Chem. Phys.

128, 044902 (2008).
[8] C. Tzoumanekas and D.N. Theodorou, Curr. Opin. Solid

State Mater. Sci. 10, 61 (2006).
[9] M. Guenza, J. Phys. Condens. Matter 20, 033101 (2008).
[10] A. E. Likhtman, J. Non-Newtonian Fluid Mech. 157, 158

(2009).
[11] J. P. Wittmer, H. Meyer, A. Johner, T. Kreer, and

J. Baschnagel, Phys. Rev. Lett. 105, 037802 (2010).
[12] J.-X. Hou, C. Svaneborg, R. Everaers, and G. S. Grest,

Phys. Rev. Lett. 105, 068301 (2010).
[13] J. Cao and A. E. Likhtman, Phys. Rev. Lett. 104, 207801

(2010).
[14] D.M. Sussman and K. S. Schweizer, Phys. Rev. Lett. 107,

078102 (2011).
[15] D.M. Sussman and K. S. Schweizer, J. Chem. Phys. 135,

131104 (2011).
[16] J. Farago, H. Meyer, and A.N. Semenov, Phys. Rev. Lett.

107, 178301 (2011).
[17] J. Cao and A. E. Likhtman, Phys. Rev. Lett. 108, 028302

(2012).
[18] G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628

(1986).
[19] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057

(1990).
[20] M. Müller, J. Stat. Phys. 145, 967 (2011).
[21] L. J. Fetters, D. J. Lohse, S. T. Milner, and W.W.

Graessley, Macromolecules 32, 6847 (1999).
[22] L. J. Fetters, D. J. Lohse, and W.W. Graessley, J. Polym.

Sci., Part B: Polym. Phys. 37, 1023 (1999).
[23] M. Müller and K. C. Daoulas, J. Chem. Phys. 129, 164906

(2008).
[24] J. T. Padding and W. J. Briels, J. Chem. Phys. 115, 2846

(2001).

[25] J. T. Padding and W. J. Briels, J. Chem. Phys. 117, 925
(2002).

[26] A. E. Likhtman, Macromolecules 38, 6128 (2005).
[27] J. Ramirez, S. K. Sukumaran, and A. E. Likhtman,

J. Chem. Phys. 126, 244904 (2007).
[28] D.M. Nair and J. D. Schieber, Macromolecules 39, 3386

(2006).
[29] J. D. Schieber, D.M. Nair, and T. Kitkrailard, J. Rheol. 51,

1111 (2007).
[30] Y. Masubuchi, J. I. Takimoto, K. Koyama, G. Ianniruberto,

G. Marrucci, and F. Greco, J. Chem. Phys. 115, 4387
(2001).

[31] J. Oberdisse, G. Ianniruberto, F. Greco, and G. Marrucci,

Rheol. Acta 46, 95 (2006).
[32] Y. Masubuchi, T. Uneyama, H. Wanatabe, G. Ianniruberto,

F. Greco, and G. Marrucci, J. Chem. Phys. 132, 134902
(2010).

[33] The above analysis allows for several variations, distin-

guished by whether or not we allow a single pair of beads

to be connected by more than one slip spring, and by
different choices of which pairs we allow to be connected

by slip springs. We allow slip links to exist between all

segments except those that are already connected by

covalent bonds, and allow an arbitrary number of slip
springs to form between any pair segments (Bose statis-

tics), as implied by the sum of nij ¼ 0; . . . ;1.

Alternatively, we could have implemented Fermi statistics,
with nij � 1. Since hniji��3=V�1 (see Supplemental

Material at http://link.aps.org/supplemental/10.1103/

PhysRevLett.109.148302 [39]) we would expect nearly

identical results.
[34] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423

(1997).
[35] Note that our slip-spring potential is anharmonic; alter-

native forms could be used (see [15]).
[36] P. Nikunen, M. Karttunen, and I. Vattulainen, Comput.

Phys. Commun. 153, 407 (2003).
[37] P. J. Hoogerbrugge and J.M.V.A. Koelman, Europhys.

Lett. 19, 155 (1992).
[38] P. Warren and P. Espanol, Europhys. Lett. 30, 191196

(1995).
[39] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.148302 for the

equation of state for the slip springs and the asymptotic
forms of the mean-square displacements in the Rouse and

tube models.
[40] P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).
[41] A. E. Likhtman and T. C. B.M. Leish, Macromolecules 35,

6332 (2002).
[42] F. Müller-Plathe, Phys. Rev. E 59, 4894 (1999).
[43] R. Stratton, J. Colloid Interface Sci. 22, 517 (1966).
[44] A. Ramı́rez-Hernández et al., (to be published).

PRL 109, 148302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

5 OCTOBER 2012

148302-5

http://dx.doi.org/10.1063/1.1675789
http://dx.doi.org/10.1021/ma60052a011
http://dx.doi.org/10.1126/science.1091215
http://dx.doi.org/10.1126/science.1091215
http://dx.doi.org/10.1016/j.cpc.2005.01.020
http://dx.doi.org/10.1021/ma0607057
http://dx.doi.org/10.1021/ma0607057
http://dx.doi.org/10.1063/1.2825597
http://dx.doi.org/10.1063/1.2825597
http://dx.doi.org/10.1016/j.cossms.2006.11.003
http://dx.doi.org/10.1016/j.cossms.2006.11.003
http://dx.doi.org/10.1088/0953-8984/20/03/033101
http://dx.doi.org/10.1016/j.jnnfm.2008.11.008
http://dx.doi.org/10.1016/j.jnnfm.2008.11.008
http://dx.doi.org/10.1103/PhysRevLett.105.037802
http://dx.doi.org/10.1103/PhysRevLett.105.068301
http://dx.doi.org/10.1103/PhysRevLett.104.207801
http://dx.doi.org/10.1103/PhysRevLett.104.207801
http://dx.doi.org/10.1103/PhysRevLett.107.078102
http://dx.doi.org/10.1103/PhysRevLett.107.078102
http://dx.doi.org/10.1063/1.3651143
http://dx.doi.org/10.1063/1.3651143
http://dx.doi.org/10.1103/PhysRevLett.107.178301
http://dx.doi.org/10.1103/PhysRevLett.107.178301
http://dx.doi.org/10.1103/PhysRevLett.108.028302
http://dx.doi.org/10.1103/PhysRevLett.108.028302
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1063/1.458541
http://dx.doi.org/10.1063/1.458541
http://dx.doi.org/10.1007/s10955-011-0302-z
http://dx.doi.org/10.1021/ma990620o
http://dx.doi.org/10.1002/(SICI)1099-0488(19990515)37:10%3C1023::AID-POLB7%3E3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1099-0488(19990515)37:10%3C1023::AID-POLB7%3E3.0.CO;2-T
http://dx.doi.org/10.1063/1.2997345
http://dx.doi.org/10.1063/1.2997345
http://dx.doi.org/10.1063/1.1385162
http://dx.doi.org/10.1063/1.1385162
http://dx.doi.org/10.1063/1.1481859
http://dx.doi.org/10.1063/1.1481859
http://dx.doi.org/10.1021/ma050399h
http://dx.doi.org/10.1063/1.2746867
http://dx.doi.org/10.1021/ma0519056
http://dx.doi.org/10.1021/ma0519056
http://dx.doi.org/10.1122/1.2790460
http://dx.doi.org/10.1122/1.2790460
http://dx.doi.org/10.1063/1.1389858
http://dx.doi.org/10.1063/1.1389858
http://dx.doi.org/10.1007/s00397-006-0096-0
http://dx.doi.org/10.1063/1.3370346
http://dx.doi.org/10.1063/1.3370346
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.148302
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.148302
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1016/S0010-4655(03)00202-9
http://dx.doi.org/10.1016/S0010-4655(03)00202-9
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.148302
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.148302
http://dx.doi.org/10.1063/1.1699180
http://dx.doi.org/10.1021/ma0200219
http://dx.doi.org/10.1021/ma0200219
http://dx.doi.org/10.1103/PhysRevE.59.4894
http://dx.doi.org/10.1016/0021-9797(66)90047-6

