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Abstract

We prove a variety of results describing the possible diagonals of tuples of commuting hermi-
tian operators in type II1 factors. These results are generalisations of the classical Schur-Horn
theorem to the infinite dimensional, multivariable setting. Our description of these possible di-
agonals uses a natural generalisation of the classical notion of majorization to the multivariable
setting. In the special case when both the given tuple and the desired diagonal have finite joint
spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are
able to prove strong approximate results. Unlike the single variable case, the multivariable case
presents several surprises and we point out obstructions to extending our complete description
in the finite spectrum case to the general case. We also discuss the problem of characterizing
diagonals of commuting tuples in B(H) and give approximate characterizations in this case as
well.
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1 Introduction

The classical Schur-Horn theorem characterizes the possible diagonals of a hermitian operator on
Cd. Indeed, fix an orthonormal basis {e1, · · · , ed} for Cd and let E be the restriction map (acting
on d × d matrices) that sends a matrix to its diagonal. Given hermitian diagonal matrices A and
S, the following are equivalent (see [7])

1. There is a unitary U such that E(USU∗) = A.

2. The majorization relations hold : If (µ1, · · · , µd) and (λ1, · · · , λd) are the diagonal entries of
A and S respectively (i.e. their eigenvalues), arranged in non-increasing order, then

k∑
m=1

µm ≤
k∑

m=1

λm , 1 ≤ k ≤ d ,
d∑

m=1

µm =
d∑

m=1

λm .

The above line of investigation can be fruitfully extended to type II1 factors; Here, the term
“diagonal of an operator” refers to the trace preserving conditional expectation of an operator
onto a masa. As pointed out by Arveson and Kadison in [5], it is natural to ask for a description
of the relationship between a hermitian operator in a type II1 factor and its possible diagonals.
This problem admits a complete answer in terms of a concrete set of inequalities analogous to the
matrix case. Given hermitian operators A and S in a type II1 factor M, majorization is defined
by a system of inequalities analogous to the matrix case (see [11, 15]). Indeed, let fA and fS be
the non-increasing rearrangements of A and S respectively; then, we say that A is majorized by S,
denoted A ≺ S if we have that∫ r

0
fA dm ≤

∫ r

0
fS dm , 0 ≤ r ≤ 1,

∫ 1

0
fA dm =

∫ 1

0
fS dm . (1)

Let A be a masa in M and let E denote the normal conditional expectation onto A. Given a
hermitian operator S in M, let O(S) denote the norm closure of the unitary orbit of S,

O(S) := {USU∗|U ∈ U(M)}.

Further, let us use the notation S ≈ T for hermitian operators S and T to denote that S and T are
approximately unitarily equivalent, that is T ∈ O(S) (or equivalently S ∈ O(T )). It is well known
that S ≈ T iff they have the same moments or equivalently if the non-increasing rearrangements of
S and T coincide.

Kadison and Arveson proved in [5] that if A ∈ A and S ∈M are hermitian operators such that
E(T ) = A for some T ∈ O(S) then we have that A ≺ S and they conjectured that the converse
was true. The Schur-Horn theorem in type II1 factors [21] then states:

Theorem 1 (The Schur-Horn theorem in II1 factors) (Ravichandran, 2012) LetM be a type
II1 factor, A a masa in M and let E denote the trace preserving conditional expectation onto A.
Given hermitian operators A ∈ A and S ∈M such that A ≺ S then, there is an element T ∈ O(S)
such that

E(T ) = A .

Secondly, given hermitian operators A and S such that A ≺ S, there is some masa B so that
EB(S) ≈ A.
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The two statements above are subtly different and neither follows from the other. The first
statement is what Kadison and Arveson referred to as the Schur-Horn theorem in type II1 factors.
The solution in [21] builds upon previous work of Argerami and Massey [1, 3], Dykema, Hadwin,
Fang and Smith [10] and Bhat and Ravichandran [20].

We remark that Theorem 1 above implies the so-called carpenter theorem in type II1 factors
conjectured by R.V. Kadison in [13]:

Theorem 2 (The carpenter theorem in II1 factors) (Ravichandran, 2012) Let M be a type
II1 factor, A a masa in M and let E denote the trace preserving conditional expectation onto A.
Given a positive contraction A ∈ A there exists an orthogonal projection P ∈M such that

E(P ) = A .

In recent work, Kennedy and Skoufranis have extended the Schur-Horn theorem above to gen-
eralise Thompson’s theorem [22] describing the possible singular values of a matrix with prescribed
diagonal to the setting of type II1 factors [16]. Upon the completion of this paper, we came to
know that they have independently proved results in the multivariable case, analogous to ours.

Given the Schur-Horn theorem for single hermitians, a natural next problem is to investigate if
there are multivariable analogues of the above results; Can the joint diagonals of tuples of commut-
ing hermitians can be effectively described in terms of spectral relations? There are currently no
complete descriptions of this kind, even in the matrix case (see [6, 23] and the reference therein);
The goal of this paper is to show that this is an intriguing problem in both continuous(finite) and
discrete factors.

We approach this problem by first defining a notion of multivariate majorization. In the single
variable case, results of Hiai [11] show that the majorization inequalities in Eq. (1) are equivalent to
the existence of a doubly stochastic map D (a linear, unital, positive, trace preserving map acting
on M) such that D(S) = A. With this in mind, it is natural to define majorization for tuples as
follows.

Definition 3 (Joint Majorization) Given tuples S = (S1, · · · , Sn) and A = (A1, · · · , An) in a
type II1 factor or a matrix algebra M, say that A is majorized by S (which we will denote by
A ≺ S) if there is a doubly stochastic map D on M such that D(Sm) = Am for 1 ≤ m ≤ n.

In case both A and S are tuples of commuting hermitian operators in a type II1 factor, the
relation A ≺ S was considered in [2] (based on Hiai’s work on majorization between normal
operators [12]), where several characterizations of this notion were shown; indeed, joint majorization
between tuples of commuting hermitian operators can be characterized in terms Choquet’s notion
of comparison of measures and also in terms of tracial inequalities using convex functions (that we
discuss in the next section). Apart from this, the fact that the set {A : A ≺ S} has a pleasing
topological structure (it is weak* closed as well as convex) makes this a natural notion.

Remark 4 (Notation) Throughout the paper we will deal with tuples of hermitians, for which
we will consistently use the following notations. Suppose S = (S1, · · · , Sm) is a tuple of operators:
the expression φ(S) where φ is a map on the algebra containing the operators will be understood
to mean φ(S) := (φ(S1), · · · , φ(Sn)). We will encounter the conditional expectation onto a masa
E and the trace τ used in this way on tuples repeatedly throughout this paper. Tuples of operators
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will always be written out in bold. We will use the notation, ‖S‖ := max{‖Si‖ : 1 ≤ i ≤ n}.
Additionally, we will use bold greek letters, ααα for instance, to refer to a tuple of scalars ααα =
(α1, · · · , αn). In both cases, the expression qS or qααα where q is a scalar (or an operator), will refer
to (q S1, · · · , q Sn) and (qα1, · · · , qαn) respectively. Finally, the expression S + T will refer to the
tuple (S1 + T1, · · · , Sn + Tn).

Example 5 Let A be a masa in the type II1 factor M, let E be the trace preserving conditional
expectation onto A and let U ∈ M be a unitary operator. Then, it is easy to see that (·) 7→
E(U (·)U∗) is a doubly stochastic map. Hence, for every n-tuple S = (S1, · · · , Sn) ∈ Mn we have
that E(U SU∗) ≺ S.

Let U(M) denote the unitary group of the type II1 factorM (or the algebra of m×m complex
matrices). As in the single variable case, given S = (S1, · · · , Sn) ∈Mn, we define

U(S) := {U SU∗ : U ∈ U(M)} and O(S) = U(S)
||
,

that is, the (joint) unitary orbit of S and the norm closed (joint) unitary orbit of S, respectively. It
is easy to see that when S is an n-tuple of commuting hermitians, then O(S) is not only ‖ · ‖-closed
(by construction) but it is also closed in the SOT(strong operator topology).

A very satisfactory multivariable Schur-Horn theorem would then be the following characteri-
zation of the joint diagonals of a commuting tuple of hermitians operators in a type II1 factor:

Statement 6 (Multivariable Schur-Horn) LetM be a type II1 factor, A a masa inM and let
E denote the trace preserving conditional expectation onto A. Let A and S be n-tuples of commuting
hermitian operators with A ∈ An and S ∈Mn such that A ≺ S. Then, there is a tuple T in O(S)
such that

E(T) = A .

Taking into account Example 5, Statement 6 is equivalent to the identity

E(O(S)) = {A ∈ An : A ≺ S} , (2)

where S is an n-tuple of commuting hermitian operators in M and E denotes the conditional
expectation onto a masa A ⊂M.

Unfortunately, Statement 6 does not hold in full generality, see section 1.1. The main result in
this paper is that Statement 6 does hold when both tuples A and S have finite spectrum (Theorem
23). We then use this to prove the following result (see section 3.3 for its proof):

Theorem 7 (The Approximate Multivariable Schur-Horn theorem) Let M be a type II1
factor, A a masa in M and let E denote the trace preserving conditional expectation onto A. For
any n-tuple S of commuting hermitians in M,

E(U(S))
||

= {A ∈ An : A ≺ S} . (3)
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Remark 8 With the notations of Theorem 7, notice that this result is weaker than Statement 6 as
a description of the set {A ∈ An : A ≺ S}: to see this, compare the identities of Eqs. (2) and (3)
using the fact that, by the norm continuity of E, we always have that

E(O(S)) ⊂ E(U(S))
||
.

It can be shown (see Proposition 15) that for every commuting tuple of positive contractions
A, there is a commuting tuple of projections P such that A ≺ P. It is then natural to conjecture
the following extension of the carpenter theorem for type II1 factors (which is a particular case of
Statement 6 above):

Conjecture 9 (The Multivariable carpenter theorem) LetM be a type II1 factor, A a masa
in M and let E denote the trace preserving conditional expectation onto A. If A is an n-tuple of
positive contractions in A then, there is a n-tuple of commuting projections P such that

E(P) = A .

We feel that Conjecture 9 (the multivariable carpenter theorem) does hold; Indeed, it holds when
the majorized tuple has finite spectrum (Theorem 24). By the previous remarks and Theorem 7
we get the following result (see section 3.3 for its proof):

Theorem 10 (Approximate multivariable carpenter theorem) Let M be a type II1 factor,
A a masa in M and let E denote the trace preserving conditional expectation onto A. If A is an
n-tuple of positive contractions in A and ε > 0 then, there is a n-tuple of commuting projections P
such that

‖E(P)−A‖ ≤ ε .

In another direction, it is well known that in B(H) there is a difference between approximate
diagonals and true diagonals of selfadjoint operators. For example, the celebrated Kadison’s Car-
penter’s theorem in B(H) in [14] shows that there are some interesting obstructions for a sequence
(an)n∈N in [0, 1] such that

∑
n∈N an =

∑
n∈N(1− an) = ∞ to be the diagonal - with respect to an

orthonormal basis of H - of an orthogonal projection, while the results from [18] show that any such
sequence in [0, 1] can be ‖ · ‖∞-approximated by diagonals of orthogonal projections in B(H) (i.e.
any such sequence in [0, 1] is an approximate diagonal of orthogonal projections in B(H)). Arveson
extended Kadison’s results in this matter (see [4]) and showed that there are obstructions (besides
the expected trivial ones) for a sequence of complex numbers to be the diagonal of a normal opera-
tors with finite spectrum (see section 4.2 for details). The following result - that partially extends
the results on approximate diagonals from [18] - shows that for the normal operators considered in
[4] there are no non-trivial obstructions for a sequence to be an approximate diagonal (see Section
4.2 for its proof).

Theorem 11 (Approximate diagonals of some normal operators in B(H)) Let A ⊂ B(H)
be an atomic masa and let S be a collection of n commuting hermitians with finite joint spectrum,
with the points in the spectrum all having infinite multiplicity and lying on the vertices of a convex
set CX in Rn. Then,

E(UH(S))
||

= {A ∈ Ansa : σ(A) ⊂ CX } ,
where σ(A) denotes the joint spectrum of the tuple of commuting hermitian operators A.
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1.1 Obstructions to a multivariable Schur-Horn theorem

We now discuss a couple of obstructions to a multivariable Schur-Horn theorem. The first, in the
context of matrix algebras is due to Arveson, who observed this when analyzing the possible diag-
onals of normal operators in [4]. He noted that the problem of characterizing diagonals of normal
operators is equivalent to characterizing the joint diagonals of a pair of commuting hermitians.

In the matrix context, given d× d normal matrices A and S with eigenvalues µ, λ ∈ Cd respec-
tively then A ≺ S (or equivalently the commuting two tuple (Re(A), Im(A)) is majorized by the
commuting two tuple (Re(S), Im(S))) if and only if there exists an d× d doubly stochastic matrix
D (i.e. D has non-negative entries and the sum of the entries in each row and column equals 1)
such that Dλ = µ (see Proposition 18 below).

Now, let A and S be 3 × 3 normal complex matrices with eigenvalues µ = (
1

2
,
i

2
,
1 + i

2
) and

λ = (1, 0, i). Let D be the doubly stochastic matrix

D =

 1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

 . (4)

Then, we have that Dλ = µ. However, there is no 3× 3 unitary U so that E3(USU
∗) = A, where

E3 is the restriction to the diagonal, as a map acting on 3× 3 matrices. Interestingly, by doubling
the multiplicities both of the eigenvalues and the diagonal entries, we can resolve the problem. This
is discussed in section 4.1.

Remark 12 Let Md denote the algebra of d × d complex matrices and let Ad ⊂ Md denote the
diagonal masa inMd. Let Ed be, as before, the restriction to the diagonal (i.e., the trace preserving
conditional expectation onto Ad). The previous example shows that in general, for a n-tuple S of
commuting hermitian matrices in Md, the closed sets

Ed(U(S)) and {A ∈ And : A ≺ S}

are not equal, as opposed to the one variable case (d = 1) in which the equality of these sets (for
every such S = S) is equivalent to the Schur-Horn theorem for matrices.

In light of Remark 12 we point out that Theorem 7 is somewhat unexpected, as its finite dimen-
sional (matrix) version does not hold (as opposed to Theorem 1 - which is the natural extension to
the type II1 factor setting of the classical Schur-Horn theorem).

The above obstruction does not emerge in type II1 factors, due to their “diffuseness”; There is
however a different kind of obstruction that arises because of this very “diffuseness”. Let R be the
hyperfinite type II1 factor, let A be a masa in R and let E denote the trace preserving conditional
expectation onto A. Choose a unitary U that generates A. Next, consider the masa A⊗A inside
R⊗R and consider the tuple (U ⊗ I, I ⊗ U). The map ∆ from R⊗R to R (considered as a map
from R to itself) given by

∆(X ⊗ Y ) = τ(Y )E(X)
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on simple tensors and extended linearly to all of R⊗R is a doubly stochastic map. We have that

∆(U ⊗ I) = U, ∆(I ⊗ U) = τ(U) I

that is,
(U, τ(U) I) ≺ (U ⊗ I, I ⊗ U) .

Notice that these relations correspond to a joint majorization between the 4-tuples of commuting
hermitians given by real and imaginary parts of the normal operators in each 2-tuple. However,
there is no element T = (A,B) in O((U ⊗ I, I ⊗ U)) so that E(T) = (U, τ(U) I). This is seen as
follows: Let Un be a sequence of unitaries so that both Un(U ⊗ I)U∗n and Un(I ⊗U)U∗n converge in
norm to the commuting unitary operators A and B respectively and additionally,

E(A) = U .

We note that

τ((A− U)∗(A− U)) = τ(AA∗)− 2 Re τ(A∗ U) + τ(U U∗)

= 2− 2 Re τ(E(A)∗ U) = 0 .

implying that A = U . Consequently, noting that U generates A and that A commutes with B, we
see that B also lies in A. Hence, E(B) = B ∈ O(I ⊗ U) cannot possibly be a scalar. This rules
out Statement 6, which was the natural (straightforward) extension of the Arveson-Kadison type
Schur-Horn theorem.

Remark 13 LetM be a type II1 factor, let A ⊂M be a masa and let E denote the trace preserving
conditional expectation onto A. As a consequence of the results in [21], we get that for an hermitian
operator S ∈M then

E(O(S)) = E(U(S))
||

i.e. diagonals and approximate diagonals of S coincide. On the other hand, the previous example
shows that in the multivariable case the sets

E(O(S)) and E(U(S))
||

of joint diagonals and approximate joint diagonals of S do not coincide (which is in accordance with
the distinction between diagonals and approximate diagonals of some normal operators in B(H),
see the comments before Theorem 11). Thus, there are obstructions for an tuple A ∈ An to be a
joint diagonal of S. The nature of these obstructions is not yet understood.

1.2 Outline of the paper

We collect a few facts about Joint majorization in section 2, most importantly relating it to Cho-
quet’s notion of comparison of measures. We also provide a way of concretely checking this when
both tuples of operators have finite spectrum. Section 3 contains a proof of the Schur-Horn theorem
when both tuples have finite spectrum - We accomplish this by first proving the result when the
majorized tuple consists of scalars; we then use the scalar case to prove the result in case both
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commuting tuples have finite spectrum, using the equivalence between majorization and Choquet’s
notion of comparison of measures. We then collect consequences of this theorem, including an
approximate Schur-Horn theorem for general tuples of commuting hermitians and an approximate
multivariable carpenter theorem. In section 3.4, we adapt an idea of Dykema et al [10] to show
that we can find diffuse abelian orthogonal subalgebras of masas (in the sense of Popa) and use
this to show the partial validity of Statement 6 in certain II1 factors. In section 4.1, we digress to
discuss the situation in matrix algebras, obtaining some approximate representations of the action
of doubly stochastic matrices in terms of dilations. We end this section with a simple characteriza-
tion of approximate diagonals of tuples of commuting hermitians with finite spectrum (with each
element in the spectrum being of infinite multiplicity).

2 Joint majorization in type II1 factors

Let M be a type II1 factor. Given tuples of operators A = (A1, · · · , An) and S = (S1, · · · , Sn) in
M, recall(Definition 3) that A is majorized by S, denoted A ≺ S if there is a doubly stochastic
map D (unital, positive and trace preserving) from M to itself such that D(S) = A.

When both A and S are tuples of commuting hermitians, the relation A ≺ S is equivalent to
any of the following conditions (see [2]):

1. For every convex function f : Rn → R, we have that

τ(f(A1, · · · , An)) ≤ τ(f(S1, · · · , Sn)) .

2. We have that
A ∈ conv{O(S)}w

∗
= conv{USU∗ : U ∈ U(M)}w

∗
.

3. Let µ and ν be the (joint) scalar spectral measures of A and S respectively; that is, for every
polynomial in n variables, we have that

τ(p(A1, · · · , An)) =

∫
Rn

p(x1, · · · , xn) dµ

and similarly for S and µ. Then, for every tuple of positive Borel measures µ1, · · · , µm such
that

∑m
i=1 µi = µ, there are positive Borel measures ν1, · · · , νm such that

∑m
i=1 νi = ν and∫

Rn

xj dνi =

∫
Rn

xj dµi , 1 ≤ i ≤ m , 1 ≤ j ≤ n .

In this case, say that ν majorizes µ in Choquet’s sense and write µ ≺ ν.

Using the description using Choquet’s comparison of measures in item 3 above, we can describe
joint majorization in operator algebraic language as follows

Remark 14 Given two tuples A and S in a masa A, we have that A ≺ S iff for every partition
of the identity, P1 + · · · + Pm = I into mutually orthogonal projections in A, we have a partition
of the identity, Q1 + · · ·+Qm = I into mutually orthogonal projections in A so that

τ(Pj) = τ(Qj) and τ(APj) = τ(SQj) for 1 ≤ j ≤ m .
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It is easy to see that the set {A ∈ An | A ≺ S} is a convex, weak* closed set.

Proposition 15 Let M be a type II1 factor. If A is a tuple of commuting positive contractions
then there exists a tuple of commuting projections P such that A ≺ P.

Proof. Take a partition Q1 + · · ·+Qm = I into mutually orthogonal projections such that for each
1 ≤ i ≤ m, Qi commutes with A and such that there exists a permutation σi of {1, . . . , n} with
QiAσi(j) ≤ QiAσi(j+1) for 1 ≤ j ≤ n− 1. Now set Ri,1 = QiAσi(1) and Ri,j = Qi(Aσi(j) −Aσi(j−1))
for 2 ≤ j ≤ n and 1 ≤ i ≤ m. Notice that for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have

Ri,n+1 := Qi −
n∑
k=1

Ri,k = Qi −max{QiA1, . . . , QiAn} ≥ 0 and QiAj =

σ−1
i (j)∑
k=1

Ri,k .

Consider a partition Qi,1 + · · ·+Qi,n+1 = Qi such that τ(Qi,j) = τ(Ri,j), for 1 ≤ i ≤ m; hence, by
the one variable carpenter theorem, there exist doubly stochastic maps Ti,j acting onM such that
Ti,j(Qi,j) = Ri,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n+ 1. Finally, set

T (·) =
m∑
i=1

n+1∑
j=1

Ti,j(Qi,j ·Qi,j) and Pj =
m∑
i=1

σ−1
i (j)∑
k=1

Qi,k , 1 ≤ j ≤ n .

It is easy to see that T is a doubly stochastic map acting on M and that P = (P1, · · · , Pn) is a
commuting tuple of projections such that T (P) = A so that A ≺ P.

It is now natural to conjecture the multivariable “carpenter” theorem, Conjecture 9. While
we are unable to settle this, we do prove it in the case when the operators in A have finite joint
spectrum (see Theorem 24).

Remark 16 In analogous fashion to Proposition 15, any normal contraction A is majorized by a
unitary. If the contraction has finite spectrum, the unitary may be taken to have finite spectrum as
well.

Remark 17 LetM be a type II1 factor. We point out that the only n-tuples of commuting positive
contractions in M that are not majorized by another n-tuple of positive commuting contractions
except in a trivial way (approximately unitarily equivalent tuples joint majorize each other) are
those all of whose elements are projections. This is routine and we omit the proof.

In the one variable case, majorization can be described by a pleasing set of inequalities. Given
a hermitian operator A with increasing rearrangement fA, define the numbers

λA(t) = sup
τ(P )=t

τ(AP ) =

∫ t

0
fA(x) dx.

Then, given two hermitian operators, A and S, we have that A ≺ S iff λA(t) ≤ λS(T ) for t ∈ [0, 1]
and τ(A) = τ(S). Note that for any t ∈ [0, 1], the functions A → λA(t) are operator convex
functions.

We have been unable to find such a pleasant characterization in the multivariable case. However,
when both tuples A and S have finite spectrum, it is possible to give a concrete easily checkable
description of joint majorization.
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Proposition 18 Let M be a type II1 factor. Let P = (P1, · · · , Pk) Q = (Q1, · · · , Qm) be two
tuples of mutually orthogonal projections in M summing up to I. Let αααi, βββj ∈ Rn for 1 ≤ i ≤ k,
1 ≤ j ≤ m and let A, S ∈M be the n-tuples of commuting hermitian operators given by

S =

k∑
i=1

αααiPi , A =

m∑
i=1

βββiQi .

Then, A ≺ S iff there is a m× k matrix of non-negative numbers, D = (dij)1≤i≤m, 1≤j≤k such that

D 1k = 1m, qtD = pt and Dααα = βββ . (5)

Here, p is the column vector τ(P)t, q is the column vector τ(Q)t, ααα is the k×n matrix [ααα1 | · · · | αααk]t
and βββ is the m× n matrix [βββ1 | · · · | βββm]t .

Proof. Let {P1, · · · , Pk} and {Q1, · · · , Qm} be sets of mutually orthogonal projections summing
up to I in M and such that

S =
k∑
i=1

αααi Pi, A =
m∑
i=1

βββiQi ,

for n-tuples of real numbers αααi and βββi. Assume further that A ≺ S and let ∆ be a doubly stochastic
map acting on M such that ∆(S) = A. Define

dij = τ(Qj)
−1 τ(∆(Pi)Qj) ≥ 0 , 1 ≤ i ≤ m , 1 ≤ j ≤ k .

If we set D = (dij)1≤i≤m, 1≤j≤k then D satisfies the conditions in Eq. (5). Conversely, given a
matrix D satisying Eq. (5) we set

∆(T ) =

m∑
i=1

k∑
j=1

dij τ(Pi T Pi)Qj , T ∈M .

It is straightforward to check that ∆ is a doubly stochastic map acting onM, such that ∆(S) = A.

Note that when all the projections have the same trace, this reduces to the statement that the
matrix D is doubly stochastic. The condition in Proposition 18 above can be checked using linear
programming. This result has a simple and pleasing consequence in the very special case when the
majorizing n-tuple has finite joint spectrum which lies on the vertices of a simplex in Rn.

Proposition 19 Let S be a n-tuple of commuting hermitians in a type II1 factor such that the
joint spectrum consists of n+ 1 points that form a simplex in Rn. Then

{A ∈Mn
sa : A ≺ S} = {A ∈Mn

sa : σ(A) ⊂ conv(σ(S)), τ(A) = τ(S)} . (6)

Proof. It follows from item 3 of the list of equivalent conditions to joint majorization (at the
beginning of this section) that the set to the left in Eq. (6) is included in the set to the right. This
holds in general, without conditions on the spectrum. As to the converse, first assume that the

10
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n-tuple of hermitians A has finite spectrum along with σ(A) ⊂ conv(σ(S)) and τ(A) = τ(S). Let
us write

S =

n+1∑
i=1

αααiPi, A =

m∑
i=1

βββiQi .

The αααi form the vertices of a simplex X and by the condition on the spectrum, the βββi belong
to X . The condition on the spectra implies that each βββi can be uniquely written as the convex
combination of the αααi,

βββi =
n+1∑
j=1

dij αααj ,
n+1∑
j=1

dij = 1, 1 ≤ i ≤ m. (7)

Let D be the matrix D = (dij)1≤i≤m,1≤j≤n+1. We see that

m∑
i=1

βββi τ(Qi) =

m∑
i=1

n+1∑
j=1

dijτ(Qi)αααj ,=

n+1∑
j=1

αααj

m∑
i=1

dij τ(Qi) . (8)

The trace condition implies that

n+1∑
j=1

αααj τ(Pj) =
m∑
j=1

βββj τ(Qj) . (9)

Combining Eqs. (7) and (9), we see that

n+1∑
j=1

αααjτ(Pj) =

n+1∑
j=1

αααj

m∑
i=1

dij τ(Qi) . (10)

Since the convex combinations that realise the βββi using the αααi are unique, we see that D q = p
where p is the column vector [τ(P1), · · · , τ(Pn+1)]

t, q is the column vector [τ(Q1), · · · , τ(Qm)]t.
Together with Eq. (7), we see that condition Eq. (5) in Proposition 18 is satisfied and we conclude
that A ≺ S.

The general case (when A does not have finite joint spectrum) follows by a routine approxi-
mation argument which can be found in the proof of Theorem 7, for instance (see Section 3.3).

Proposition 19 applies to normal operators N ∈ M with spectrum consisting of three non-
collinear points, by considering the associated 2 tuple (Re(N), Im(N)). The above result fails when
the joint spectrum does not lie on the vertexes of a simplex. We use the following example taken
from [17, Example 2] which in turn was inspired by an example of Alfred Horn. Let {Pi : 1 ≤ i ≤ 4}
be projections, all of trace 1

4 inM and letN and A be the normal operators with spectral projections
Pi and spectra,

σ(N) = {0, 4i, 3− 2i,−3− 2i}, σ(A) = {2,−2, 2i,−2i} .
Clearly, the operators have the same trace and that σ(A) ⊂ conv(σ(N)). Nevertheless, it is shown
loc.cit. that A 6≺ N . While the points on the spectrum of N above do not have the property
that every triple is non-collinear, one can perturb them slightly to get a counterexample with that
additional property as well.

11
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3 Multivariable Schur-Horn theorems in type II1 factors

In this section we obtain an exact multivariable a characterization of joint majorization between
tuples of commuting hermitian operators with finite spectrum (Theorem 23), which is an extension
of the Schur-Horn theorem in type II1 factors. We then use this result to obtain a proof of the ap-
proximate multivariable Schur-Horn theorem (Theorem 7). We also consider additional hypothesis
on the inclusion A ⊂ M, where A is a masa in the type II1 factor M, in order to obtain partial
extensions of Theorem 23.

3.1 Finite spectra: Scalar diagonals

We consider first the simplest case : S is a commuting tuple of hermitians with finite joint spectrum
and A = τ(S) I. Write S =

∑k
i=1αααiPi. In this case, the fact that τ(S) I ≺ S can by seen by using

Proposition 18 and the matrix D = [τ(P1), · · · , τ(Pk)]. Or, for that matter, by the fact that the
map · 7→ τ(·) I is doubly stochastic. We will prove:

Proposition 20 Let A be a masa in a type II1 factor M and let E denote the trace preserving
conditional expectation onto A. Let k be a natural number and let S be a tuple of commuting
hermitians with joint spectrum consisting of at most k points. Then, there is a unitary so that
E(USU∗) = τ(S) I.

We will prove this proposition using a double induction argument. We need the following
definition:

Definition 21 Let S and T be two tuples of commuting hermitian operators with finite joint
spectrum in type II1 factors M and N respectively. Given a natural number k we say that S
k−resembles T if we may write

S =
k∑
i=1

αααiQi, T =
k∑
i=1

βββiRi, τM(Qi) = τN (Ri), 1 ≤ i ≤ k ,

where {Q1, · · · , Qk} (respectively {R1, · · · , Rk}) are mutually orthogonal projections that form a
partition of IM (respectively for IN ).

The proof of Proposition 20 will require the following lemma.

Lemma 22 Let A be a masa in a type II1 factor M and let E denote the trace preserving condi-
tional expectation onto A. Let P be a projection in A and let S and T be two tuples of commuting
hermitians in PMP and (I − P )M(I − P ) respectively, so that S (k − 1)−resembles T. Then,
there is a unitary U , a projection Q in A of trace at least 1

3 and a projection R orthogonal to Q so
that letting A = S⊕T and B = U (S⊕T)U∗, we have,

1. E(QBQ) = τ(A)Q.

2. R commutes with (I −Q) B (I −Q) inside (I −Q)M(I −Q).

3. RBR inside RMR (k−1)−resembles (I−Q−R) B (I−Q−R) inside (I−Q−R)M(I−Q−R).

12
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4. τ(A) = τ(I−Q)M(I−Q)((I −Q) B (I −Q)).

A pictorial description of this result might be useful to the reader. Lemma 22 above states that
there is a unitary U so that

U

(
S 0
0 T

)
U∗ =

 X ∗ 0
∗ Y 0
0 0 Z


where Y resembles Z and X has conditional expectation equal to the trace of A.

Concerning Proposition 20 there is nothing to prove when k = 1; Similarly, Lemma 22 trivially
holds in case k − 1 = 1. We will prove Lemma 22 assuming the truth of Proposition 20 for
1, · · · , k − 1. Further, we will prove Proposition 20 for a fixed k assuming the truth of Lemma 22
for 1, · · · , k− 1. (this double induction argument allows to conclude the truth of both Proposition
20 and Lemma 22); Briefly, our argument is as follows: consider the notations of Proposition 20.
We may, after conjugating by a unitary, assume that S lies in the masa A. Suppose S has joint
spectrum consisting of k points. Write S =

∑k
i=1αααiPi. Assuming Lemma 22 holds for tuples of

commuting hermitians with joint spectrum of at most k − 1 points, we will construct sequences of
unitary operators Un and projections Qn in M that implement partial solutions, that is, we will
have that

E(Un SU∗n) = τ(S)Qn .

Coupled with additional facts about Qn, we will show that UnSU
∗
n converge in the SOT to a tuple

of commuting hermitians W, say, such that

E(W) = τ(S) I and S ≈W .

Therefore W has joint spectrum consisting of k points, so there exists a unitary operator U ∈ M
such that W = U SU∗ and then Proposition 20 holds for k (for details see below).

Now, for the construction of the Un and Qn we need:

Proof of Lemma 22. (Assuming Proposition 20 for k − 1 ≥ 2) After conjugating by a unitary,
we may assume that S and T belong to the masas AP and A(I −P ) of the type II1 factors PMP
and (I − P )M(I − P ) respectively. We may assume that τ(P ) ≤ 1

2 ; else, we just switch the roles
of S and T. Let m ≥ 1 be the integer such that

(m+ 1) τ(P ) ≤ 1 < (m+ 2) τ(P ) . (11)

Given the hypotheses, we may write

S =

k−1∑
i=1

αααiEi , T =

k−1∑
i=1

βββi Fi ,

where {E1, · · · , Ek−1} and {F1, · · · , Fk−1} are mutually orthogonal projections that form partitions
of P and I − P respectively and such that

τ(Ei)

τ(P )
= τPMP (Ei) = τ(I−P )M(I−P )(Fi) =

τ(Fi)

τ(I − P )
, 1 ≤ i ≤ k − 1 . (12)

13
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For each 1 ≤ i ≤ k− 1, pick a family {F 1
i , · · · , F

m+1
i } of mutually orthogonal sub projections of Fi

such that, for 1 ≤ i ≤ k − 1:

τ(F ji ) =
τ(P )

τ(I − P )
τ(Fi) , 1 ≤ j ≤ m, τ(Fm+1

i ) =
1− (m+ 1) τ(P )

τ(I − P )
τ(Fi) .

Thus, {F 1
i , · · · , F

m+1
i } forms a partition of Fi for each 1 ≤ i ≤ k − 1. Now define

Qj = F j1 + · · ·+ F jk−1, 1 ≤ j ≤ m+ 1 .

Note that for 1 ≤ j ≤ m,

τ(Qj) =
k−1∑
i=1

τ(F ji ) =
τ(P )

τ(I − P )

k−1∑
i=1

τ(Fi) = τ(P ) ,

and similarly,
τ(Qm+1) = 1− (m+ 1)τ(P ) .

Now, for 1 ≤ j ≤ m look at the operator tuple

TQj =

k−1∑
i=1

βββiF
j
i where τ(F ji )

(12)
= τ(Ei) , 1 ≤ i ≤ k − 1 .

Pick partial isometries V1, · · · , Vm in M so that ViEjV
∗
i = F ij for 1 ≤ i ≤ m and 1 ≤ j ≤ k − 1; in

particular, we get that ViPV
∗
i = Qi. With this in hand, we may write S⊕T as

A =


∑k−1

i=1 αααiEi 0 0 0 0

0
∑k−1

i=1 βββiEi 0 0 0
0 0 ∗ 0 0

0 0 0
∑k−1

i=1 βββiEi 0
0 0 0 0 T1


where T1 is the compression of T to Qm+1MQm+1 i.e.

T1 =
k−1∑
i=1

βββi F
m+1
i and τ(Fm+1

i ) =
1− (m+ 1) τ(P )

τ(P )
τ(Ei) , 1 ≤ i ≤ k − 1 .

Hence, T1 in Qm+1MQm+1 (k − 1)-resembles
∑k−1

i=1 βββiEi in PMP . Also notice that

τ(T ) =
τ(I − P )

τ(P )
τ(
k−1∑
i=1

βββiEi) =⇒ τ(A) = τ(
k−1∑
i=1

αααiEi) +
τ(I − P )

τ(P )
τ(
k−1∑
i=1

βββiEi) . (13)

Choose a θ so that cos2(θ) = τ(P ). After conjugating by the unitary

W1 =


cos(θ) sin(θ) 0 0 0
− sin(θ) cos(θ) 0 0 0

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


14
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we get that

W1AW
∗
1 =



C ∗ 0 0 0 0
∗ A2 0 0 0 0

0 0
∑k−1

i=1 βββiEi 0 0 0
0 0 0 ∗ 0 0

0 0 0 0
∑k−1

i=1 βββiEi 0
0 0 0 0 0 T1


where

C =

k−1∑
i=1

(τ(P )αααi + τ(I − P )βββi)Ei and A2 =

k−1∑
i=1

(τ(I − P )αααi + τ(P )βββi)Ei .

Hence, τ(C)
(13)
= τ(P ) τ(A) and A2 (k − 1)−resembles

∑k−1
i=1 βββiEi as well as T1. Similarly,

C =
τ(P )

τ(I − P )
A2 +

1− 2τ(P )

τ(I − P )

k−1∑
i=1

βββiEi

and thus continuing as above, m−1 more times, we get a unitary operator W = WmWm−1 · · ·W1 ∈
M so that

WAW ∗ =



C ∗ ∗ ∗ ∗ 0
∗ C ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ C ∗ 0
∗ ∗ ∗ ∗ Am+1 0
0 0 0 0 0 T1

 (14)

where τ(C) = τ(P ) τ(A) and Am+1 (k − 1)−resembles T1. Notice that Eq. (14) implies that

P (WAW ∗)P = C, Qi(WAW ∗)Qi =

k−1∑
i=1

(τ(P )αααi + τ(I − P )βββi)F
j
i , 1 ≤ i ≤ m− 1 .

In particular, each of these (compressed) tuples are hermitian commuting operators and such that

τ(P (WAW ∗)P ) = τ(Qi(WAW ∗)Qi) = τ(P ) τ(A), 1 ≤ i ≤ m− 1.

Now, we can apply Proposition 20 (for k− 1) to P (WAW ∗)P in the type II1 factor PMP (notice
that its joint spectrum has k − 1 points) and conclude that there exists a unitary operator U0 in
PMP such that

EAP (U0 P (W AW ∗)P U∗0 ) = τPMP (P (W AW ∗)P )P = τ(A)P . (15)

Similarly, by applying Proposition 20 (for k − 1), we conclude that for 1 ≤ i ≤ m− 1 there exists
a unitary operator Ui ∈ QiMQi such that

EAQi(UiQi(W AW ∗)Qi U
∗
i ) = τQiMQi(Qi(W AW ∗)Qi)P = τ(A)Qi . (16)

15
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Let Q = P +Q1 + · · ·+Qm−1 and notice that τ(Q) = mτ(P ) ≥ 1
3 because of Eq. (11). Consider

the (block diagonal) unitary operator V = U0⊕· · ·⊕Um−1⊕ (I−Q) ∈M and the unitary operator
U = VW ∈M. Since V is block diagonal then

P (UAU∗)P = U0 P (WAW ∗)P U∗0 , Qi(UAU∗)Qi = UiQi(WAW ∗)Qi U
∗
i , 1 ≤ i ≤ m.

Item 1 of the statement now follows from Eqs. (15) and (16) and the previous identities.

Take R = Qm and notice that item 2 of the statement follows from Eq. (14). Item 3 follows by
construction of Am+1 and T1. Finally, since τ(C) = τ(P ) τ(A) then

τ(I−Q)M(I−Q)((I −Q) B (I −Q)) =
τ(A)−m · τ(C)

1−mτ(P )
= τ(A) .

Proof Of Proposition 20. (Assuming Lemma 22 for k−1 ≥ 1). After conjugating by a unitary, we
may assume that S lies in A and we may write S =

∑k
i=1αααi Pi for mutually orthogonal projections

that form a partition of the identity {P1, · · · , Pk} in A. Set P = P1+ · · ·+Pk−1 so that I−P = Pk.
Since

k−1∑
i=1

τ(Pi) τ(I − P )

τ(P )
= τ(Pk)

we can pick mutually orthogonal projections {F1, · · · , Fk−1} that form a partition of Pk and such
that

τ(Fi) =
τ(Pi) τ(I − P )

τ(P )
for 1 ≤ i ≤ k − 1 . (17)

Hence, (
∑k−1

i=1 αααi Pi) and (
∑k−1

i=1 αααk Fi) are two tuples of commuting hermitians in PMP and (I −
P )M(I − P ) respectively, so that they (k − 1) resemble each other. Apply Lemma 22 (for k − 1)
to get a unitary U1 and projections Q1 and R1 in M, so that letting S1 = U1 SU∗1

E(Q1S1Q1) = τ(S)Q1 , τ(Q1) ≥
1

3

and also, T = (I − Q1) S1 (I − Q1) commutes with R1 inside (I − Q1)M(I − Q1); therefore, we
can apply Lemma 22 again to (TR1,T (I − Q1 − R1)) (for (k − 1)) inside (I − Q1)M(I − Q1).
In this way, we get sequences of unitary operators Un and projections Qn in M, so that letting
Sn = Un SU∗n, we have Qn SnQn = Qn SmQn for m > n and (by item 4 of Lemma 22)

E(QnSQn) = τ(S)Qn , τ(Qn) ≥ 1−
(

2

3

)n
.

These facts show that the sequence of Sn’s converge in SOT to a tuple W of commuting hermitian
operators in M. Since O(S) is SOT closed we see that W ∈ O(S); moreover, since S has finite
joint spectrum we get that O(S) = {V SV ∗ : V ∈ U(M)} and there exists a unitary U ∈ M such
that W = U SU∗. Finally, by continuity of E we see that U has the desired properties.
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3.2 Finite spectra: exact multivariable Schur-Horn theorem

LetM be a type II1 factor, let A be a masa inM and let E denote the trace preserving conditional
expectation ontoA. Suppose S is a commuting tuple, U ∈M is a unitary operator and E(U SU∗) =
A. Then, since the map (·) 7→ E(U (·)U∗) is doubly stochastic, we have that A ≺ S. Our goal in
this subsection is to prove the converse of this fact when A and S have finite spectrum.

Theorem 23 Let M be a type II1 factor, let A be a masa in M and let E denote the trace pre-
serving conditional expectation onto A. Let A and S be n-tuples of commuting hermitian operators
with finite spectrum with A ∈ An and S ∈Mn such that A ≺ S. Then, there is a unitary U in M
so that

E(USU∗) = A .

Proof. We may assume, after conjugating by a unitary if needed, that S ∈ An. Let A =
∑m

i=1βββiQi,
where {Q1, · · · , Qm} are mutually orthogonal projections in A that form a partition of the identity.
Using the equivalence between joint majorization and Choquet’s notion of comparison of measures
we see that there are orthogonal projections R1, · · · , Rm in A so that

τ(Ri) = τ(Qi) , τ(SRi) = βββi τ(Ri) , 1 ≤ i ≤ m.

By Proposition 20 we may find a unitary Ui in each of the type II1 factors RiMRi so that

EARi(UiSRiU
∗
i ) = βββiIRiMRi , 1 ≤ i ≤ m.

Letting U be the unitary U1 ⊕ · · · ⊕ Um ∈M, we see that

EA(USU∗) =

m∑
i=1

βββiQi = A .

A simple consequence of the above theorem is the following result, which deserves to be called
the multivariable Carpenter theorem (for commuting tuples of positive contractions with finite
spectrum). As pointed out in the introduction (see Remark 17), the n-tuples of commuting projec-
tions are ≺-maximal elements, modulo approximate unitary equivalence, within the set of n-tuples
of commuting positive contractions in a type II1 factor.

Theorem 24 (The multivariable carpenter theorem: finite spectrum case) Let M be a
type II1 factor, let A be a masa in M and let E denote the trace preserving conditional expec-
tation onto A. For every n-tuple A ∈ An of positive contraction with finite spectrum there is an
n-tuple of commuting projections P such that

E(P) = A .

Proof. By Proposition 15 there exists an n-tuple of commuting projections Q such that A ≺ Q.
Since Q also has a finite spectrum we can apply Theorem 23 and get a unitary operator U ∈ M
such that E(U QU∗) = A. Then P = U QU∗ has the desired properties.

Next we describe the set of all possible diagonals of n-tuples of mutually orthogonal projections.
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Proposition 25 Let M be a type II1 factor, let A be a masa in M and let E denote the trace
preserving conditional expectation onto A. Suppose A = (A1, · · · , An) ∈ An is a n-tuple of positive
operators with finite spectrum. Then there is a tuple of mutually orthogonal projections P such that
E(P) = A iff

∑n
i=1Ai ≤ I.

Proof. If we assume that P = (P1, · · · , Pn) is an n-tuple of mutually orthogonal projections such
that E(P) = A then

∑n
i=1Ai = E(

∑n
i=1 Pi), which is a positive contraction since

∑n
i=1 Pi is an

orthogonal projection.

In the converse direction, note that
∑n

i=1 τ(Ai) ≤ 1. Choose mutually orthogonal projections
R1, · · · , Rn, Rn+1 = I−(R1+ · · ·+Rn) such that τ(Ri) = τ(Ai) for 1 ≤ i ≤ n. Let A =

∑m
i=1βββiQi,

where {Q1, . . . , Qm} are mutually orthogonal projections that form a partition of the identity.
Notice that

Aj =

m∑
i=1

βββi(j)Qi , 1 ≤ j ≤ n ⇒
n∑
j=1

Aj =

m∑
i=1

 n∑
j=1

βββi(j)

 Qi ≤ I .

Let D be the m× (n+ 1) matrix defined by

Dij = βββi(j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, Di,n+1 = 1−
n∑
j=1

βββi(j), 1 ≤ i ≤ m .

Then D has non negative coefficients,

D 1n+1 = 1m , qtD = pt and Dααα = βββ ,

where p is the column vector (τ(Ri))
n+1
i=1 ∈ Rn+1, q ∈ Rm is the column vector τ(Q)t, ααα is the

n + 1 × n matrix [e1 | · · · | en | 0n]t (here {ei}ni=1 denotes the canonical basis of Cn and 0n ∈ Cn)
and βββ is the m× n matrix [βββ1 | · · · | βββm]t. Hence, if we let R = (R1, · · · , Rn) then, by Proposition
18, we have that A ≺ R. Now, by Theorem 23, we have that there is a unitary U such that
E(U RU∗) = A. The components of P = U RU∗ are clearly mutually orthogonal projections.

Here is another fact close in spirit to Theorem 24 above.

Theorem 26 Let A be a masa inside the type II1 factor M and let E denote the trace preserving
conditional expectation onto A. If A ∈ A is a normal contraction with finite spectrum then, there
is a unitary U in M such that

E(U) = A .

The unitary constructed will in fact have finite spectrum. The proof uses an argument similar to
that needed for Remark 16, following the lines of the proof of Theorem 24 and we omit it.

3.3 Approximate multivariable Schur-Horn theorem

Analogous to the proof of [20, Theorem 4.1.], we have:
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Proof of Theorem 7. First notice that the inclusion of the set to the left in Eq. (3) in the set
to the right is a consequence of the following two facts: on the one hand E(U SU∗) ≺ S for every
unitary U ∈M; on the other hand the set {A ∈ An : A ≺ S} is ‖ · ‖-closed.

In order to show the other inclusion, we consider the following reduction: since A is masa in
M then there exists S′ ∈ An such that S ≈ S′ so that, O(S) = O(S′). Therefore

E(U(S))
||

= E(U(S′))
||
.

Hence, we assume (without loss of generality) that S ∈ An.

Let ∆ be a doubly stochastic map on M with range in A so that ∆(S) = A. Fix ε > 0 and
choose a tuple of commuting hermitians T =

∑k
i=1αααiPi ∈ An with finite spectrum so that

||S−T || < ε .

Let B = ∆(T) and pick another tuple of hermitians in A with finite spectrum, C =
∑m

i=1βββiQi,
such that ||B−C|| < ε. It is then easy to see that

||B−
m∑
i=1

τ(BQi)

τ(Qi)
Qi || < ε .

Let D =
∑m

i=1

τ(BQi)

τ(Qi)
Qi. Thus, we have that ||D−∆(T) || < ε. The operator ∆̃ defined on M

by

∆̃(A) :=
m∑
i=1

τ(∆(A)Qi)

τ(Qi)
Qi

is doubly stochastic and

∆̃(T) =
m∑
i=1

τ(BQi)

τ(Qi)
Qi = D .

Thus, by Theorem 23 there is a unitary U ∈M so that E(UTU∗) = D. We conclude that

||E(U SU∗)−A || = ||E(U SU∗)−∆(S) ||
≤ ||E[U(S−T)U∗] ||+ ||E(U TU∗)−D ||+ ||D−∆(T) ||+ ||∆(T− S) ||
< ε+ 0 + ε+ ε .

Since ε was arbitrary, the theorem follows.

We end this section with the proof of the approximate carpenter theorem.

Proof of Theorem 10. If A is an n-tuple of positive contractions in A then, by Proposition
15, there exists an n-tuple of commuting projections in M, say Q, such that A ≺ Q. Hence, by
Theorem 7, given ε > 0 there exists a unitary operator U ∈ M such that ‖E(U QU∗) −A‖ ≤ ε.
Hence P = U QU∗ is a commuting n-tuple of projections that has the desired properties.
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3.4 Diagonals with finite spectra

In a recent paper [10], Dykema, Hadwin, Fang and Smith presented a different approach to the
Schur-Horn and carpenter theorems, relating the problems to one involving the kernels of conditional
expectations onto masas, when restricted to corners of type II1 factors. This technique allows to
improve a result of Popa [19] on orthogonal subalgebras of type II1 factors. Recall that two
subalgebras A and B of a type II1 factorM are said to be orthogonal if for every A ∈ A and B ∈ B,
we have τ(AB) = τ(A) τ(B). This is equivalent to several other statements, most notably that the
conditional expectations EA and EB commute as operators in B(L2(M, τ)). Popa showed that any
abelian algebra admits a n dimensional orthogonal abelian algebra with all minimal projections of
same trace, for any n.

Theorem 27 Let A be a masa inside a type II1 factor M and let E denote the trace preserving
conditional expectation onto A. Suppose that for every projection P in M, E restricted to PMP
has non-trivial kernel. Then, there is a diffuse abelian von Neumann algebra B in M that is
orthogonal to A.

Proof. We first claim that for every pair of projections P < Q in M with E(P ) = τ(P )I and
E(Q) = τ(Q)I and for every λ with τ(P ) < λ < τ(Q), there is a projection R with P ≤ R ≤ Q
such that E(R) = λI. To see this, define the set

X := {S ∈M+
1 | P ≤ S ≤ Q, E(S) = λ I} .

This set is weak* closed and convex; we will show that it is non-empty. Indeed, consider the set

Y := {E(S) : S ∈ (Q− P )Msa
1 (Q− P )}

which is convex and weak* precompact. Let µ := 2λ− τ(Q+ P ); it is easy to see that

µ ∈ (−τ(Q− P ), τ(Q− P )) ⊂ (−1, 1).

Assume that µ ≥ 0 (the proof for when µ ≤ 0 is analogous). If we assume further that µ is not
in the weak* closure of Y, we could find an element A ∈ L1(A, τ) with τ(A) = 1 and a c with
0 ≤ c < µ such that τ(AE(S)) = τ(E(AS)) = τ(AS) < c for each S in (Q− P )Msa

1 (Q− P ). But,

τ(A(Q− P )) = τ(E(A(Q− P ))) = τ(AE(Q− P )) = τ(Aτ(Q− P )) = τ(Q− P ) > µ > c.

This gives us a contradiction and we conclude that µ ∈ Yw∗.
There is thus a net Sα in (Q − P )Msa

1 (Q − P ) such that E(Sα) → µI. Pick a subnet that
converges to an element S in (Q − P )Msa

1 (Q − P ). Since the conditional expectation is weak*
continuous, we have that E(S) = µI. We then see that

P +
S +Q− P

2
∈ X .

Analogous to the argument in in [10, Lemma 2.1], we conclude that each extreme point in the
weak* closed convex set X must be a projection. Pick one such extreme point projection and call
it R. The claim follows.
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With this in hand, it is easy to see that we can iterate this argument to produce for every n, a
tower of projections {Pm,n : 1 ≤ m ≤ 2n} with τ(Pm,n) = m · 2−n and with the additional property
that P2m−1,n + P2m,n = Pm,n−1 and so that E(Pm,n) = τ(Pm,n)I. Let B be the von Neumann
algebra generated by {Pm,n : 1 ≤ m ≤ 2n, n = 1, 2, · · · }. It is routine to see that B is diffuse and
orthogonal to A.

We can use the above result to prove a Schur-Horn theorem when the majorized tuple has finite
spectrum. We first record a reduction applicable to this case.

Proposition 28 LetM be a type II1 factor, A a masa inM and let E denote the trace preserving
conditional expectation onto A. The following statements are equivalent:

1. For every tuple of hermitians A in A with finite spectrum and every tuple of commuting
hermitians S in M such that A ≺ S, there is a tuple T in O(S) such that E(T) = A.

2. For every projection P ∈M and every tuple of commuting hermitians S = (S1, · · · , Sn) such

that P S = S in M, there is a tuple T in O(S) such that E(T) = τ(S)
τ(P ) P .

Proof. Notice that (1) =⇒ (2) is trivial; (2) implies (1) follows from a reduction argument
similar to that in the proof of Theorem 23, using the equivalence between Joint majorization and
Choquet’s notion of comparison of measures.

This can be used to prove:

Proposition 29 LetM be a type II1 factor, A a masa inM and let E be the canonical conditional
expectation onto A. Suppose that for every projection P in M, the conditional expectation E
restricted to PMP has non-trivial kernel. Then, for every n-tuple A ∈ An with finite joint spectrum
and n-tuple S ∈Mn, there is an element T ∈ O(S) such that

E(T) = A .

Proof. By Proposition 28, it is enough to prove the theorem in the case when the tuple A consists
of scalars. Pick a diffuse abelian algebra B orthogonal to A and a tuple T in B that is approximately
unitarily equivalent to S and hence in O(S). Since B is orthogonal to A, we see that

E(T) = τ(S)I = A .

The following result describes conditions on a fixed type II1 factor M and a fixed masa A in
M that characterize when the joint majorization relations A ≺ S between tuples of commuting
hermitians such that S has finite joint spectrum, have a corresponding exact multivariable Schur-
Horn theorem (and complements Proposition 28).

Proposition 30 LetM be a type II1 factor, A a masa inM and let E denote the trace preserving
conditional expectation onto A. The following statements are equivalent:

1. For every tuple of hermitians A in A and commuting tuple of hermitians S with finite spectrum
in M such that A ≺ S, there is a unitary U in M such that E(USU∗) = A.
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2. For every tuple of hermitians A in A and commuting tuple of projections P in M such that
A ≺ P, there is a unitary U in M such that E(UPU∗) = A.

3. For every tuple of positive contractions A = (A1, · · · , An) in A such that A1 + · · ·+An ≤ I,
there is a tuple P of mutually orthogonal projections in M such that E(P) = A.

Proof. Notice that (1) =⇒ (2) is trivial while (2) =⇒ (3) follows using arguments in the proof
of Proposition 15: explicitely, if P = (P1, · · · , Pn) is a tuple of mutually orthogonal projections
such that τ(Pi) = τ(Ai) for 1 ≤ i ≤ n then A ≺ P.

To show (3) =⇒ (2) we consider the case n = 2; the general case is a routine extension. Let
∆ be a doubly stochastic map such that ∆(P1) = A1 and ∆(P2) = A2. Let P12 = P1P2 and let
A12 = ∆(P12). Since A12+(A1−A12)+(A2−A12) = A1+A2−A12 = ∆(P1+P2−P12), the operator
tuple B = (A12, A1−A12, A2−A12) satisfies the hypothesis of (3) and there is a tuple of orthogonal
projections Q = (Q1, Q2, Q3) such that E(Q) = B. Therefore, E[(Q1 + Q2, Q1 + Q3)] = (A1, A2)
and we also have that τ(P1) = τ(Q1 +Q2), τ(P2) = τ(Q1 +Q3) and τ(P1P2) = τ(P12) = τ(A12) =
τ(Q1) = τ [(Q1+Q2)(Q1+Q3)]. These last facts show that the tuples (P1, P2) and (Q1+Q2, Q1+Q3)
are unitarily equivalent. Letting U be a unitary that implements this equivalence, we have that
E(UPU∗) = A.

Finally, we show (2) =⇒ (1): let’s suppose we are dealing with n-tuples. Write S =
∑m

k=1αkαkαkPk
and let ∆ be the doubly stochastic map such that ∆(S) = A. After composing with a conditional
expectation, we may assume that the range of ∆ lies inA. We have that B = (∆(P1), · · · ,∆(Pm)) ≺
P = (P1, · · · , Pm) and hence, by (2), there is a unitary U such that E(UPU∗) = B. If we let X be
the n×m matrix given by Xij = αjαjαj(i), we see that S = XPt and that A = XBt. Thus,

E(USU∗) = E(UXPtU∗) = XE(UPU∗)t = XBt = A .

4 Multivariable Schur-Horn theorems in discrete factors

At the beginning of section 1.1 we considered an example (for 3×3 normal matrices) which showed
that the natural extension of the classical Schur-Horn theorem (for hermitian matrices) to normal
matrices fails. In this section we show that it is possible to dilate such a problem and obtain a
positive result. On the other hand, we investigate the approximate diagonals of commuting n-tuples
of selfadjoint operators in B(H) with finite spectrum (all with infinite multiplicity). In particular,
we show that in this context there are no non-trivial obstructions for a sequence in Rn to be an
approximate diagonal. This contrasts with the results in [4] on exact diagonals of normal operators
with finite spectrum. We end this section with some final remarks.

4.1 Arveson’s example revisited

Throughout this section Md denotes the algebra of d × d complex matrices, Ad ⊂ Md the masa
of diagonal matrices and Ed : Md → Md denotes the compression to the diagonal i.e. the trace
preserving conditional expectation onto Ad.
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Recall that in the matrix context, given normal matrices A, S ∈Md with eigenvalues µµµ, λλλ ∈ Cd
respectively then A ≺ S (or equivalently the commuting two tuple (Re(A), Im(A)) is majorized by
the commuting two tuple (Re(S), Im(S))) if and only if there exists an d × d doubly stochastic
matrix D such that Dλλλ = µµµ.

Let us recall Arveson’s example from section 1.1. There we considered the normal matrices

A, S ∈M3 with eigenvalues µµµ = (
1

2
,
i

2
,
1 + i

2
) and λλλ = (1, 0, i); if we let D be the doubly stochastic

matrix in Eq. (4) then, we have that Dλλλ = µµµ. However, there is no unitary matrix U ∈M3 so that
E3(USU

∗) = A or equivalently the multivariable Schur-Horn theorem in M3 fails. Nevertheless,
it is fairly simple to compute examples of unitary matrices U ∈ M6 such that the normal matrix
U∗(N ⊕N)U has main diagonal µµµ ⊕ µµµ ∈ C6. This suggests that we could get a Schur-Horn type
result for a suitable dilation of the original problem.

In order to put the previous claim in context, in what follows we consider the unital ∗-subalgebra
Am ⊗ Md ⊂ Mm ⊗ Md together with its associated trace preserving conditional expectation
EAm⊗Md

determined by
EAm⊗Md

(A⊗B) = Em(A)⊗B .

Also, given α ∈ Cm we denote by diag(α) ∈ Am the diagonal matrix with main diagonal α.

Proposition 31 Let ∆ : Md → Md be given by ∆(B) =
∑m

j=1 αj Uj B U
∗
j , where Uj ∈ Md,

‖Uj‖ ≤ 1 for 1 ≤ j ≤ m and ααα = (αj)
m
j=1 are coefficients for a convex combination. Then, there

exists U ∈Mm ⊗Md with ‖U‖ ≤ 1, such that for every B ∈Md we have that

EAm⊗Md
(U (diag(ααα)⊗B)U∗) =

1

m
Im ⊗∆(B) . (18)

Moreover, if Uj ∈ Md is unitary for 1 ≤ j ≤ m then we can chose a unitary U ∈ Mm ⊗Md

satisfying Eq. (18).

Proof. Consider ω = exp(2π im ) and let U ∈Mm ⊗Md be given by

U =
1√
m

m∑
j, k=1

ω(j·k) Ejk ⊗ Uk , (19)

where {Ejk}mj,k=1 denotes the canonical basis ofMm. Using that
∑m

j=1 ω
j·k = 0 for every 1 ≤ |k| ≤

m− 1 we get that

U∗U =
1

m

m∑
k=1

Ekk ⊗ U∗k Uk .

In particular ‖U‖ ≤ 1. On the other hand, if B ∈Md then

U (diag(ααα)⊗B)U∗ =
1

m

m∑
j, k ,j′,k′=1

ωk·j−k
′·j′Ejk diag(ααα)Ek′j′ ⊗ UkB U∗k′

=
1

m

m∑
j, k, j′=1

ωk·(j−j
′)αk Ejj′ ⊗ UkB U∗k .

23



4 Discrete factors P. Massey and M. Ravichandran

Using the computations above we see that

EAm⊗Md
(U (diag(ααα)⊗B)U∗) =

1

m

m∑
j,k=1

Ejj ⊗ αk UkB U∗k =
1

m
Im ⊗∆(B).

Finally, assume that Uj ∈ Md is unitary for 1 ≤ j ≤ m. Then, if U is defined as in Eq. (19), the
computations above show that U∗U = Im·n and hence U ∈Mm·d is a unitary matrix.

Corollary 32 Let D ∈ Md be a doubly stochastic matrix. Then, there exists m ∈ N, coefficients
for a convex combination ααα = (αj)

m
j=1 and a unitary U ∈ Mm ⊗Mn =Mm·n such that for every

βββ ∈ Cd

Em·d(U (diag(ααα)⊗ diag(βββ))U∗) =
1

m
Im ⊗ diag(Dβββ) . (20)

In particular, if αj = 1
m for 1 ≤ j ≤ m then we get that for every βββ ∈ Cd

Em·d(U (Im ⊗ diag(βββ))U∗) = Im ⊗ diag(Dβββ) . (21)

Proof. By Birkhoff’s theorem (see [7]) there exists coefficients for a convex combination ααα =
(αj)

m
j=1 and permutation matrices P1, · · · , Pm ∈Md such that D =

∑m
j=1 αj Pj . Let ∆ : Md →Md

be given by ∆(B) =
∑m

j=1 αj Pj B P
∗
j . Using the fact that Pj diag(βββ)P ∗j = diag(Pj βββ) we see that

∆(diag(βββ)) = diag(Dβββ) for βββ ∈ Cd . (22)

By construction of ∆ we can apply Proposition 31 and get a unitary U ∈ Mm ⊗Md =Mm·d for
which Eq. (18) holds. Hence, using that Em·d(EAm⊗Md

(C)) = Em·d(C) for C ∈ Mm·d, together
with Eq. (22) we see that Eq. (20) holds. The second part of the statement is a immediate
consequence of the previous facts.

We now consider again Arveson’s example described at the beginning of this section. Let
D ∈ DS(3) be defined as in Eq. (4) and consider the normal matrices A, S ∈M3 with eigenvalues

µµµ = (
1

2
,
i

2
,
1 + i

2
) and λλλ = (1, 0, i); hence Dλλλ = µµµ. It is easy to see that in this case there exist

permutation matrices P1, P2 ∈ M3 such that D = 1/2 · (P1 + P2). Hence, by Corollary 32 there
exists a unitary U ∈M6 such that

E6(U (I2 ⊗ diag(λλλ))U∗) = I2 ⊗ diag(µµµ)

This last fact explains why we can obtain a Schur-Horn theorem for a dilation of the original
problem as claimed.

Remark 33 Corollary 32 shows that there are doubly stochastic matrices D ∈Md for which there
exist m ≥ 1 and a unitary U ∈ Mm·d such that Eq. (21) holds, for every βββ ∈ Cd. It is natural to
wonder whether this is the general case i.e., given an arbitrary d×d doubly stochastic matrix D we
can ask whether there always exist m ≥ 1 and a unitary U ∈Mm·d such that Eq. 21 holds for every
βββ ∈ Cd. It turns out that this is not the case. Indeed, consider the following variation of Arveson’s
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example: fix positive irrationals a and b adding up to one and let D be the doubly stochastic matrix
given by

D =

 a b 0
0 a b
b 0 a

 .

Proposition 34 With the notations of Remark 33, there is no m ≥ 1 so that there exists a unitary
U ∈M3m such that

E3m(U∗(Im ⊗ diag(λλλ))U) = Im ⊗ diag(Dλλλ) for every λλλ ∈ C3 .

Proof. Suppose there is in fact a matrix U ∈ U(3m) such that

EAm⊗A3(U∗(Im ⊗ diag(λ))U) = Im ⊗ diag(Dλ)

Let us write

U =

 U11 U12 U13

U21 U22 U23

U31 U32 U33


A simple matrix calculation shows then that

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 α̃

β̃
γ̃

 =

 x̃
ỹ
z̃



where D(α, β, γ) = (x, y, z), where α̃ represents the vector

 α
...
α

 and Dij is the matrix given by

Dij(k, l) = |Uij(k, l)|2. We have,

D

 1̃

0̃

0̃

 =

 ã

0̃

b̃

 and D

 0̃

1̃

0̃

 =

 b̃
ã

0̃

 and D

 0̃

0̃

1̃

 =

 0̃

b̃
ã


In particular, we have

Tr(U11U
∗
11) =

∑
k,l

|U11(k, l)|2 =
∑
k,l

D11(k, l) = mα

Similarly,

Tr(U31U
∗
31) =

∑
k,l

|U31(k, l)|2 =
∑
k,l

D31(k, l) = mβ

Now note that D13 and D32 and hence U13 and U32 are zero. We thus have that U11U
∗
31 = 0. We

also have that U∗11U11 + U∗31U31 = I. We conclude from Lemma 35 below that U11 is a partial
isometry and hence Tr(U∗11U11) = mα is an integer. Thus, α cannot be irrational.
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Lemma 35 Suppose A and B are in Md so that A∗A+B∗B = I and AB∗ = 0. Then, A and B
are partial isometries.

Proof. Letting A = UH and B = V K be the polar decompositions, we have that H2 + K2 = I
and UHKV ∗ = 0. Thus,

HK = U∗UHKV ∗V = 0

The two equations H2 +K2 = I and HK = 0 imply that H and K are projections and hence, that
A and B are partial isometries.

Remark 36 We point out that using an argument similar to that in the proof of Corollary 32 we
can prove the following: given a doubly stochastic matrix D ∈ Md and ε > 0, there exist m ∈ N
and a unitary U ∈Mm·d such that, for every βββ ∈ Cd we have that

‖Em·d(U (Im ⊗ diag(βββ))U∗)− Im ⊗ diag(D · βββ)‖ ≤ ε ‖diag(βββ)‖ . (23)

The proof is straightforward and we omit it.

4.2 Approximate multivariable Schur-Horn theorems in B(H)

There has been considerable progress on a related problem - that of characterizing the diagonals
of operators with finite spectrum in B(H). Analysis of this fundamental problem was initiated by
Kadison in [13, 14] who gave a complete characterization of the diagonals of projections. Kadison’s
results have recently been extended by Bownik and Jasper [8, 9], who have completely described
the diagonals of self-adjoint operators with finite spectrum.

The multivariable case, where we ask for a description of the joint diagonals of a tuple of
commuting hermitian operators is currently only partially understood, even in its most simple
formulation. Study of this problem was initiated by Arveson in [4], who analyzed the possible
diagonals of normal operators with finite spectrum, all of infinite multiplicity. He discovered an
index obstruction analogous to Kadison’s index for projections from [14]. He also pointed out that
there are other obstructions: however the ones he discovered stem from the fact that it is not
possible to have a multivariable Schur-Horn theorem in matrix algebras.

Let A ⊂ B(H) be an atomic masa and let S be an n-tuple of commuting hermitians in B(H)
such that the joint spectrum consists of finitely many points, all of infinite multiplicity. We are
interested in the set of joint diagonals of the n-tuple S, i.e. E(UH(S)) = {E(USU∗) : U ∈ U(H)},
where U(H) is the group of unitary operators acting on B(H) and E is the normal conditional
expectation onto A. A precise characterization of E(UH(S)) appears quite challenging.

Let us briefly recall the setting and results from [4]. With the notations above, let X =
{λλλ1, · · · ,λλλk} ⊂ Rn be the joint spectrum of the n-tuple S and let D = {d1,d2, · · · } be a sequence in
Rn. Assume further that X is the set of vertices of a convex polygon CX in Rn. Arveson considered
what he called the critical sequences D that accumulate rapidly in X , i.e. those sequences in CX
for which there is a map φ : N→ {1, · · · , k} so that

∞∑
m=1

||λλλφ(m) − dm|| <∞ .
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In this case Arveson showed that if D ∈ E(UH(S)) then there exist ν1, · · · , νk ∈ Z such that∑k
j=1 νj = 0 and

∑∞
m=1λλλφ(m) − dm =

∑k
j=1 νj λλλj .

In what follows, we look at the “non-summable” case where we assume that the sequence is in
a closed subset of the interior of CX . We then use this non-summable case to characterize the set
of approximate diagonals

E(UH(S))
|| ⊂ A .

As we shall see, the index obstructions disappear as long as we are only interested in approximate
diagonals. We begin our analysis with the following simple fact.

Lemma 37 Let S be a commuting tuple of hermitians in Mn(C). Then, there is a unitary U so
that E(USU∗) = n−1 tr(S) I.

Proof. We may pick a unitary U so that USU∗ is diagonal. Let V be the Fourier unitary,
Vij = n−1/2 ω(i−1)(j−1) where ω = exp(2πim ). It is elementary to see that the diagonal of V DV ∗ is
constant and equal to the normalised trace of D for any diagonal matrix D. Hence, the diagonal
of V USU∗V ∗ is n−1 tr(S)I.

Remark 38 In the statement of the next lemma we use the following terminology: let X =
{λλλ1, · · · ,λλλk} be the set of vertices of the convex polygon CX ⊂ Rn. It is clear that CX coin-
cides with the convex hull of X in Rn. In this case there exists a unique subspace VX ⊂ Rn such

that CX ⊂ VX and CX has nonempty interior, C0
X = C

0(VX )
X 6= ∅, relative to VX .

Lemma 39 Let X = {λλλ1, · · · ,λλλk} be the set of vertices of the convex polygon CX ⊂ Rn and let d
be a point in the interior of CX . Then, we can find a decomposition,

d =
∑

1≤i 6=j≤k
qij (αij λλλi + βij λλλj)

where the {qij : 1 ≤ i 6= j ≤ n} are rational numbers summing upto 1, αij 6= 0 6= βij and
αij + βij = 1 whenever qij 6= 0 and such that for every 1 ≤ i ≤ k there exists 1 ≤ j 6= i ≤ k such
that qij 6= 0.

Proof. By Remark 38 we see that we can assume that n = k − 1. Moreover, by considering an
appropriate affine linear transformation we can assume, without loss of generality, that λλλ1 = 000 and
λλλj = eeej−1 for 2 ≤ j ≤ k, where {eeej}k−1j=1 is the canonical basis of Rk−1.

We now argue by induction on k ≥ 2. When k = 2, there is α ∈ (0, 1) such that d =
α0001 + (1 − α)eee1 and we see that the desired decomposition is achieved. Now, assume that the
theorem has been proved for k = 2, · · · ,K − 1. Let Y be the convex hull of the first K − 1 points
{λλλ1, · · · ,λλλK−1} = {000, eee1, · · · , eeeK−2}.

Let the line segment starting at λλλK = eeeK−1 and passing through d meet Y in f . Since d was in
the interior of the convex hull of X , we have that f is in the interior of Y (as described in Remark
38). It is clear that there is a ε so that for every a ∈ (1 − ε, 1), the line segment starting from
a eeeK−1 + (1− a) 000 and passing through d meets Y in its interior as well; call the latter point fa.
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It is elementary to see that we may pick an a ∈ (1 − ε, 1) so that d is a non-trivial rational
convex combination of a eeeK−1 + (1− a) 000 and fa, i.e.

d = q (a eeeK−1 + (1− a) 000) + (1− q) fa , for q ∈ Q ∩ (0, 1) .

Now, by the induction hypothesis we have

fa =
∑

1≤i 6=j≤K−1
qij (αij λλλi + βij λλλj) ,

with the coefficients qij , αij and βij for 1 ≤ i 6= j ≤ K−1 satisfying the properties of the statement.
Thus, we see that

d = q (a λλλK + (1− a) λλλ1) +
∑

1≤i 6=j≤K−1
(1− q) qij (αij λλλi + βij λλλj)

and we have our desired decomposition.

Proposition 40 Let A be an atomic masa in B(H) and let E denote the trace preserving con-
ditional expectation onto A. Let S be a tuple of commuting hermitians with finite joint spectrum
where each joint eigenvalue has infinite multiplicity. Let D = {d1,d2, · · · } be a sequence with only
finitely many distinct entries, all lying in the interior of the convex hull of the joint spectrum of S.
Then, there is a unitary U so that E(USU∗) = D.

Proof. Let us write the joint spectrum as X = {λλλ1, · · · ,λλλk}. We prove the proposition in three
steps.
Step 1: First of all, we assume that the diagonal sequence is constant, D = {d,d, · · · }. We use
Lemma 39 to find a decomposition,

d =
∑

(i,j)∈I

qij (αij λλλi + βij λλλj) (24)

where the I ⊂ {(i, j) : 1 ≤ i 6= j ≤ k}, {qij : (i, j) ∈ I} are non-zero rational numbers summing
upto 1, αij 6= 0 6= βij and αij + βij = 1 for (i, j) ∈ I and such that for every 1 ≤ i ≤ k there exists
1 ≤ j 6= i ≤ k such that (i, j) ∈ I.

Write the Hilbert space H as ⊕(i,j)∈IHij where each of the spaces Hij is infinite dimensional.

Let Fij := {eijn : n = 1, 2, · · · } be a basis for Hij . For (i, j) ∈ I let µµµij := αij λλλi + βij λλλj and
let Pij ∈ B(Hij) be a infinite projection such that Iij − Pij ∈ B(Hij) is also infinite. Now, let
Sij = λλλi Pij + λλλj (Iij − Pij) ∈ B(Hij) which is a commuting n-tuple of hermitian operators with
joint spectrum consisting of λλλi and λλλj , both of infinite multiplicity. Because of the properties of
the index set I it follows that the operator ⊕(i,j)∈ISij is unitarily equivalent to S. Hence, without
loss of generality we can assume that S = ⊕(i,j)∈ISij .

Let Eij denote the compression to the diagonal with respect to the orthonomal basis Fij in
B(Hij). Since αij ∈ (0, 1) for (i, j) ∈ I then, by Kadison’s Pythagorean theorem [14], there exists
a unitary Uij ∈ B(Hij) such that

Eij(Uij Pij U
∗
ij) = αij Iij =⇒ Eij(Uij Sij U

∗
ij) = µµµij Iij , for (i, j) ∈ I .
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Let use write U = ⊕(i,j)∈IUij and notice that U S U∗ = ⊕(i,j)∈IUijSij U
∗
ij .

Let N be a natural number such that qij = nij N
−1 with nij a positive integer, for (i, j) ∈ I.

Notice that
∑

(i,j)∈I nij = N . Using Eq. (24) we may write

d =
1

N

∑
(i,j)∈I

nij µµµij . (25)

Now, we take a different decomposition of H: let Km be the finite dimensional subspace (of
dimension N) spanned by {eijl : (i, j) ∈ I , 1 + (m − 1) nij ≤ l ≤ m nij}. It is clear that H =
⊕m∈NKm. Letting Pm be the orthogonal projection onto Km, we see that the matrix Pm(U S U∗)Pm
has diagonal consisting of nij copies of µµµij for (i, j) ∈ I and hence, has normalized trace (see Eq.
(25)) equal to d. By Lemma 37, one may conjugate by a unitary matrix Vm to make the diagonal
constant, this constant being d. Letting V be the unitary ⊕m∈NVm, we see that E(V USU∗V ∗) =
{d,d, · · · }, where E is the conditional expectation onto the diagonal algebra associated to the basis
F = {eijn : (i, j) ∈ I , n ∈ N}.
Step 2: We next assume that the diagonal consists of a point d repeated infinitely often and a
single other point e. Pick a point f in the interior of the convex hull of X so that d is a rational
convex combination of e and f . Applying the argument in Step1 twice, we see that there is a
unitary U so that

USU∗ =

 e ∗ 0
∗ A 0
0 0 B

 ,

were we consider the 3×3 block representation with respect to the orthogonal decomposition H =
C⊕H1 ⊕H2 so that H1 and H2 are infinite dimensional and A and B have constant diagonals e
and f respectively. We may write

d =
a

a+ b
e +

b

a+ b
f

for some positive integers a, b. Choose projections Pn whose range space is spanned by basis vectors,
numbering a from H1 and b from H2 and so that ⊕n∈NPnH = H1⊕H2. Notice that the normalized
trace of PnUSU∗Pn is d; hence, by Lemma 37, we may conjugate by a unitary to achieve a constant
diagonal d on PnH. Taking direct sums, we see that there is a unitary conjugate with diagonal
{e,d,d, · · · }.
Step 3: This argument can be trivially extended, by taking direct sums, to the case when the
diagonal consists of only finitely many distinct elements - In the case an element occurs infinitely
many times, use the first part of the proof; in the case it occurs finitely many times, the second
part. The proposition follows.

Proof of Theorem 11. Any sequence in Rn can be approximated in the `∞ norm by a sequence
with only finitely many distinct entries. A moment’s thought shows that if the sequence belongs to
the convex hull of X , the approximating sequence with finitely many distinct entries can be chosen
to lie in the interior of the convex hull.

Some final remarks are in order. We have shown in Theorem 7 that in the type II1 setting
there are nice characterizations of the set of approximate joint diagonals of a tuple of commuting
hermitians operators in terms of joint majorization. This result is somewhat unexpected, since its
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finite dimensional version (i.e. for the finite discrete factorMd) fails. Yet, the structure of the set of
joint diagonals of a tuple of commuting hermitians operators in a type II1 factor still remains to be
understood as there are obstructions for a full extension of the Schur-Horn theorem for selfadjoint
operators to the multivariable setting in a type II1 factor (as explained in Remark 13). The fact
that there are differences between joint diagonals and approximate joint diagonals of tuples of
commuting hermitians is in accordance with the distinction between diagonals and approximate
diagonals of selfadjoint and normal operators in B(H) (with respect to discrete masas), as seen
by comparing the work of Neumann [18] and Theorem 11 above (on approximate diagonals) with
the work of Kadison [14], Bownik and Jasper [8, 9], Arveson and Kadison [5] and Arveson [4] (on
diagonals). This remarks lead to what seems to be a challenging problem, namely to determine the
nature of the obstructions in the type II1 setting.
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