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Abstract Extracellular purines and pyrimidines have
emerged as key regulators of a wide range of physiological
and pathophysiological cellular processes acting through P1
and P2 cell surface receptors. Increasing evidence suggests
that purinergic receptors can interact with and/or modulate
the activity of other classes of receptors and ion channels.
This review will focus on the interactions of purinergic
receptors with other GPCRs, ion channels, receptor tyrosine
kinases, and steroid hormone receptors. Also, the signal
transduction pathways regulated by these complexes and
their new functional properties are discussed.
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Introduction

Extracellular purines and pyrimidines have widespread and
specific signalling actions in the regulation of a variety of
functions in many tissues. They have emerged as physiolog-
ical regulators of cell growth, differentiation, and death [1].
Moreover, they have been implicated in neoplastic transfor-
mation, embryogenesis, platelet aggregation, cardiovascular
function, bone and muscle regeneration, insulin release,
inflammation and immunomodulation, neuroprotection, and
initiation of pain [2–5]. Taking these facts into account, there

is increasing interest in the therapeutic potential of purinergic
and pyrimidinergic compounds [1, 4].

Purinergic and pyrimidinergic nucleotides cannot be trans-
ported across the plasma membrane by simple diffusion, so
they are released to the extracellular environment via lytic
(diffusion through the damaged plasma membrane during
trauma, injury, apoptosis, and necrosis) [6–10] and non-lytic
mechanisms (mechanical distension, ATP release channels,
ATP-binding cassette proteins, facilitated diffusion by
nucleotide-specific transporters, and vesicular exocytosis)
[11–19] either under physiological and pathophysiological
conditions. However, some of the transport mechanisms
involved in ATP release are controversial, for instance, it has
been reported that cystic fibrosis transmembrane conduc-
tance regulator cannot carry this nucleotide [20].

Nucleotides have a short half-life due to the presence of
ectonucleotidases that rapidly degrade them, so they can
activate plasma membrane receptors, called purinergic
receptors, in an autocrine and paracrine manner [5, 21].
Many receptor subtypes for purines and pyrimidines have
been identified on the basis of cloning, signal transduction
and pharmacology. They are divided into P1 adenosine
receptors (A1, A2A, A2B, and A3 subtypes), P2Y metabo-
tropic receptors (P2Y1, 2, 4, 6, 11–14), and P2X ionotropic
receptors (P2X1–7 subtypes forming both homomultimers
and heteromultimers) [22].

P1 receptors are all members of the rhodopsin-like
family of G protein-coupled receptors (GPCRs). They have
a short extracellular N-terminal domain, seven transmem-
brane domains, and a short intracellular C-terminal loop.
They couple principally to adenylate cyclase, either
negatively (A1 and A3) or positively (A2A and A2B). The
human A2B receptor has also been observed to couple
through Gq/11 to regulate phospholipase C (PLC) activity
[23, 24].
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P2Y receptors are also members of the GPCR family;
their structure consists of an extracellular N-terminal
domain, seven transmembrane spanning regions that form
the ligand binding pocket, and a C-terminal domain
containing several binding/phosphorylation sites for protein
kinases and G proteins. Particularly, the second and third
intracellular loops (IL-2 and IL-3) of GPCRs are important
for G protein coupling. Studies showed that when IL-2 and
IL-3 are deleted, GPCRs are no longer able to couple to G
proteins [25, 26].

Each P2Y receptor subtype is directly coupled to
multiple G proteins triggering the activation of various
intracellular signalling cascades. P2Y1, P2Y2, P2Y4, P2Y6,
and P2Y11 receptors couple to Gαq protein to induce the
activation of PLC which catalyses the hydrolysis of
phosphatidylinositol 4,5-biphosphate to generate inositol
1,4,5-triphosphate (IP3) and diacylglycerol (DAG) [27].
DAG induces the activation of protein kinase C (PKC)
leading to the stimulation of diverse downstream effectors;
IP3 stimulates intracellular calcium (Ca2+) mobilization. In
addition, some of these P2Y receptors also couple to
adenylyl cyclase inducing changes in intracellular cyclic
adenosine monophosphate (cAMP) levels. P2Y13 receptors
can simultaneously couple to Gi and Gs inducing opposite
effects on intracellular cAMP levels [28].

P2X receptors are trimers or hexamers formed by protein
subunits, each consisting of intracellular N and C termini
possessing consensus binding motifs for protein kinases,
two transmembrane spanning regions involved in channel
gating and ion pore lining, respectively, and a large
extracellular loop containing the ATP-binding site [23].
Six homomultimers (P2X1, 2, 3, 4, 5, 7) and three heteromul-
timers (P2X2/P2X3, P2X4/P2X6, and P2X1/P2X5) have
been functionally characterized. These receptors trigger
the activation of many intracellular signalling pathways by
increasing the [Ca2+]i concentration [21].

Therefore, P1 and P2 receptors can lead to the activation
of several signalling pathways such as the mitogen-
activated protein kinase (MAPK) cascade [23, 27, 29–34],
and the phosphatidylinositol-3 kinase (PI3K)/Akt signalling
pathway [27, 34–39] to regulate cell survival, cell differen-
tiation, programmed cell death, cell cycle progression, and
cellular growth.

It is well known that interactions between GPCRs can
modulate their activity either potentiating or inhibiting it.
Such interactions can take place through the formation of a
physical complex (receptor dimerization), or through
receptor cross-talk, when second messengers integrate
coincident signals from multiple receptors, which are not
physically associated [4, 23]. Thus, P2Y receptors can
interact and/or regulate the activity of other P2Y receptors
and, also, of other GPCRs. In addition, P2Y receptors can
also modulate the activity of P2X ion channels and receptor

tyrosine kinases (RTKs), recently recognized as important
in the regulation of signalling and cellular responses [40–
44]. Related to this, it is known that purinergic receptors,
particularly A1, A2A, P2X1,3,4,7, and P2Y1,2,4,6,12 subtypes
as well as ectonucleotidases and nucleotide transporters are
assembled in specialized sub-membrane compartments
(lipid rafts, raft-like structures, and caveolae). Altogether,
these reciprocal influences control the duration, magnitude,
and/or direction of the signals triggered by purines and
pyrimidines, and the impact that each single ligand has on a
variety of short- and long-term functions [45]. However, the
interaction of receptors for purines and pyrimidines with
other receptor types is one issue that remains unresolved
[22]. Thus, in this review, we focus on the interplay
occurring between P2 receptors and other receptor families.
Particularly, we discuss the relationship between purinergic
receptors and other GPCRs and tyrosine kinase and steroid
hormone receptors.

Interactions between purinergic receptors
and other GPCRs

As previously mentioned in the introduction, GPCRs exist
as dimers or higher-order oligomers that may modify their
functions. P2Y metabotropic receptors tend to form homo-
or heterodimers with GPCRs not only of different families
but also of the same purinergic receptor families, leading to
alterations in functional properties. Such dimerization
occurs constitutively in the endoplasmic reticulum where
it could have an important role in the quality control of
newly synthesized receptors and specific subcellular local-
ization [46]. Only limited information is available on the
physiological relevance of the various GPCR dimers
identified to date in cell culture systems and native tissues,
because of difficulties associated with demonstrating any
physiological significance of dimerization in the native
systems [47].

P2Y homodimerization and homomultimerization

It has been reported that P2Y1 receptors exist as dimers, in
HEK293 cell membranes, in the resting state. Agonist
exposure induces a rise in receptor dimerization. This effect
follows desensitization and is fully reversible upon with-
drawal of agonist. Both monomer and constitutive dimers
are fully active [48]. In addition, this receptor may form
oligomers in other types of cells [49]. Moreover, it was
demonstrated that P2Y2 receptors form homo-oligomeric
assemblies and that the formation of P2Y2 receptor
oligomers does not depend on the presence of UTP as an
agonist [50]. The P2Y4 receptor subunit can also form
higher-order complexes. These multimers appear stable,
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being to some extent resistant to denaturing and reducing
conditions, thus indicating that they derive, at least in part,
from covalent disulphide bonds occurring between the
subunits. Moreover, both rat and human endogenous P2Y4

receptors appear as stable dimers in cell lines or primary
neurons from the peripheral and central nervous system.
This also occurs for the heterologous P2Y4 receptor
transiently transfected in the neuroblastoma SH-SY5Y cell
line [43]. Endogenously expressed P2Y4 and P2Y6 recep-
tors form high-order complexes in neurons. The protomeric
unit at the basis of the P2Y6 receptor complex appeared to
be the monomer while the dimer seems to be the unit for
P2Y4 subtypes. Moreover, dimeric P2Y4 and monomeric
P2Y6 proteins display selective microdomain partitioning in
lipid rafts from specialized subcellular compartments such
as synaptosomes. Receptor activation by UTP induced the
oligomerization of the P2Y6 but not of the P2Y4 receptor.
Transfected P2Y4 and P2Y6 proteins homo-interact and
possess the appropriate domains to associate with P2Y1, 2,

4, 6, 11 receptor subtypes as judged by the results obtained
using a direct method of double co-transfection (i.e. co-
transfection with Myc-P2Y4 plus, respectively, FLAG-P2Y1,

2, 6, 11 or with FLAG-P2Y6 plus, respectively, Myc-P2Y1, 2,

4, 11); however, endogenous P2Y4 form hetero-oligomers
only with P2Y6 receptors [51].

It has been established that P2Y12 receptors exist predom-
inantly as homo-oligomers, essential for their functionality,
which are situated in lipid rafts of mammalian cells and in
freshly isolated platelets. Upon in vitro treatment with the
active metabolite of clopidogrel or in vivo oral clopidogrel
administration to rats, the homo-oligomers are disrupted into
non-functional dimers and monomers that are sequestered
outside the lipid rafts [52].

P2Y heterodimerization

P2Y1 and P2Y11 receptors were found to associate together
when co-expressed in HEK293 cells. The hetero-oligomer
formation promotes agonist-induced internalization of the
P2Y11 receptor, which by itself is unable to undergo
endocytosis. This interaction and subsequent internalization
has an important impact on P2Y11 receptor desensitization.
Co-internalization of these receptors was also seen in
1321N1 astrocytoma cells upon stimulation with ATP or
with the P2Y1 receptor-specific agonist 2-MeS-ADP. In
addition, the association of P2Y1 with the P2Y11 receptor
influences the ligand selectivity of the P2Y11 receptor. In
this way, the specific P2Y1 receptor antagonist MRS2179
inhibited both the rise in [Ca2+]i induced by the potent
P2Y11 receptor agonist 2′,3′-O-(4-benzoyl-benzoyl)-ATP
(BzATP) and the internalization of the P2Y11 receptor in
response to ATP, whereas the highly potent P2Y11 receptor
antagonist NF157 was not able to inhibit any of these

effects. Thus, the hetero-oligomerization of these receptors
allows novel functions of the P2Y11 receptor in response to
extracellular nucleotides [53]. Heterodimerization also
takes place between purinergic receptors and other types
of GPCRs. For instance, it has been reported that adenosine
A1 and P2Y1 receptors can form constitutive hetero-
oligomers in co-transfected cells. This process is promoted
by the simultaneous activation of both receptors [54–56].
Oligomeric association of A1 and P2Y1 receptors generates
P2Y1-like agonistic pharmacology and provides a molecu-
lar mechanism for an increased diversity of purine
signalling [55, 57]. Co-localization of A1–P2Y1 receptors
at glutamatergic synapses and surrounding astrocytes has
also been demonstrated in rat hippocampus. P2Y1 receptor
stimulation impaired the potency of A1 receptor coupling to
G protein, whereas the stimulation of A1 receptors
increased the functional responsiveness of P2Y1 receptors.
This may be particularly important during pathological
conditions, when large amounts of these mediators are
released. The same complex was also demonstrated in
human astroglial cells [58, 59]. A1 and P2Y2 receptors can
also associate in co-transfected HEK293T cells and intact
rat brain. This heterodimerization affects the receptor
binding site attenuating A1 agonist binding by P2Y2

receptor agonists in membranes of co-transfected cells.
Moreover, A1 receptor activity is suppressed and P2Y2

receptor activity synergistically enhanced, upon simulta-
neous addition of A1 and P2Y2 receptor agonists [60].

Cross-talk between purinergic receptors and other GPCRs

Hypertonic stress-induced cell shrinkage releases ATP from
polymorphonuclear neutrophils (PMNs), released ATP aug-
ments PMNs functions through P2 receptors and p38
MAPK activation, or ATP is converted to adenosine, which
suppresses PMNs functions via A2 receptors that activate
cAMP/PKA signalling. This bidirectional control by re-
leased ATP allows PMNs to register and differentially
respond to osmotic changes in their extracellular environ-
ment [61]. Cross-talk between A1 and P2Y2 receptors has
additionally been reported to function in local regulation of
water transport and homeostasis by the kidney [62]. There
is evidence supporting cross-talk between P2Y12 and P2Y1

receptors in platelets. There, P2Y12 receptor activation by
ADP positively modulates the P2Y1-dependent calcium
response, whereas P2Y1 receptor activation negatively
modulates P2Y12 receptor function through Src kinase
activation. Moreover, modulation of both receptors is
mediated by PI3K and inhibition of adenylate cyclase. In
turn, a negative feedback pathway from P2Y1 receptors,
mediated by Src tyrosine kinase, inhibits the PI3K-
dependent signalling component. Ca2+ signalling, therefore,
represents a point of cross-talk between these receptors and
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a key regulator of platelet response to ADP [63]. On the
other hand, the calcium response evoked by P2Y1 receptors
is potentiated by the activity of P2Y12 receptor-dependent
signalling pathways in glioma C6 cells. There, Ca2+ influx,
enhanced by the cooperation of P2Y1 and P2Y12 receptor
activities, directly depends on the capacitative calcium
entrance mechanism [64]. Simultaneous activation of P2Y
and adenosine A1 receptors synergistically increases Ca2+

transients and translocation of PKC to the plasma mem-
brane in DDT1 MF-2 cells [65].

P2Y2 receptor activation by ATP decreases angiotensin
type 1 receptor density through nitric oxide (NO)-
mediated S-nitrosylation of nuclear factor κB in rat
cardiac fibroblasts [66]. In transfected CHO cells, the
Gi/Go protein-coupled adenosine A1 receptor activates
MAPK via a pathway which is independent of PKC but
involves tyrosine kinase, PI3K and MEK1 activation.
Moreover, co-activation of adenosine A1 and P2Y2

receptors induces synergistic increases in MAPK activity
[67]. This effect may be related to the enhancement of Gq/

11/[Ca
2+] signalling observed upon the simultaneous

activation of these receptors [60]. In this way, the PKC/
Raf-1 upstream mediators of the MAPK cascade may
synergistically increase MAPK signalling. In addition,
simultaneous activation of endogenous A1 and P2Y2

receptors in DDT1 MF-2 cells synergistically increases
translocation of PKC to the plasma membrane [65].
However, identifying the mechanism(s) underlying the
synergistic increases in MAP kinase activity will require
further research.

Channel regulation by P2 receptors

Growing evidence implicates a key role for extracellular
nucleotides in the regulation of ion channels, but the
mechanism for such action is poorly defined. ATP and
other nucleotides, including UTP, decrease epithelial Na+

channel (ENaC) activity via apical P2Y2 receptors. P2Y2

receptors couple to ENaC via PLC. In this way, locally
released ATP acts in an autocrine/paracrine manner to
tonically regulate ENaC in mammalian collecting duct.
Loss of this intrinsic regulation leads to ENaC hyperactivity
and contributes to hypertension that occurs in P2Y2

receptor−/− mice. P2Y2 receptor activation by nucleotides
thus provides physiologically important regulation of ENaC
and electrolyte handling in mammalian kidney [68]. A
paracrine regulation of ENaC by UTP has also been
reported in lung epithelia of mice infected with the
respiratory syncytial virus (RSV). RSV infection resulted
in higher levels of pyrimidines and purines in the alveolar
space which mediated, at least in part, the harmful effects of
RSV on lung epithelia [69].

In layer V pyramidal neurons of the prefrontal cortex
post-synaptically localized P2Y receptors interact with
NMDA receptor channels [70].

Activation of neuronal P2Y1 receptors may gate
calcium-dependent K+ channels (K(Ca)2 channels) via
PLC-dependent increases in intracellular Ca2+, thereby
defining an additional class of neuronal ion channels as
novel effectors for P2Y receptors. This mechanism may
form the basis for the control of synaptic plasticity via P2Y1

receptors [71]. P2Y1 receptors can transduce information
from central sensory neurons through regulation of
hyperpolarization-activated cation channel activities [72].

P2 receptors and RTKs

As previously mentioned, in addition to ion channel activity
and GPCRs, P2Y receptors can modulate the activity of
RTKs [73]. This latter family comprises high-affinity cell
surface receptors for many polypeptide growth factors,
cytokines, and hormones, which regulate normal cellular
processes and also have a critical role in the development
and progression of many types of cancer. At least 20 classes
of RTKs have been identified, including the epidermal
growth factor receptor (EGFR) family, the insulin receptor
family, the platelet-derived growth factor receptor (PDGFR)
family, the fibroblast growth factor receptor (FGFR) family,
the nerve growth factor receptor (NGFR) family, and the
vascular endothelial growth factor receptor (VEGFR)
family [74].

Human carcinomas frequently express high levels of
receptors of the EGFR family, and overexpression of at
least two of these receptors has been associated with a more
aggressive clinical behaviour [75, 76]. This could be
explained by the fact that the EGFR function is trans-
regulated by a variety of stimuli, including agonists of
certain GPCRs [77]. Different P2Y receptor subtypes have
been involved in the transactivation of the EGFR in normal
and cancer cells. For example, in the PC12 cell line, derived
from a pheochromocytoma of the rat adrenal medulla, P2Y2

receptors mediate EGFR transactivation to finally induce
MAPK activation. This occurs downstream of related
adhesion focal tyrosine kinase (RAFTK, a member of the
focal adhesion PTK family). As a consequence, although
P2Y2 and EGFRs may both activate a similar multiprotein
signalling cascade immediately upstream of MAPK, the
P2Y2 receptor appears to uniquely utilize [Ca2+]i, PKC,
and, subsequently, RAFTK [73]. Also in the human colonic
cancer cell line, Caco-2, ATP-mediated stimulation of
MAPKs involves cross-communication between P2Y2/4

receptor subtypes and EGFR signalling systems [32].
Furthermore, in tumoral HeLa cells and normal female
reproductive tract epithelial cells, cell-released nucleotides
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stimulate P2Y1 receptors to trigger mitogenic signals by
transactivating the EGFR. The pathway involves PKC, Src,
and cell surface metalloproteases. Strikingly, the canine
kidney epithelial cell line which ectopically expresses P2Y1

receptors displays a highly proliferative phenotype that
depends on EGFR activity associated with an increased
level of EGFR. This discloses a novel aspect of GPCR-
mediated regulation of EGFR function [77]. Similarly, an in
vitro wound healing assay performed in human corneal and
BEAS 2B (human bronchial) epithelial cells suggested that
ATP released as a consequence of the wound triggers EGFR
transactivation resulting in the stimulation of the PI3K and
ERK signalling pathways to lead wound closure [78].
Moreover, ATP, acting through P2Y receptors, transactivates
both PDGFR and EGFR leading to the activation of ERK1/
2 and PI3K and to an increase in the proliferation rate of
Müller glial cells. PDGF-induced proliferation may depend
on transactivation of the EGFR kinase while metalloprotei-
nase 9 was implicated in the signal transfer from P2Y to
EGFRs [79]. As can be inferred, many reports do not
determine the P2Y receptor subtype/s involved in EGFR
transactivation. On the other hand, metalloproteinase-
dependent transactivation of the EGFR is stimulated by
ATP-induced ERK1/2 phosphorylation through P2Y2/P2Y4

receptors in bovine adrenal chromaffin cells [80]. In
astrocytes, P2Y2 receptors are also involved in the
phosphorylation of the EGFR. This occurs due to cell
stress-released nucleotides which induce the activation of
P2Y2 receptors leading to pro-inflammatory responses that
can protect neurons from injury, including the stimulation
and recruitment of glial cells. P2Y2 receptor activation
induces the phosphorylation of the EGFR, a response
dependent upon the presence of SH3 binding domains in the
intracellular C terminus of the P2Y2 receptor that promote
Src binding and transactivation of EGFR, a pathway that
regulates the proliferation of cortical astrocytes [81].

P2X receptors have also been recently implicated in the
transactivation of the EGFR. In HEK 293 human embryonic
kidney cells, transactivation of the EGFR by BzATP is
essential for P2X7 receptor-induced expression of Egr-1 [82].

P2 receptors can potentiate or synergize with growth
factors to regulate a cellular response. In the human breast
cancer cell line MCF-7, ATP-γ-S, or EGF lead to ERK
activation and phosphorylation of the transcription factors
CREB and Elk-1. Co-stimulation synergistically activated
c-Fos expression and notably increased the phosphorylation
of ERK, CREB, and EGFR. Nevertheless, the ERK
pathway does not fully account for this synergy since Fos
induction was differentially sensitive to the MEK inhibitor
U0126, indicating that ATP and EGF signal differently to c-
Fos. Thus, extracellular nucleotides cooperate with growth
factors to activate genes linked to the proliferative response
in MCF-7 cells [83]. ATP, ADP, and UTP acting through

P2Y1 and P2Y2 receptors, and low concentrations of
adenosine, augmented adult multipotent neural stem cell
proliferation in the presence of growth factors. This result
infers nucleotide receptor-mediated synergism that augments
growth factor-mediated cell proliferation, supporting the
notion that extracellular nucleotides contribute to the
control of adult neurogenesis [84]. In addition, Grimm
and collaborators established that nucleotides and EGF,
acting in a paracrine or autocrine manner, both induce
converging intracellular signalling pathways (Akt and
focal adhesion kinase) that carry potential for synergism
in the control of neural stem cell proliferation and cell
survival [85]. ATP and insulin act synergistically to
stimulate the activation of ERK1/2, and also induce an
additive activation of Raf and Ras in coronary artery
smooth muscle cells (CASMCs), leading to synergistic
stimulation of CASMCs proliferation [86]. Opposite, UTP
or UDP significantly reduced the proliferative response to
PDGF in vascular smooth muscle cells [87]. The mecha-
nism underlying these opposite effects of P2Y receptor
activation is not known. More than one P2Y receptor
subtype may contribute and also P2Y receptors can
respond differently depending on the expression of
effector proteins and on the cross-talk occurring between
different signalling pathways and receptors in a particular
cell type. Therefore, interactions between P2Y receptors
and RTKs can be complex [1].

Recently, it has been shown that plasma membrane
distribution of P2Y2 receptors is transregulated by the
EGFR in smooth muscle cells isolated from human
chorionic arteries. There, the use of AG1478, a selective
and potent inhibitor of the EGFR tyrosine kinase activity,
not only blocked the UTP-induced vasomotor activity but
also abrogated both RhoA and Rac1 activation, the P2Y2

receptor association with membrane rafts, and its internal-
ization. These results reveal an unsuspected functional
interplay that controls both the membrane distribution and
the vasomotor activity of the P2Y2 receptor in intact human
blood vessels [88].

Extracellular purines can stimulate the synthesis and
release of nerve growth factor (NGF) [89], which is
essential for neuronal growth and differentiation, and they
can also act in combination with this factor to regulate
differentiation and growth of various cell lines [90].

It has been reported that the use of P2 receptor
antagonists reversibly prevents diverse NGF-dependent
responses in PC12 cells. Furthermore, NGF modulates
extracellular release of ATP and also the expression levels
of P2X2 receptor protein [91]. These authors established
that P2 receptor agonists can behave as neurotrophic factors
for neuronal cells. They reported that ATP and 2-Cl-ATP
promote neurite regeneration after priming of PC12 cells
with NGF, whereas various P2 receptor antagonists were
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inhibitory. Moreover, NGF and ATP induced the expression
of P2X2, P2X3, P2X4 and P2Y2 receptor proteins under
neurite-regenerating conditions in PC12 cells [92]. On the
other hand, the induction of PC12 cell differentiation by
NGF altered mRNA expression of several P2Y and P2X
receptors, but only increased P2X1–4 protein expression.
NGF enhanced the ability of the non-hydrolyzable ATP
analog ATPγS to stimulate catecholamine (norepinephrine)
release. These responses characterize sympathetic neuronal
differentiation and appear to be physiologically important
[93]. Additionally, both ATP and NGF enhanced the
expression of the stress-induced heat shock proteins 70
and 90 [94], as well as the phosphorylation of ERK1/2 in
PC12 cells [92]. In parallel with NGF, ATP prevented the
cleavage and activation of caspase-2 and inhibits the release
of cytochrome c from mitochondria into the cytoplasm.
Finally, neither NGF nor ATP modulated the expression of
P2 receptors suggesting a potential interaction between ATP
and NGF signalling in the neuritic outgrowth and survival
of PC12 cells [94]. Therefore, extracellular ATP potentiates
the neurite outgrowth induced by NGF. On the other hand,
it was shown that ATP and BzATP acting through P2X7

receptors can induce biochemical and/or morphological
changes characteristic of apoptotic cell death in some cell
types [95–97]. These opposite effects exerted by ATP on
cell apoptosis may be due to the interaction between
purinergic and growth factor signalling. However, different
expression of P2 receptors should also be considered.

The neurotrophic effect of ATP and other nucleotides was
determined in the NGFR-negative mouse neuroblastoma
neuro2a cell line. There, ATP stimulated neurite outgrowth,
apparently, via P2Y11 receptors as determined by the potency
order of the P2 agonists ATP=ATPγS>ADP>>2Me-S-ATP
on the neuritogenic effect, the insensibility to UTP and to the
antagonist PPADS. This neurotrophic effect was mediated by
Src kinase, PLC and ERK1/2 MAPK, suggesting that ATP
can stimulate neurite outgrowth independent of other neuro-
trophic factors and can be an effective trophic agent [98].

ATPγS in the presence of NGF leads to phosphorylation
of tyrosine receptor kinase A (TrkA, high-affinity nerve
growth factor receptor) and to the co-localization (deter-
mined by immunocytochemistry) and association (deter-
mined by immunoprecipitation) of TrkA with P2Y2

receptors; these events are required to enhance neuronal
differentiation [99]. The use of Src family kinase inhibitor
blocked ATPγS/P2Y2 receptor-promoted enhancement of
NGF/TrkA signalling and neuronal differentiation in PC12
cells, abrogated the enhancement by ATPγS of neurite
outgrowth in primary cultures of dorsal root ganglion
neurons, and also blocked co-immunoprecipitation of TrkA,
P2Y2 receptors, and Src family kinases. Thus, Src family
kinases regulate P2Y2 receptor-TrkA molecular cross-talk
suggesting that they are key convergence points between

RTKs and GPCRs [42]. Furthermore, ATPγS promotes
phosphorylation of ERK1/2 and p38, thereby enhancing
sensitivity to NGF and accelerating neurite formation in
both PC12 cells and dorsal root ganglion neurons. In
conclusion, the interactions of tyrosine kinase- and P2Y2

receptor-signalling pathways provide a paradigm for the
regulation of neuronal differentiation and suggest a role for
P2Y2 as a morphogen receptor that potentiates neurotrophin
signalling in neuronal development and regeneration [99].

The GPR17 is a new P2Y-like receptor, responsive to
uracil nucleotides and cysteinyl-leukotrienes (cysLTs),
which may have a potential role in the regulation of both
cell viability and differentiation state of central nervous
system cells [100]. To distinguish GPR17 functions from
other P2Y receptor activities, Daniele et al. [101] have
demonstrated that the expression of GPR17 mRNA is
selectively induced during PC12 cell differentiation to
neuronal cells, whereas P2Y2, 4, 6, 12, 13, 14 receptors are
constitutively expressed in PC12 cells and do not undergo
modulation following NGF treatment. In addition, the
specificity of GPR17 ligands (UDP glucose and LTD4) was
evaluated by the use of the GPR17 selective antagonists
cangrelor and montelukast. Furthermore, to unequivocally
prove a role for GPR17 some experiments were performed in
PC12-differentiated cells following silencing of the receptor
upon incubation of cells with small interfering RNAs. Thus,
in NGF-differentiated PC12 cells, GPR17 ligands induced a
significant pro-survival effect. They activated the intracellu-
lar phosphorylation of both ERK1/2 and p38 MAPKs, which
have been identified as important signalling pathways for
neurotrophins in PC12 cells. Additionally, GPR17 agonists
promoted, both alone and synergistically with NGF, neurite
outgrowth in PC12 cells, suggesting a possible interplay
between endogenous uracil derivatives, cysLTs and NGF in
the signalling pathways involved in neuronal survival and
differentiation. GPR17 ligands were also able to confer a
NGF-like activity to the EGF which also promoted cell
differentiation and neurite elongation. Thus, GPR17, like
other P2Y receptors, can act as a neurotrophic regulator for
neuronal-like cells [101].

P2Y2 receptors have been shown to transactivate
VEGFR in human coronary endothelial cells. In these cells,
P2Y2 receptor activation by UTP induces rapid tyrosine
phosphorylation of the VEGFR-2, and co-localization of
both receptors. Consequently, the expression of the pro-
inflammatory vascular cell adhesion molecule-1 (VCAM-1)
augments through RhoA activation. Deletion or mutation of
two Src homology-3-binding sites in the C-terminal tail of
P2Y2 receptors, or inhibition of Src kinase activity
abolishes P2Y2 receptor-mediated transactivation of
VEGFR-2 and subsequently inhibits UTP-induced
VCAM-1 expression. These data indicate a novel mecha-
nism whereby a nucleotide receptor transactivates a
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receptor tyrosine kinase to generate an inflammatory
response associated with atherosclerosis [102].

P2Y1 receptors have also been found to transactivate the
VEGFR in vascular endothelial cells. It was found that
P2Y1 receptor stimulation of VEGFR phosphorylation by
2-methyl-thio-ATP (2Me-S-ATP) was suppressed by the
VEGFR-2 tyrosine kinase inhibitor, SU1498. In addition,
phosphorylation of VEGFR-2 by VEGF was comparable
with 2Me-S-ATP stimulation of the P2Y1 receptor, and both
2Me-S-ATP and VEGF stimulation increased tyrosine
phosphorylation of VEGFR-2 at Tyr 1175 [103, 104].

As previously mentioned, extracellular nucleotides can
also stimulate the release of growth factors. In platelets, for
example, activation of P2Y1 and P2Y12 receptors by ADP
results in an increase in soluble VEGF concentrations. This
suggests that ADP release in the tumour microenvironment
may be, on balance, pro-angiogenic. P2Y receptor antago-
nism abrogates ADP-mediated pro-angiogenic protein
release and thus may represent a potential pharmacologic
strategy for regulating platelet-mediated angiogenesis
[105]. It was reported that VEGF is released from primary
human monocytes through P2X7 receptor stimulation by
ATP. This effect is calcium-dependent and is associated with
reactive oxygen species production. Thus, P2X7 receptors
are also likely to be important in the control of angiogenesis
and wound repair [106]. P2Y2 receptor activation in human
salivary gland cells promotes the formation of EGFR/
ErbB3 heterodimers and metalloprotease-dependent neure-
gulin 1 release, resulting in the activation of both EGFR
and ErbB3 [107]. P2X7 receptors were also implicated in
VEGF release in rat C6 glioma cells. Cell exposure to
BzATP augmented P2X7 receptor expression, increased
intracellular calcium [Ca2+]i mobilization, induced the
formation of large pores, and enhanced the expression of
pro-inflammatory factors including MCP-1, IL-8, and
VEGF [108].

Interactions between P2Y, P2X, and polypeptide growth
factor signalling pathways may have important implications
for CNS development as well as injury and repair. Besides,
reports suggest that fibroblast growth factor 2 (FGF-2) is
increased after injury and can stimulate astrocyte prolifer-
ation. It has been shown that extracellular nucleotides can
potentiate FGF-2-mediated signalling. In primary cultures
of rat cortical astrocytes, for example, extracellular ATP
enhances FGF-2-induced proliferation in a process mediat-
ed by P2Y receptors, phosphorylation of ERK1/2 MAPK
and increased cyclin expression. However, when P2X7

receptors are activated, FGF-2-dependent proliferation is
inhibited shifting cells to a state of reversible growth arrest
that may involve phosphorylation of p38 and JNK MAPKs.
Thus, P2Y and P2X7 receptors mediate opposing effects on
FGF-2-induced mitogenesis [109–111]. Furthermore, in adult
mouse olfactory epithelium ATP also induces cell prolifera-

tion by promoting FGF-2 and TNF-α synthesis and
activation of their receptors (FGFR and EGFR, respectively)
[112].

P2 receptors and steroid hormone receptors

Purinoceptors are widely expressed in endocrine glands.
For instance, in testicular Sertoli and in Leydig cells, they
are involved in estradiol and testosterone secretion and are
also expressed in the ovary where they mediate the
antagonism of estradiol and progesterone secretion from
granulosa cells [3, 4]. Recently, it has been found that 17β-
estradiol acting via estrogen receptor alpha promotes
proliferation of MCF-7 breast cancer cells by down-
regulating P2Y2 receptor expression and attenuating P2Y2

receptor-induced increase of [Ca2+]i [113]. A similar P2
receptor down-regulation mechanism by this female gonad-
al hormone was determined in dorsal root ganglion (DRG)
primary sensory neurons. In these cells, P2X3 receptor
subunit mRNA was significantly decreased by the applica-
tion of 17β-estradiol in a concentration-dependent manner.
The use of the estrogen receptor antagonist, ICI 182,780,
blocked the reduction in the receptor subunit protein level.
Thus, 17β-estradiol participates in the control of peripheral
pain signal transduction by modulating the expression of
the P2X3 subunit and, consequently, P2X3 receptor-
mediated events [114]. On the other hand, P2X3 receptor
mRNA was significantly decreased in DRG neurons of
ovariectomized rats. However, estrogen replacement
could reverse this effect [115]. 17β-Estradiol may then
participate in the regulation of P2 receptors, either
decreasing or increasing their expression, to control cell
signalling pathways.

Besides, it has been shown that estrogens can modulate
cell events in a non-genomic manner by affecting signalling
mediated by P2 receptors. For instance, purinergic agonists,
acting mainly through P2Y2 receptors, potently stimulate
HCO3

− secretion in highly differentiated cultures of
monkey oviductal epithelium. When phenol red (an
estrogen) is removed from the culture medium, ATP-
dependent HCO3

− secretion is markedly reduced but could
be restored by treatment with estradiol. Therefore, estradiol
induces changes in HCO3

− concentration by mediating
purinergic signalling pathways or ATP secretion [116]. In
normal human cervical epithelial cells, apoptosis is medi-
ated predominantly through P2X7 receptors. In this case,
estradiol inhibited the apoptotic effect induced by ATP or
BzATP independent of its mitogenic function, implying a
novel anti-apoptotic mechanism exerted by estradiol which
antagonizes P2X7 receptor-induced apoptosis [117]. Another
example of the antagonistic effect of estradiol on P2X7

receptors was established in CV-1 monkey kidney cells
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transformed by SV40 (COS cells) expressing the human
P2X7 receptor (hP2X7). ATP or BzATP induced a cation
current through hP2X7 receptor which was rapidly and
reversibly inhibited by 17β-estradiol, in a concentration-
dependent and non-genomic manner [118].

Although no reports suggest a role for progesterone in
the regulation of the expression of P2 receptors, some
authors showed that the hormone can act in a non-genomic
manner to antagonize or potentiate ATP-mediated signal-
ling. For instance, progesterone can selectively potentiate
homomeric P2X2 receptor cation influx [119]. On the other
hand, in T47D-Y cells, a breast cancer cell line lacking
expression of the classical nuclear progesterone receptors,
progesterone can act in a rapid non-nuclear manner to
inhibit extracellular ATP effects on intracellular calcium
mobilization and ERK activation [120]. In addition, in
human granulosa-luteal cells, human corionic gonadotrophin
(hCG)-induced progesterone production was reduced by
ATP treatment. Additionally, PD98059, an ERK1/2
MAPK inhibitor, reversed the inhibitory effect of ATP
on hCG-induced progesterone production, suggesting
that extracellular ATP inhibits progesterone production
by hCG through ERK1/2 MAPK [121].

Androgens have important physiological effects, not
only are they the precursors for steroid hormone biosyn-
thesis in gonadal and extragonadal tissues, but also act
directly via androgen receptors throughout the body [122].
Little is known about the regulation of P2 receptors by
androgens or vice versa. In Leydig cells, ATP induces an
increase in [Ca2+]i and testosterone secretion, supporting
the hypothesis that Ca2+ signalling through purinergic
receptors contributes to the process of testosterone secretion
in these cells [123]. The receptors involved in this response
were investigated. The presence of P2X2, P2X4, P2X6, and
P2X7 receptor subunits was demonstrated, but functional
results suggested that a heteromeric channel, possibly
P2X2/4/6, is responsible for testosterone secretion in Leydig
cells [124]. In addition, sustaining the regulation of P2
receptors by androgens, it was determined that testosterone
administration to adult hypogonadal mice restored purinergic
excitatory transmission and P2X1 receptor immunofluores-
cence of vasa deferentia [125].

Glucocorticoids are essential for stress responses. Also
ATP released from stressed cells is implicated in inflamma-
tion. However, little is known about the effects of
glucocorticoids on ATP-induced inflammation. In a human
microvascular endothelial cell line, dexamethasone en-
hanced ATP-induced interleukin 6 (IL-6) secretion through
PLC and p38 MAPK. In addition, dexamethasone induced
P2Y2 receptor mRNA expression, and when the P2Y2

receptor was silenced by its small interfering RNA, ATP-
induced IL-6 production decreased [126]. Dexamethasone
also enhanced the ATP-induced [Ca2+]i increase and nitric

oxide (NO) production in type I spiral ganglion neurons of
the guinea pig cochlea. These effects were dependent on the
presence of extracellular Ca2+ thereby suggesting that
dexamethasone may rapidly enhance the Ca2+ influx
through the activation of ionotropic P2X receptors which
may interact with glucocorticoid receptors [127]. Different
results were obtained in HT4 mouse neuroblastoma cells,
where ATP-induced elevation of [Ca2+]i was inhibited by
corticosterone, cortisol and dexamethasone. Both extracel-
lular Ca2+ influx through P2X receptors, and internal Ca2+

release were attenuated. Therefore, glucocorticoids modu-
late P2X receptor-medicated Ca2+ influx through a
membrane-initiated, non-genomic pathway in HT4 cells
[128]. Besides, corticosterone inhibited ATP-induced cation
currents through P2X3 receptors in rat DRG neurons. These
effects diminished after adding protein kinase A inhibitor
H89. Thus, glucocorticoid hormones might participate in the
modulation of P2X3 receptor-associated events in sensory
neurons, and the effect is mediated by glucocorticoid
receptors and the downstream activation of protein kinase
A [129].

It has been reported that P2Y2 receptors contribute to
NaCl homeostasis and blood pressure regulation in
aldosterone-sensitive distal nephron [130]. In addition, the
same role for P2Y2 receptors was established in knockout
mice lacking P2Y2 receptors, which showed salt-resistant
arterial hypertension linked to an inhibitory influence on
renal Na+ and water reabsorption [131]. However, there are
no reports suggesting a relation between mineralocorticoid
receptors and P2 receptors.

Retinoids, vitamin A derivatives, are important regula-
tors of the growth and differentiation of skin cells. It was
established that, in normal human epidermal keratinocytes
(NHEKs), all-trans-retinoic acid (ATRA) and 9-cis-retinoic
acid, agonists to retinoic acid receptor, enhanced the
expression of the P2Y2 receptor mRNA and receptor
function. So, retinoids, at least in part, exert their
proliferative effects by up-regulating P2Y2 receptors in
NHEKs [132]. Besides, ATRA and 9-cis-retinoic acid
significantly increased the mRNA and protein levels of
P2X2 receptors in rat pheochromocytoma PC12 cells [133].
On the other hand, retinoic acid (RA) induces neuronal
differentiation and down-regulates P2X7 receptor expres-
sion in human SH-SY5Y neuroblastoma cells, thus protect-
ing them from extracellular nucleotide-P2X7 receptor-
induced neuronal death [134]. Similar results were obtained
in the case of Neuro-2a cells, where RA-induced neuronal
differentiation associated with decreased expression and
function of P2X7 receptors [135]. Together, these evidences
suggest that retinoids can transcriptionally regulate the
expression and function of P2 receptors, at least, in the skin
and nervous system. However, in contrast with these
results, RA-induced human neuroblastoma SK-N-BE(2)C
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cell differentiation did not alter the expression level of
P2Y6 receptors [136].

The existence of an interaction between P2 receptors and
the vitamin D receptor (VDR) has not been studied yet.
However, it was found that 1α, 25(OH)2 vitamin D3

induces ATP exocytosis in static ROS 17/2.8 and SAOS-2
cells and primary calvarial osteoblasts expressing VDR;
this effect was abolished by inhibitors of vesicular
exocytosis. Furthermore, silencing of VDR by siRNA
prevented 1α, 25(OH)2 vitamin D3 stimulation of ATP
exocytosis in ROS 17/2.8 and SAOS-2 cells. Similarly, 1α,
25(OH)2 vitamin D3 failed to activate ATP secretion in
primary osteoblasts from a VDR knockout mouse. Thus,
1α, 25(OH)2 vitamin D3 stimulation of ATP exocytosis
involves non-transcriptional VDR functions in osteoblasts
[137].

Concluding remarks

Extracellular nucleotides can regulate many cellular effects
through activation of P2 receptors. Nevertheless, it seems
that these receptors can form membrane complexes with
other P2 receptors or other classes of receptors. P2
receptors can homodimerize, heterodimerize, and even
modulate the expression and/or activity of other GPCRs,
receptor tyrosine kinases and steroid hormone receptors.
This clearly affects intracellular signalling pathways either
in physiological or pathophysiological conditions. Thus, P2
receptors should be viewed as components of homo/
heteroreceptor complexes rather than self-dependent enti-
ties, although it remains unclear to what extent they can
associate with each other to form signalling units. In
addition, several metabolites and agonists can play a
potential role in purinergic signalling. Therefore, P2
receptors can be considered as attractive targets for novel
drug development.
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