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Abstract This paper is concerned with the links between the Value Iteration algorithm and
the Rolling Horizon procedure, for solving problems of stochastic optimal control under the
long-run average criterion, in Markov Decision Processes with finite state and action spaces.
We review conditions of the literature which imply the geometric convergence of Value It-
eration to the optimal value. Aperiodicity is an essential prerequisite for convergence. We
prove that the convergence of Value Iteration generally implies that of Rolling Horizon. We
also present a modified Rolling Horizon procedure that can be applied to models without
analyzing periodicity, and discuss the impact of this transformation on convergence. We il-
lustrate with numerous examples the different results. Finally, we discuss rules for stopping
Value Iteration or finding the length of a Rolling Horizon. We provide an example which
demonstrates the difficulty of the question, disproving in particular a conjectured rule pro-
posed by Puterman.

Keywords Markov decision problems · Value iteration · Heuristic methods · Rolling
horizon

1 Introduction

1.1 Statement of the problem: precision of the rolling horizon procedure

Consider a random dynamical system, observed at discrete times. At each time t ∈ N, the
state st is observed and an action at is chosen, resulting in an instantaneous gain rt (st , at ).
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From here on, we work with time-homogeneous gains: rt = r , independent on the time.
The actions at chosen at each time t in the respective state st determine a policy π whose
performance is evaluated through a long-run average criterion. More precisely, let

gπ(s) := lim inf
n→∞

1

n
E

π
s

n−1∑

t=0

r(st , at ). (1)

The objective of the controller is to find (when it exists) the policy that solves, given the
current state s:

π∗(s) = arg max
π

gπ (s).

However, for a wide class of stochastic control problems in discrete time and infinite hori-
zon, obtaining an optimal policy explicitly is a difficult task. This is why practitioners often
use instead a heuristic method called the Rolling Horizon procedure (also, Receding Hori-
zon, Moving Horizon or Model Predictive Control), which works as follows. To the infinite-
horizon control problem is associated a finite-horizon problem (FHP): for a given integer n

(the horizon length) and a state s, find:

max
π

E
π

[
n−1∑

t=0

r(st , at )|s0 = s

]
. (2)

Solving this problem results in a sequence of decision rules:

π∗
n = (dn, dn−1, . . . , d2, d1) (3)

where d1(sn−1) is the best action to be applied at time t = n− 1 when only one step remains
to reach the horizon, d2 is the best decision rule to be applied when two steps remain to get
the horizon, at time t = n − 2, and so on. In particular, dn(s0) is the best decision rule to be
applied to the initial state s0.

The Rolling Horizon method (abbreviated as RH from here on), prescribes to repeat-
edly consider a FHP, taking the current state as initial state. It is not necessary to solve it
completely: what is needed is to obtain the first action and to apply it.

Specifically, the procedure to construct a rolling horizon policy is the following one. Fix
some integer n.

1. At time t , and for the current state xt , find the value of dn(xt ) in the control problem
FHP.

2. Apply at = dn(xt ).
3. Observe the achieved state at time t + 1: xt+1.
4. Set t := t + 1 and xt := xt+1 and go to step 1.

The RH procedure does not specify how to compute the value dn(xt ). Its efficiency is based
on the idea that computing the value dn(xt ) alone is usually much easier than solving en-
tirely the FHP, which involves computing the n decision rules in (3). On the other hand, the
performance of the resulting policy is not the optimal one, although the intuition is that when
n is “large enough”, the performance should be close to the optimal. The practical issue is
then to choose n so as to obtain a proper compromise between precision and the computa-
tional effort needed to obtain dn(xt ). We address this issue through two formal qualitative
and quantitative questions. Let un(s) be the average gain achieved by the RH procedure with
horizon length n, starting in state s:
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Q1 Under which conditions on the problem is it true that limn→∞ un(s) = gπ∗
(s)?

Q2 Given a state s and ε > 0, is it possible to compute n such that |un(s) − gπ∗
(s)| < ε?

In this paper, we look at these questions in the context of Markov Decision Processes,
through the link it has with the Value Iteration (VI) algorithm and the RH procedure. We
focus on two objectives:

– make a review of the results about convergence of the VI algorithm in the literature,
including the multichain model,

– analyze the effects of those properties on the convergence of the RH procedure and, in
this way, make more practical and wide the use of this method.

We finally propose a modification of the RH procedure that makes convergence easier, and
discuss its efficiency.

The paper is organized as follows. We complete this introduction with a brief literature
review. In Sects. 2 and 3, we recapitulate the relationship between RH and the Value Iteration
algorithm concerning their convergence concepts. Then in Sect. 4 we propose and evaluate
a Modified Rolling Horizon procedure. Finally, in Sect. 5, we discuss about stopping rules
for both of algorithms and we conclude in Sect. 6.

1.2 Literature review

Markov decision problems have been widely studied during the last sixty years, and the
advances and applications have been synthesized in well-known books such as for example
(Derman 1970; Ross 1970; Bertsekas 1987; White 1993; Puterman 1994; Kallenberg 2009).
The value iteration algorithm is an usual topic in the bibliography, frequently associated to
discounted criteria. The analysis of the problem when the performance of the policies is
evaluated with the criterion of average rewards over an infinite horizon, in the most general
case, presents additional difficulties. This is why this topic has been developed more recently
in the literature. For example, it is not present in Derman (1970) and few words are devoted
to it in Ross (1970). In most of the references, convergence of the value iteration algorithm
for average rewards criterion is analyzed only for unichain models. Since the distinction
between unichain and multichain turns out to be NP-complete to decide (see Kallenberg
2009), it should be useful to give convergence results for multichain models.

We shall consider Markov Decision Processes as described for instance in Puterman
(1994), of whom we adopt the notation. We also refer to the classification of Markov de-
cision problems according to their deterministic stationary policies, i.e. unichain or multi-
chain, as it appears in Kallenberg (2009), Puterman (1994).

The theoretical analysis of RH for MDPs has comparatively received less attention in
the literature, where this procedure is often encountered in a heuristic presentation, without
precise references to accuracy or convergence. In the discounted case, Puterman (1994, The-
orem 6.3.1, p. 161) proves that both VI and RH converge at the same time (see the definitions
of convergence below). Results for the case of average costs include those of Hernández-
Lerma and Lasserre, who present in Hernández-Lerma and Lasserre (1990) error bounds for
rolling horizon policies in general, stationary and nonstationary, Markov control problems
on Borel spaces, with both discounted and average reward criteria. They give a condition
(Assumption 5.1 in their work and Condition 5 below in this work) under which the reward
of the rolling horizon policy converges geometrically to the optimal reward function, uni-
formly in the initial state, as the length of the rolling horizon increases. The convergence
rate is explicit in their result. Previously, Alden and Smith (1992) provided an error bound,
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still for nonstationary MDPs, between a rolling horizon policy and an expected-average op-
timal policy, considering finite states and finite policies under a Doeblin-like condition (see
Meyn and Tweedie 2009). Guo and Shi (2001), deal with the limiting average criteria for
nonstationary Markov decision processes on Borel state spaces with possibly unbounded
rewards. They give conditions under which the existence of both a solution to the optimal-
ity equations and the limiting average ε-optimal Markov policies can be derived and also
present a rolling horizon algorithm for computing limiting average ε-optimal Markov poli-
cies. The proof of the convergence is under a condition similar to those in Hernández-Lerma
and Lasserre (1990).

2 The Value Iteration algorithm for the average reward criterion

In what follows, the state space, S, and the decision set for each s ∈ S, As are both finite.
Also, without losing generality, we consider r(s, a) ≥ 0, ∀(s, a) ∈ S × As .

We shall focus on stationary policies π = (d)∞ = (d, d, . . .) where d is a decision rule
that maps every state s of S to As . Every decision rule can be seen as a vector with |S|
components. When vectorial notation is possible, for short we write rd for the vector whose
components are r(s, d(s)) and Pd for the transition matrix where Pd(s, s

′) = p(s ′|s, d(s)).
Moreover, making an abuse of notation, we use D indifferently for the set of decision rules
or the set of stationary policies.

In this finite state space/finite action space setting, it is well-known that there exists an
optimal, pure stationary policy, for the infinite-horizon average reward criterion (1). Let g∗
denote the associated optimal gain vector.

Consider now the Value Iteration algorithm:

Value iteration algorithm

1. n = 0, v0 = 0.
2. Compute

vn+1 = max
d∈D

{rd + Pdvn} =: T vn (4)

and some

dn+1 ∈ arg max
d

{rd + Pdvn}. (5)

3. If an adequate stopping rule holds, then go to step 4. Otherwise, set n := n + 1 and go to
step 2.

4. Return dn+1.

When VI stops, for some N , it has computed a sequence of decision rules (dN , . . . , d1)

which actually solves the FHP in (2). On the other hand, it has been observed in the liter-
ature (e.g. in Hernández-Lerma and Lasserre 1990) that the RH procedure with horizon n

generates decisions precisely according to the stationary policy (dn)
∞ = (dn, dn, . . .).

Convergence concepts The usual theoretical and practical challenge for VI is to determine
the “adequate stopping rule” of step 3, so that the algorithm does stop at some iteration n

such that the policy computed is “good enough”.
It is known that vn/n always converges to g∗, see Kallenberg (2002, Corollary 2.8, p. 49),

but this result alone does not help to identify optimal or ε-optimal policies. We choose
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therefore the following, more practical, notion of convergence. The VI algorithm is said to
converge if the following limit exists, for some vector h∗ 1:

lim
n→∞vn − ng∗ = h∗. (6)

In addition, the convergence is said to be geometric if there exists N ∈ N, C > 0 and δ < 1
such that, with a suitable norm, ∀n ≥ N ,

‖vn − ng∗ − h∗‖ < Cδn.

These definitions are motivated by the fact that the (nonstationary but periodic) policy
(dN , . . . , d1, dN , . . .) has the performance vN/N for the average criterion (1). On the other
hand, most practitioners are likely to use instead the decision rule dN alone repeatedly (out
of simplicity, or the belief that this rule must be the “best” of those computed by VI), thereby
implementing effectively a RH procedure with horizon N . The average value obtained by us-
ing this stationary policy is uN = g(dN )∞ , and in general, uN 
= vN/N and uN 
= vN+1 − vN ,
nor is there a particular order between these sequences. We illustrate this fact below. As a
consequence, any convergence result or stopping rule for VI is not guaranteed to provide a
performance bound for RH. This motivates further the need for results concerning specifi-
cally RH.

By analogy, the RH procedure is said to converge if

lim
n→+∞ g(dn)∞ = g∗.

The convergence is said to be geometric if there exists N ∈ N, C > 0 and δ < 1 such that,
with a suitable norm, ∀n ≥ N ,

‖g(dn)∞ − g∗‖ < Cδn.

This is an abuse of terminology, since the RH procedure itself does not “converge”. It merely
means that the procedure can be made to perform arbitrarily close to optimal through the
choice of a suitable horizon length n.

Example 1 The example detailed in the Appendix serves to illustrate these issues concerning
the convergence of the different sequences involved in the previous discussion. We have
applied to this model the transformation to be described in Sect. 4 with τ = 0.99. In Fig. 1,
we show the evolutions of the sequences

vn+1 − vn, vn+1 − vn − g(dn)∞ , vn/n and vn/n − g(dn)∞

respectively, evaluated at state 4. Clearly, these sequences do not have a constant sign, and
are not monotonously converging.

1Observe the discrepancy with the general notion of convergence of algorithms in Computer Science, which
requires that an algorithm stops and returns the correct result.
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Fig. 1 Evolution of vn+1 −vn (top), vn+1 −vn −g(dn)∞ (top, right), vn/n (bottom, left) and vn/n−g(dn)∞

(bottom, right), for state 4

3 Convergence of the VI and RH procedures

The issue of convergence of the VI algorithm has attracted quite some attention in the liter-
ature. In Sect. 3.1, we review some of the conditions that have been proposed for ensuring
the convergence of either VI or RH. In Sect. 3.2, we state the convergence results, including
a new one which we prove (Theorem 2). In Sect. 3.3, we have a look at convergence rates.
In Sect. 3.4, we discuss the relative strength of these conditions.

3.1 Convergence conditions

The two following conditions are stated by Schweitzer and Federgruen (1977).

Condition 1 There exists a randomized maximal gain policy whose transition probability
matrix is aperiodic (but not necessarily unichain) and has R∗ = {i ∈ S : i is recurrent for
some pure maximal gain policy} as its set of recurrent states.

Condition 2 Every optimal (pure) stationary policy gives rise to an aperiodic (but not nec-
essarily unichain) transition matrix.

The following condition, known as weak unichain condition appears in Tijms (1986,
p. 199) as Assumption 3.3.1.

Condition 3 Every optimal stationary policy has a transition probability matrix unichain
and aperiodic
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Puterman (1994, p. 370), presents the following one.

Condition 4 Every stationary policy is unichain and gives rise to an aperiodic transition
matrix.

The following condition appears in Hernández-Lerma and Lasserre (1990) as Assump-
tion 5.1.

Condition 5 There exists a positive number δ < 1 such that

sp
(
p(.|s, a) − p

(
.|s ′, a′)) ≤ 2δ

for every (s, a) and (s ′, a′) with s, s ′ ∈ S, a ∈ As , a′ ∈ As′ and for a measure λ, sp(λ) denote
the norm

sp(λ) := sup
B

λ(B) − inf
B

λ(B)

for B ⊂ S.

Remark 1 In Sect. 3.4 we show that Condition 5 ⇒ Condition 4. It is easy to see that
Condition 4 ⇒ Condition 3 ⇒ Condition 2 ⇒ Condition 1.

Condition 1 is the weakest condition under which the convergence of vn − ng∗ to h∗ is
guaranteed: it is established in Schweitzer and Federgruen (1977) that this is a necessary
and sufficient condition of convergence.

Condition 5 for the convergence of RH is related to some ergodicity properties of the
chain structure: see Appendix in Hernández-Lerma and Lasserre (1990), or Meyn and
Tweedie (2009, Chap. 15). Other convergence conditions have been proposed in Alden
and Smith (1992), Guo and Shi (2001). More precisely, the hypothesis of Alden and Smith
(1992), related to the conditions described above, is similar to a Doeblin condition while
Guo and Shi (2001), assume that β := sup{1 − infj∈S infa∈As P n(j |i, a) < 1 : n ≥ 0}. Both
assumptions, similarly to Condition 5 (see in Theorem 3 below) imply that the model is
unichain.

3.2 Convergence results

It is known from the literature that, in general, there is no convergence of the sequence
{vn}n, which is unbounded (it actually grows asymptotically linearly, r being positive, since
vn/n converges to some g∗ as mentioned earlier), nor of {vn − vn−1}n. Also, it is proved, see
Kallenberg (2009, Lemma 5.5, p. 157), that if the sequence {vn − ng∗}n is bounded,

g∗ = lim
n→∞

1

n
vn = lim

n→∞
1

n

n∑

k=1

(vk − vk−1),

but this is not enough to compute an ε-optimal policy or an ε-approximation of g∗. To have
one, the convergence of {vn − ng∗}n is needed, and it is known that it may fail to happen if
some of the matrices involved in the MDP are periodic.

The analysis of average-cost MDPs often involves the notion of “span” of a function (or
vector), defined as: sp(w) := maxs∈S(w(s)) − mins∈S(w(s)). The geometric convergence of
the sequence sp(vn+1 − vn) to 0 implies the geometric convergence of VI, and the limit of
vn+1 − vn is a vector with zero span, that is, a constant vector.
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Theorem 1 (Convergence of VI) The VI algorithm converges geometrically under any of
Conditions 1–5.

Proof Obviously, in view of Remark 1, it is sufficient to prove the result for Condition 1.
It is interesting for this review to point out that proofs under specific conditions have been
obtained independently, since these may involve different techniques and possibly provide
different estimations for the convergence rate. See Sect. 3.3 below.

The convergence under Conditions 1 and 2 is proved in Schweitzer and Federgruen
(1977, Theorems 5.1 and 5.5) respectively. The fact that the convergence is geometric is
proved by the same authors in Schweitzer and Federgruen (1979, Theorem 4.2).

The claim for Condition 3 is proved in Tijms (1986, Theorem 3.4.2, p. 209).
We can find the proof of the convergence under Condition 4 in Puterman (1994, Theo-

rem 8.5.4, p. 370). The arguments do not include geometric convergence, but this property
holds since Condition 4 implies Condition 3 (for this last one, again, see Sect. 3.3 below).

Finally, the result under Condition 5 is not proved, but commented in Hernández-Lerma
and Lasserre (1990). However, it is not hard to check that Condition 5 is equivalent to Con-
dition a) in Puterman (1994, Theorem 8.5.3, p. 368) and this theorem, together with Theo-
rems 8.5.1 and 8.5.2, provide the geometric convergence of sp(vn+1 − vn) to 0. �

The previous theorem means that under the conditions mentioned the sequence {vn −
ng∗} converges geometrically to h∗. Now we ask if under any of these conditions the se-
quence {g(dn)∞ − g∗} converges geometrically to zero.

Theorem 2 (Convergence of RH) If the VI algorithm converges geometrically then also
does the RH procedure.

Proof By assumption, ∃N1 ∈ N, C1 > 0 and α < 1 such that whenever n ≥ N1,

‖vn − ng∗ − h∗‖∞ < C1α
n.

Since vn+1 − vn − g∗ = (vn+1 − (n + 1)g∗ − h∗) − (vn − ng∗ − h∗), with C = 2C1 we have,
for n ≥ N1,

‖vn+1 − vn − g∗‖∞ < Cαn,

or put differently,

g∗ − Cαn1 < vn+1 − vn < g∗ + Cαn1. (7)

Let dn+1 be defined as (see (5)):

dn+1 ∈ arg max
d

{rd + Pdvn},

so that

vn+1 = rdn+1 + Pdn+1vn. (8)

Denoting with P ∗
dn+1

:= limm→∞ 1
m

∑m

k=1 P k
dn+1

the Cesàro limit for Pdn+1 , by well-known

properties of Markov chains we have g(dn+1)∞ = P ∗
dn+1

rdn+1 and g(dn+1)∞ = P ∗
dn+1

g(dn)∞ .
Moreover, according to Puterman (1994, Lemma 9.4.3), there exists N2 such that for all

n > N2, Pdn+1g
∗ = g∗, which implies P ∗

dn+1
g∗ = g∗. Then, using successively the definition
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of g(dn+1)∞ , (8) and the fact that P ∗
dn+1

Pdn+1 = P ∗
dn+1

, we have:

g(dn+1)∞ = P ∗
dn+1

rdn+1 = P ∗
dn+1

(vn+1 − Pdn+1vn) = P ∗
dn+1

(vn+1 − vn). (9)

It is clear that for all s ∈ S, g∗(s) ≥ g(dn+1)∞(s). Consequently, for n > max{N1,N2} and
any s, (9) and (7) imply respectively

P ∗
dn+1

(vn+1 − vn)(s) = g(dn+1)∞(s) ≤ g∗(s) (10)

P ∗
dn+1

(vn+1 − vn)(s) > P ∗
dn+1

(
g∗ − Cαn1

)
(s) = g∗(s) − Cαn. (11)

From (10) and (11), for n > max{N1,N2}, it follows that

0 ≤ g∗(s) − g(dn+1)∞(s) < Cαn,

which concludes the proof. �

Theorems 1 and 2 imply:

Corollary 1 Any of Condition 1 to 5 implies the geometric convergence of the RH proce-
dure.

As mentioned in Sect. 1.2, it is known from Puterman (1994, Theorem 6.3.1, p. 161) that
both VI and RH converge (geometrically) at the same time when a discounted criterion is
analyzed. However, in the average case, analyzed here, the reciprocal of Theorem 2 cannot
hold: there are MDP models in which RH converges, whereas VI does not. The simplest such
example is perhaps that of an uncontrolled, two state, periodic Markov chain (see Example 7
below): since there is only one policy, RH converges, but since the model does not satisfy
Condition 1, VI cannot converge. Up to our knowledge, in the average case, there are no
previous works which compare these convergences.

3.3 Convergence rates

Having an estimate of the convergence rate is useful in many practical situations, especially
for determining horizon lengths or stopping rules (see Sect. 5). We discuss this point now.

The question is to find values of N , C and δ such that, for all n ≥ N :

‖ng∗ − vn − h∗‖ < Cδn (12)

or for the RH procedure,

‖g∗ − g(dn)∞‖ < Cδn. (13)

Under Condition 5, inequality (13) holds with N = 1, C = 2‖r‖/(1 − δ) and δ given
accordingly to Hernández-Lerma and Lasserre (1990, Proposition 5.1).

Under Condition 3, Federgruen et al. (1978, Theorem 5) states that for M = 1
2 |S|(|S|−1),

and any pair of M-tuples of decision rules π1,π2 ∈ DM ,

min
s1,s2∈S

∑

j∈S

min
{
P M

π1
(s1, j),P M

π2
(s2, j)

} =: ρπ1,π2(M) > 0. (14)
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As S and D are considered finite in this discussion, taking

δ̃ = 1 − min
π1,π2∈DM

ρπ1,π2(M), (15)

we have δ̃ < 1 and from Puterman (1994, Theorem 8.5.2.a., p. 368) T is a M-step contrac-
tion operator with coefficient δ̃ and then

0 ≤ g∗ − g(dnM)∞(s) ≤ sp
(
g∗ − vnM

) ≤ Cδ̃n, (16)

and C = sp(g∗ − v0). Therefore, (13) holds with δ = (δ̃)1/M , at least when n is a multiple of
M . In Schweitzer and Federgruen (1979), the authors claim that, for the same value of M ,
and d ∈ D,

min
s1,s2∈S

∑

j∈S

min
{
P M

d (s1, j),P M
d (s2, j)

} = ρd(M) > 0,

and that there is geometric convergence with rate

γ = 1 − min
d∈D

ρd(M). (17)

They do not present a proof but they also refer to Federgruen et al. (1978, Theorem 5). While
it is clear that δ̃ ≥ γ , the fact that γ is also a rate of convergence is not obvious.

In the following example we compute both δ̃ and γ defined in (15) and (17), in order
to illustrate the facts that: these numbers are different, and also that the importance of this
result is essentially theoretic. It is clear that the complexity of the task grows exponentially
with the number of states and actions.

Example 2 Let us consider a model with three states S = {s1, s2, s3} and two available action
in each state, Asi = {ai

1, a
i
2}, i = 1,2,3. The (positive) transitions probabilities are defined

as follows:

p
(
si+1|si, a

i
1

) = p
(
si−1|si, a

i
2

) = 0.9 and p
(
si |si, a

i
1

) = p
(
si |si, a

i
2

) = 0.1

(where the sum within subindices is modulo 3).
Since we have a 3-state model, the value of M is 3. Since there are two actions in each

state, there are 8 different stationary policies, and 8 different matrices appearing in the defi-
nition of ρπ1,π2(M) > 0 in (14).

In the computation of γ , we obtain a value ρ = 0.297 for two policies: (a1
1, a

2
1, a

3
1) and

(a1
2, a

2
2, a

3
2), and a value ρ = 0.487 for the rest. We find then the value γ = 1 − 0.297 =

0.703.
In the computation of δ̃, we obtain a largest value of ρπ1,π2 as 0.244, obtained for instance

with π1 = (a1
1, a

2
1, a

3
2) and π2 = (a1

1, a
2
2, a

3
1). We then have δ̃ = 0.756. As established above,

δ̃ ≥ γ .
The corresponding convergence rates are respectively δ̃1/3 � 0.911 and γ 1/3 � 0.889.

In summary, only Condition 5 readily provides bounds on the convergence rate. It is
an open question to design algorithms which compute bounds on the convergence rate in
an efficient way for generic models. This does not preclude the possibility that bounds be
established based on (15) for specific models.
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3.4 Discussion and comparison of convergence conditions

3.4.1 Discussion on the practicality of convergence conditions

Conditions 1–4 of Sect. 3.1 all involve aperiodicity, irreducibility and/or the classification
of MDP models.

Although determining whether a MDP is irreducible is polynomially solvable, there is no
polynomial algorithm to determine whether a MDP is unichain or multichain (see comments
in Kallenberg 2009, p. 127). It is worth mentioning that a simple transformation, discussed
below, makes aperiodic any transition matrix of the MDP model without changing the op-
timization problem. Conditions requiring aperiodicity can therefore be applied without this
requirement.

Comparison Among the five conditions we have reviewed, Condition 5 is the only one
not referring to structural properties of the underlying matrices. We investigate here these
structural implications.

The following lemma provides a convenient characterization of cases where Condition 5
does not hold. Remember that, given a probability measure μ, supp(μ) is the smallest set B

such that μ(B) = 1.

Lemma 1 Condition 5 does not hold if and only if there exist (s, s ′) ∈ S × S, a ∈ As , a′ ∈
As′ , such that supp(p(·|s, a)) ∩ supp(p(·|s ′, a′)) = ∅.

Proof Since the state and action spaces are finite, Condition 5 fails if and only if there exist
s, s ′, a, a′ such that: sp(λ) = 2, with λ(.) = p(.|s, a) − p(.|s ′, a′). This in turn is equivalent
to: supB λ(B) = 1 and infB λ(B) = −1, and finally: ∃B,B ′: p(B|s, a) = 1, p(B ′|s, a) = 0,
p(B|s ′, a′) = 0 and p(B ′|s ′, a′) = 1. The set B can be taken as supp(p(.|s, a)) and B ′ =
supp(p(.|s ′, a′)). �

Next, Condition 5 implies structural properties on the MDP model.

Theorem 3 Every model where Condition 5 holds is (a) unichain and (b) aperiodic. The
converse is not true.

Proof The proof of the first statement is by contradiction. Consider first part (a) of the
statement, and assume there is some d , a decision rule associated to a multichain Markov
chain with transition probabilities Pd , B1 and B2 two distinct irreducible recurrent classes.
Then choosing s1 ∈ B1, d(s1) ∈ As1 , s2 ∈ B2 and d(s2) ∈ As2 , we have supp(p(·|s1, d(s1))) ⊂
B1, supp(p(·|s2, d(s2))) ⊂ B2, implying that both sets are disjoint. Lemma 1 applies and
Condition 5 cannot hold.

Next, consider part (b) of the statement: we prove that periodic chains do not verify
Condition 5. We use for this the following result (see Çinlar 1975, p. 161):

Lemma 2 Let X an irreducible Markov chain with recurrent states of period γ . Then states
can be divided into γ disjoint sets B1,B2, . . . ,Bγ where p(j |i) = 0 unless i ∈ B1 and j ∈ B2

or i ∈ B2 and j ∈ B3, . . . , or i ∈ Bγ and j ∈ B1.

Thus, let us suppose a MDP unichain and periodic for the decision rule d . Denote with
γ > 1 the period of Pd . Then, there exists B1,B2, . . . ,Bγ sets as provided in Lemma 2.



Ann Oper Res

By construction, for every si ∈ Bi , supp(p(·|si, d(si))) ⊂ Bi+1, where it is understood
that “γ + 1” means 1. The supports are therefore disjoint for si and sj if i 
= j . Therefore,
Lemma 1 applies with any s ∈ B1, a = d(s), s ′ ∈ B2, a′ = d(s ′).

Finally, to prove the converse statement, we exhibit an aperiodic model for which Con-
dition 5 does not hold.

Example 3 Let S = {s1, s2, s3}, As1 = {a1
1, a

1
2}, As2 = {a2

1}, As3 = {a3
1}. The controlled tran-

sition probabilities can be associated to the rules d1 = (a1
1, a

2
1, a

3
1) y d2 = (a1

2, a
2
1, a

3
1) and

the

Pd1 =
⎛

⎝
0 1 0
0 0 1

1/3 1/3 1/3

⎞

⎠ , Pd2 =
⎛

⎝
1/3 1/3 1/3
0 0 1

1/3 1/3 1/3

⎞

⎠ .

Taking k = (s1, a
1
1) and k′ = (s2, a

2
1), we have supp(p(·|k)) = {s2} and supp(p(·|k′) = {s3}.

These sets are disjoint, so that by Lemma 1, Condition 5 fails.

To conclude this section, we discuss the idea of possibly relaxing the aperiodicity as-
sumption. We show through the following example (obtained as a simplification of Exam-
ple 4 in Lanery 1967) that the RH procedure may not converge on MDPs for which the
optimal policy gives rise to an unichain periodic Markov process. The following section
will explain how to handle this problem.

Example 4 Let S = {s1, s2, s3} be the state space, and the action sets As1 = {a1
1, a

1
2}, As2 =

{a2
1}, As3 = {a3

1}. The rules we can construct are d1 = (a1
1, a

2
1, a

3
1) and d2 = (a1

2, a
2
1, a

3
1). The

transition matrix are Pd1 and Pd2 . Pd2 is periodic of period 2.

Pd1 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ , Pd2 =
⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠ .

We consider the rewards

r
(
s1, a

1
1

) = 2, r
(
s1, a

1
2

) = 2, r
(
s2, a

2
1

) = 5, r
(
s3, a

3
1

) = 1.

The RH algorithm leads to a sequence where d2 appears for odd horizons and d1 for even
horizons. When d2 is considered as stationary policy in the infinite horizon problem, it pro-
duces an average value equal to (3,3,3), while d1, an average reward equal to (2,3,3). In
consequence, the sequence of values does not converge. Moreover, it is immediate that the
subsequence corresponding to odd horizons is better than that to even horizons.

4 Modified rolling horizon procedure

We use in this section a standard transformation under which all policies are perturbed to
give rise to aperiodic Markov chains without modifying the corresponding gain. This trans-
formation is similar to what Puterman presents in Puterman (1994, Sect. 8.5.4) and, up to
our knowledge, it is originally due to Schweitzer (1971). Although these authors proposed
it in the context of unichain models, it is clear that it works also in multichain models. Our
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proposal related to this property consists in applying it to pre-process the data of the RH pro-
cedure (Sect. 4.1). We then argue that this makes possible to use the RH procedure in multi-
chain cases, without making any analysis of the periodicity of the sub-chains (Sect. 4.2). The
transformation uses a parameter τ ∈ (0,1) which affects the convergence. We illustrate this
influence numerically in Sect. 4.3, and we show in Sect. 4.4 that the transformation affects
negatively the convergence rate when the original model is already aperiodic and unichain.

4.1 Transformation and modified procedure

Let 0 < τ < 1. Define Sτ = S, As,τ = As for all s ∈ S. For all s and all a ∈ As,τ ,

rτ (s, a) = r(s, a)

and for all j ∈ S,

pτ (j |s, a) = (1 − τ)δs

({j}) + τp(j |s, a), (18)

where δs(·) is the Dirac measure concentrated at s. Thus, for every decision rule d ,

Pd,τ = (1 − τ)I + τPd, rd,τ = rd

and Pd,τ is the transition matrix of a Markov chain with aperiodic recurrent classes.

Remark 2 Since the state set and the action sets are those of the original problem the policy
sets also coincide.

For the sake of completeness we present the following results already proved in Puterman
(1994). We want to highlight that these results are valid also for the multichain case.

Proposition 1 Let us suppose that S finite, so that for each (d)∞, a stationary policy, P ∗
d ,

the Cesàro limit matrix, is stochastic. Then it follows that

g(d)∞(s) = P ∗
d rd(s).

Proposition 2 For every decision rule d

P ∗
d,τ = P ∗

d and g(d)∞
τ (s) = g(d)∞(s)

for every s ∈ S.

Proof We shall use the fact that, since S is finite, given d any decision rule, the limit matrix
P ∗

d,τ is the unique one that satisfies

Pd,τP
∗
d,τ = P ∗

d,τPd,τ = P ∗
d,τP

∗
d,τ = P ∗

d,τ .

Note that ∀τ ∈ (0,1], we have

P ∗
d Pd,τ = (1 − τ)P ∗

d I + τP ∗
d Pd = P ∗

d

and

Pd,τP
∗
d = (1 − τ)IP ∗

d + τPdP
∗
d = P ∗

d .
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By well-known results, described for example in Puterman (1994, Appendix A, p. 595), it
follows that P ∗

d,τ = P ∗
d .

To establish the second equality, notice that, by Proposition 1, g(d)∞
τ = P ∗

d,τ rd,τ , so

g(d)∞
τ = P ∗

d,τ rd,τ = P ∗
d rd = g(d)∞ . �

Corollary 2 The optimal stationary policies d∗ for the original problem and for the trans-
formed one are the same. In addition, gd∗

τ (s) = gd∗
(s) for all s ∈ S and all τ ∈ (0,1].

Proof Similar to that of Puterman (1994, Corollary 8.5.9). �

Our contribution in this direction is to propose to use this transformation as a pre-
processing of the problem in order to deal only with aperiodic models.

More precisely, we propose the following procedure. Consider a MDP with state set S,
actions As for s ∈ S, transition probabilities p(j |s, a) for j, s ∈ S, a ∈ As and rewards
r(s, a), s ∈ S, a ∈ As . Being τ ∈ (0,1), transform the problem to a new one with Sτ = S,
As,τ = As for s ∈ Sτ , rτ (s, a) = r(s, a) s ∈ Sτ , a ∈ As and pτ (·|j, a) given by (18).

Modified Rolling Horizon Procedure (MRH)

1. Given 0 < τ < 1, make the transformation described above.
2. Apply RH procedure to the new problem.

4.2 On the theoretical convergence of MRH

The MRH procedure can be applied to MDP whose optimal stationary policy gives rise to
chains with several irreducible classes. Through the transformation at Step 1, every finite
model becomes, in the most general case, a multichain aperiodic model. Since the number
of states and actions are finite and due to aperiodicity, the model satisfies the condition of
Schweitzer and Federgruen (Condition 1). Then, by Corollary 1, the geometric convergence
of RH is assured. In the particular case where the model is unichain (Condition 4), a param-
eter associated to the contraction might be computed explicitly, but likely just in small or
very simple examples.

4.3 Practical convergence of the MRH procedure

Clearly, the transformed transition matrix converges towards original transition matrix when
τ → 1. How is the convergence of vn(s)/n toward g∗(s) modified when τ increases? We
have a quantitative look at the question with the two following examples.

Example 5 Consider again the example with five states described in the Appendix.
The optimal gain g∗ = (2,2,4,4,4) and it is produced by the stationary policy d =
(a2, a2, a1, a2, a1),

We have applied the τ -transformation described above. With τ = 0 the model is trans-
formed in an uncoupled one where all the states are absorbing. As it is shown in Fig. 2, when
τ increases to 1 the periodicity effects are more evident.
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Fig. 2 Evolution of vn(4)/n for n = 1 . . .150, with τ = 0.7 (top left), 0.9 (top right), 0.99 (bottom left) and
1 (bottom right)

Example 6 Consider again the example of the Appendix. This model has a multichain
and periodic structure. The RH procedure applied directly on this problem produces in-
finitely (and periodically) many times two policies, one of them is not two policies,
(a2, a2, a1, a1, a1) and (a2, a2, a1, a2, a1). The first one produces a gain g = (2,2,3,3,3)

and then it is not optimal since g∗ = (2,2,4,4,4).
When we pre-process the data, the Rolling Horizon procedure gives the optimal policy

for the original problem, for any value of τ ∈ (0,1).

4.4 Preservation of Condition 5

Next we investigate the connection of the transformation with Condition 5. Does the trans-
formation preserve this property? Can it be expected obtaining Condition 5 through this
transformation? The result and examples below show that this transformation does not de-
stroy but weakens Condition 5, and that it does not produce it necessarily when it is not
initially present, even with uncontrolled Markov chains. This is possibly due to the known
fact that Condition 5 is related to some ergodicity property of the Markov chain involved
and the transformation proposed by Schweitzer does not produce ergodicity properties, only
aperiodicity.

Applying Lemma 1, it is easy to prove that Condition 5 is preserved by the aperiodicity
transformation. We proceed with an estimation of the constant “δ” involved in this condition,
which quantifies the convergence of VI and RH as we have seen in Sect. 3.3.
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Theorem 4 If a MDP model satisfies Condition 5, then its transformation according to
Sect. 4.1 still satisfies this condition. The constant “δτ ” of the transformed model can be
chosen as: 1 − τ + δτ .

Proof According to Lemma 1, Condition 5 holds for the MDP if and only if, for all
(s, s ′) ∈ S × S, all a ∈ As , all a′ ∈ As′ , supp(p(·|s, a)) ∩ supp(p(·|s ′, a′)) 
= ∅. From the
transformation (18), it is easy to see that supp(pτ (·|s, a)) = supp(p(·|s, a))∪{s}. Therefore,
supp(p(·|s, a))∩supp(p(·|s ′, a′)) 
= ∅ implies supp(pτ (·|s, a))∩supp(pτ (·|s ′, a′)) 
= ∅, and
Condition 5 holds also for the transformed MDP. We proceed with estimating the value of
the constant “δ” corresponding to this transformed model.

Let us consider a MDP where Condition 5 is verified and a parameter τ such that 0 <

τ < 1. Then, for all B ⊂ S, and all admissible pair (s, a), after transforming the problem we
have the new transition probabilities pτ defined by

pτ (B|s, a) = (1 − τ)δs(B) + τp(B|s, a),

or equivalently

p(B|s, a) = 1

τ
pτ (B|s, a) − 1 − τ

τ
δs(B).

Now, for all subsets B1,B2 ⊂ S,

sp
(
p(·|s, a) − p

(·|s ′, a′))

= max
B

(
p(B|s, a) − p

(
B|s ′, a′)) − min

B

(
p(B|s, a) − p

(
B|s ′, a′))

≥ (
p(B1|s, a) − p

(
B1|s ′, a′)) − (

p(B2|s, a) − p
(
B2|s ′, a′))

= 1

τ
pτ (B1|s, a) − 1 − τ

τ
δs(B1) − 1

τ
pτ

(
B1|s ′, a′) + 1 − τ

τ
δs′(B1)

− 1

τ
pτ (B2|s, a) + 1 − τ

τ
δs(B2) + 1

τ
pτ

(
B2|s ′, a′) − 1 − τ

τ
δs′(B2).

Since 0 ≤ δs(·) ≤ 1 for any s, we have the following inequalities:

sp
(
p(·|s, a) − p

(·|s ′, a′))

≥ 1

τ
pτ (B1|s, a) − 1 − τ

τ
− 1

τ
pτ

(
B1|s ′, a′) − 1

τ
pτ (B2|s, a) + 1

τ
pτ

(
B2|s ′, a′) − 1 − τ

τ

= 1

τ

[
pτ (B1|s, a) − pτ

(
B1|s ′, a′)] − 1

τ

[
pτ (B2|s, a) − pτ

(
B2|s ′, a′)] − 2

1 − τ

τ
.

Then, as Condition 5 holds, there exists δ, 0 < δ < 1 such that, for any pair of subsets B1

and B2,

2δ ≥ 1

τ

[
pτ (B1|s, a) − pτ

(
B1|s ′, a′)] − 1

τ

[
pτ (B2|s, a) − pτ

(
B2|s ′, a′)] − 2

1 − τ

τ

and taking the maximum over B1 and minimum over B2 gives

2δ ≥ 1

τ
sp

(
pτ (·|s, a) − pτ

(·|s ′, a
)) − 2

1 − τ

τ
,
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or equivalently:

sp
(
pτ (·|s, a) − pτ

(·|s ′, a
)) ≤ 2(1 − τ + δτ).

As expected, Condition 5 holds with a constant δτ = 1 − τ + δτ . �

It is readily checked that δ < δτ < 1 since 0 < τ < 1. Hence, the transformation makes
Condition 5 weaker: the smaller τ is, the weakest is the condition.

To conclude this section, we provide two examples which show that the aperiodicity
transformation may or may not produce Condition 5, even for uncontrolled unichain prob-
lems (multichain models remain multichain after transformation). It is known that this con-
dition is related to the structure of the Markov chain and not to the policies considered.

Example 7 This example is a case where Condition 5 appears after transformation.
Let us consider a MDP with state space S = {s1, s2}, and one admissible action in each

state, i.e. an (uncontrolled) Markov Chain, where the transition probabilities are given by
the matrix

Pd =
(

0 1
1 0

)
.

This is a periodic and unichain model, and then it does not verify Condition 5.
After apply the aperiodicity transformation we have the new transition probability matrix

Pd,τ =
(

1 − τ τ

τ 1 − τ

)
.

It is not hard to see that Lemma 1 applies to this matrix: supp(p(·|s)) = {s1, s2} for s = s1, s2.
More precisely,

pτ

(
s1|s1, d(s1)

) − pτ

(
s1|s2, d(s2)

) = (1 − τ) − τ = 1 − 2τ

pτ

(
s2|s1, d(s1)

) − pτ

(
s2|s2, d(s2)

) = τ − (1 − τ) = 2τ − 1

sp
(
pτ

(
.|s1, d(s1)

) − pτ

(
.|s2, d(s2)

)) =
{

2 − 4τ if τ ≤ 1/2
4τ − 2 if τ ≥ 1/2.

Condition 5 therefore holds for the transformed model with a constant δτ = |1 − 2τ | < 1.

Example 8 In this example, Condition 5 does not appear after transformation.
Let S = {s1, s2, s3, s4, s5, s6}, and again consider just one action at each state. Transition

probabilities are specified in the matrix

Pd =

⎛

⎜⎜⎜⎜⎜⎜⎝

1/2 1/2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1/2 1/2 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The chain is unichain and aperiodic and again Condition 5 does not hold. In fact we can see
that as a consequence of Lemma 1, since there exist the pair (s1, s4) ∈ S × S, for which

supp
(
p
(·|s1, d(s1)

)) ∩ supp
(
p
(·|s4, d(s4)

)) = {s1, s2} ∩ {s4, s5} = ∅.
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Through transformation for some τ ∈ (0,1), we have the new transition matrix

Pd,τ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − τ/2 τ/2 0 0 0 0
0 1 − τ τ 0 0 0
0 0 1 − τ τ 0 0
0 0 0 1 − τ/2 τ/2 0
0 0 0 0 1 − τ τ

τ 0 0 0 0 1 − τ

⎞

⎟⎟⎟⎟⎟⎟⎠

where again the pair (s1, s4) ∈ S × S, gives us

supp
(
pτ

(·|s1, d(s1)
)) ∩ supp

(
pτ

(·|s4, d(s4)
)) = {s1, s2} ∩ {s4, s5} = ∅

and Condition 5 does not hold.

5 On stopping rules

When a geometric convergence result exists, with a computable convergence bound, a sim-
ple stopping rule for VI is easily derived. Likewise, if RH converges geometrically with a
known rate, the value of the horizon n can be chosen so that the RH policy is ε-optimal.

Assume that some computable δ and C exist such that, for VI,

‖ng∗ − vn − h∗‖ < Cδn

or for the RH procedure,

‖g∗ − g(dn)∞‖ < Cδn.

Then consider the following stopping rule (or horizon choice rule for RH):

Stopping Rule 1 Stop if n > log(ε/C)/ log(δ).

Obviously, when VI stops under this rule, the policy (dn, . . . , d1, dn, . . .) is ε-optimal, and
when the time horizon for RH is chosen according to this rule, the policy (dn)

∞ is ε-optimal.
We have discussed in Sect. 3.3 when this rule can be used in practice.

When no explicit convergence bound is known, the following practical convergence rule
is proposed in Puterman (1994).

Stopping Rule 2 Stop if sp(vn+1 − vn) ≤ ε.

For the aperiodic irreducible, unichain, communicating and weakly communicating mod-
els, or even if any of these properties is required only for optimal policies, all of them with
g∗ a constant vector, Stopping Rule 2 is adequate as proved in Puterman (1994, Sect. 8.5.4,
p. 370). More precisely, it is proved that if Stopping Rule 2 applies, the value of the policy
is ε-optimal. Indeed, the classical proof of this claim involves passing to the limit in the
following inequalities

min
s∈S

(vn − vn−1)(s) ≤ (
g(dn)∞)

(s) ≤ g∗(s) ≤ max
s∈S

(vn − vn−1)(s).
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Clearly, (dn)
∞ will be ε-optimal for n large enough if

lim
n→∞ max

s∈S
(vn − vn−1)(s) = lim

n→∞ min
s∈S

(vn − vn−1)(s).

When we deal with arbitrary MDP’s, we do not have a priori information about its structure
and, in consequence we cannot guarantee that g∗ is a constant vector. In this case, Stopping
Rule 2 does not provide a suitable stopping criterion, since the span sp(vn+1 − vn) fails to
converges to zero.

Puterman (1994, Sect. 9.4.2, p. 477) states a conjecture about a stopping rule for the
multichain case. It involves the following rule.

Stopping Rule 3 Stop if sp(vn+1 − vn) − sp(vn − vn−1) ≤ ε.

The next result shows that this rule not appropriate either.

Theorem 5 For any ε > 0, there exist MDP models such that, for the sequence {vn} ob-
tained using the VI algorithm, it is possible to have, for some n ∈ N, sp(vn+1 − vn) −
sp(vn − vn−1) < ε and ‖g∗ − g(dn)∞‖ ≥ ε.

Proof We construct such a model as follows. Consider a two-state model with state space
S = {s1, s2}, action sets As1 = {a1

1, a
1
2} and As2 = {a2

1}, transition probabilities

p
(
s1|s1, a

1
1

) = 1; p
(
s2|s1, a

1
2

) = 1; p
(
s2|s2, a

2
1

) = 1

and gains

r
(
s1, a

1
1

) = 10; r
(
s1, a

1
2

) = 1; r
(
s2, a

2
1

) = 10 + ε.

In this model, there exist only two stationary policies: d1 = (a1
1, a

2
1) and d2 = (a1

2, a
2
1). As

the gains that they produces are, respectively, (10,10 + ε) and (10 + ε,10 + ε), the second
policy is the optimal one.

The sequence of functions vm obtained with the VI algorithm is such that, for m ≤
N(ε) := 9/ε + 1, vm+1 − vm = vm/m = 1

m

∑m

k=1(vk − vk−1) = g(dm)∞ = (10,10 + ε).
On the other hand, as we have said, for any ε > 0, there exist N(ε) (who tends to infinity

as ε tends to zero), such that, if m < N(ε) implies g∗(s1) − g(dm)∞(s1) = ε > 0. �

Actually, this example serves to show that a larger family of stopping rules, containing
Stopping Rule 3, is not adequate.

In fact, consider the values αm = vm/m, βm = vm+1 − vm, γm = 1
m

∑m

h=1 vh − vh−1 and
δm = g(dm)∞ , for m = 1, . . . , n. Define the rule A : (R|S|)4n �→ R,

A(x1, x2, . . . , x4n) =
4n∑

i=1

4n∑

j=1

aij sp(xi − xj ),

where the aij are arbitrary constants.

Theorem 6 There exist finite-state, finite-action MDP models such that, for some n,
A(α1, α2, . . . , αm,β1, β2, . . . , βm, γ1, γ2, . . . , γm, δ1, δ2, . . . , δm) < ε, and

‖g∗ − g(dm)∞‖ ≥ ε.
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As a consequence of Theorem 5, Stopping Rule 3 cannot work in general, and Theorem 6
even shows that no immediate generalization will work either. No alternative seems to be
known in the literature, and Kallenberg (2009) mentions that formulating a stopping rule for
VI without chain analysis for multichain MDPs and provide a valid stopping rule remains
an open problem.

As it is observed in Tijms (1986, p. 208), in the proof of Theorem 3.4.1, for models which
verify Condition 3 (under which g∗ a constant vector) we obtain

sp(vn − vn−1)

mins∈S(vn − vn−1)
≤ ε ⇒ 0 ≤ g(dn)∞ − g∗

g∗ ≤ ε,

which induces the following

Stopping Rule 4 Stop if sp(vn+1 − vn) ≤ ε mins∈S(vn − vn−1).

Observe that, in general, this is not an admissible rule, since it is not effective in the cases
with non constant optimal rewards.

This stopping rule differs form the other ones in the sense that, in this case, when the VI
algorithm terminates iterating, it returns a policy whose relative error is not greater than ε.

6 Conclusions

We have reviewed in this paper convergence conditions for the Value Iteration procedure,
and applied them to the question of “convergence” of the Rolling Horizon procedure.

Our analysis concludes that Condition 1 is a sufficient condition to ensure geometric con-
vergence of the RH procedure in finite models. Condition 5, proposed earlier in Hernández-
Lerma and Lasserre (1990) is less general.

In addition, we introduce for the Rolling Horizon procedure a standard pre-processing
of the problem for eliminating periodicities, resulting in the MRH procedure. We show that
this transformation does not change the near optimal policies nor their values.

Theorem 2 claims that convergence is geometric, including for Multichain models. How-
ever, since a general stopping rule is not available, this result remains mostly theoretical. It
remains to find an adequate bound for the error.

Appendix

Each month an individual must decide how to allocate his wealth between different con-
sumptions and investments. Each state represents a level of individual’s wealth at the start
of a month. Wealth levels give access to two different investment opportunities, prudent or
risky. Choosing an investment profile at each level results in a probability transition for the
next wealth level, as well as an instantaneous gain. The individual’s objective is to maximize
the average gain.

There are five levels of wealth, ordered from the smallest to the largest. At the medium
level, connected to the risky behavior, there exists positive probability to pass to the next
inferior level of wealth. It is also possible to cycle among the two inferior levels, but there
is no action which permit the access to the three superior levels from the inferior ones.
Besides, being at the poorest level, by some external help we achieve level 2. There is a
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common action space A = {a1, a2}, where a1 represents the prudent investment profile and
a2 the risky attitude. We show the data below. Pak

(s, j) is the transition probability from the
state s to state j when action ak is used, i.e. Pak

(s, j) = p(j |s, ak).

Pa1 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0.4 0.6 0 0 0
0 0 0.7 0.3 0
0 0 0 1 0
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠
, Pa2 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0.3 0.4 0.3 0
0 0 0 0 1
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠

The gains can summarize as follows: r(s, ak) in the matrix below is the gain when at
state s, the action ak is chosen.

⎛

⎜⎜⎜⎜⎝

1 2
1 2
1 1
3 2
6 6

⎞

⎟⎟⎟⎟⎠
.

Through the implementation of the MRH procedure the optimal average wealth can be com-
puted: g∗ = (2,2,4,4,4). It is produced by the stationary policy associated to the decision
rule d = (a2, a2, a1, a2, a1) whose transition matrix is:

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0.7 0.3 0
0 0 0 0 1
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠
.

Clearly, it is a multichain periodic model. When RH procedure is applied directly, there is
no convergence: the procedure gives infinitely (and periodically) many times two policies,
(a2, a2, a1, a1, a1) and (a2, a2, a1, a2, a1). The first one produces a gain g = (2,2,3,3,3)

and then it is not optimal.
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