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Abstract—Biology is in the middle of a data explosion. The technical advances 
achieved by the genomics, metabolomics, transcriptomics and proteomics technolo-
gies in recent years have significantly increased the amount of data that are available 
for biologists to analyze different aspects of an organism. However, *omics data sets 
have several additional problems: they have inherent biological complexity and may 
have significant amounts of noise as well as measurement artifacts. The need to 
extract information from such databases has once again become a challenge. This 
requires novel computational techniques and models to automatically perform data 
mining tasks such as integration of different data types, clustering and knowledge 
discovery, among others. In this article, we will present a novel integrated computa-
tional intelligence approach for biological data mining that involves neural networks 
and evolutionary computation. We propose the use of self-organizing maps for the 
identification of coordinated patterns variations; a new training algorithm that can 
include a priori biological information to obtain more biological meaningful clus-
ters; a validation measure that can assess the biological significance of the clusters 
found; and finally, an evolutionary algorithm for the inference of unknown meta-
bolic pathways involving the selected clusters.

1. Introduction

m odern biology studies generate a large amount of 
data, that require dedicated computational tools 
for their analysis. Data integration is also gaining 
importance given the need for extracting knowl-

edge from multiple data types and sources, with the aim of 
inferring insights from the genetic processes underlying them 
[1], [2], [3]. In fact, since the completion of genome sequenc-
es, functional identification of unknown genes has become a 
principal challenge in systems biology. Bioinformatics plays 
an important role here, allowing biologists to make full use of 
the advances in computer science in analyzing large and 
complex datasets.

At the beginning of the genomics revolution, bioinformat-
ics referred only to the creation and management of large data-

bases to store biological data. However, the discipline has 
evolved over time, mainly from the application and adapta-
tion of classical statistical methods and standard clustering 
algorithms, such as hierarchical clustering (HC) and 
k-means (KM) [4], [5], [6], towards more recent 
approaches based on computational intelligence [7], [8], 

[9], with promising results. Yet their application to bioin-
formatics problems has gained popularity only recently [10].
From an application point of view, a current trend is to 

achieve integration of different types of biological data to 
reveal hidden correlations between them, allowing the infer-
ence of new knowledge regarding the biological processes 
that affect them. However, the discovery of hidden patterns in 
such data is currently a challenge because the use of any type 
of algorithm for pattern recognition is hampered by a limited 
number of samples and a very high number of dimensions. 
Besides, biological data sets may have significant amounts of 
noise as well as measurement artifacts. This highlights the 
need to develop new techniques aimed at overcoming the 
limitations of existing ones. New computational models to 
perform several data mining tasks, such as integration of  

different data types, unsupervised clustering and knowledge 
discovery, are required.

In this article we will present a novel integrated computa-
tional intelligence approach for biological data mining  
(Figure 1). It involves the use and application of two of the 
most important and well-tested techniques in the computa-
tional intelligence field: neural networks and evolutionary algo-
rithms. The different models and techniques involved in the 
proposed approach could be used separately, since they tackle 
different data mining aspects that can be treated as separated 
problems: data pre-processing and integration, clustering, clus-
ters validation and selection, and pathway search. We will show 
the integration among them for the purpose of data mining 
and knowledge discovery in biological data. We will present 
and explain each step of the proposed approach in detail, using 
as a case study for its application a real biological data set of 
Arabidopsis thaliana, which is the model species of current plant 
genomics research.

The first step involves the obtention and selection of the 
biological data, the kind and number of data types and sources, 
such as microarray experiments, 
metabolic profiles and pathways 
information, among others; the 
number of experiments and 
repetitions for each data-
set, as well as the struc-
ture and type of 
data files that 
contain them. It also 
requires cleaning and artifacts elimination from data, as well as 
the application of appropriate selection criteria with the objec-
tive of including only sufficiently expressed data [11]. This step 
also needs a treatment of the expression intensity values over 
the control sample in the case of data coming from several 
experimental sources [12] [Figure 1(a)]. The next stage requires 
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the integration of the different data sources [Figure 1(b)]. For 
example, with an appropriate normalization, metabolome and 
transcriptome data obtained from the same plant material, can 
be integrated into a single multivariate dataset suitable for fur-
ther analysis with clustering tools [13].

After the integration of heterogeneous data sources, clus-
tering can be used for finding hidden relationships among 
different kinds of patterns. A software called *omeSOM [14], 
which implements a neural model for biological data integra-
tion, clustering and visualization through simple interfaces for 
the identification of coordinated variations in the data, will be 
shown. This visual information is then linked to the most 
widely used biological annotation databases, such as Arabi-
dopsis Annotations [15] and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [16]. Moreover, instead of using 
classical algor ithms that calculate distance among  
patterns according to a metric such as Euclidean distance or 
correlation, the incorporation of a biological similarity mea-
sure into, for example, a self-organizing map (SOM) [Figure 
1(c)], could significantly improve the biological meaning of 
the clusters obtained, which are later subjected to computa-
tional analysis or scrutiny by biologists. Thus, we will describe 
a novel training algorithm that integrates biological similari-
ties (derived from metabolic pathways information) into an 
SOM and will demonstrate that doing so, improves the qual-
ity of the clustering results. This new algorithm weighs the 
biological significance of the patterns during the training of 
the clustering method, while the clusters are being formed.

To avoid inconsistencies in the results, any clustering  
solution should be validated. However, after the application of 
an unsupervised mining technique, it is rather difficult to vali-
date and select the best partition, especially from a biological 
perspective. In this domain, it is a common practice to validate 

each group returned by a clustering algorithm according to a 
priori biological knowledge [Figure 1(d)]. For each pattern, its 
annotations and memberships to well-known metabolic path-
ways are assessed, since they can indicate functionally related 
patterns. For this stage, we will show a measure that allows the 
comparison of clustering methods over metabolic datasets [17]. 
Such measure compactly summarizes the objective analysis of 
clustering methods: coherence and clusters distribution. Fur-
thermore, it also evaluates the biological internal connections 
of such clusters considering common pathways, allowing the 
selection of the best clusters by effectively measuring the bio-
logical significance of each solution.

Although the clusters found reveal the presence of rela-
tions, they do not make them explicit. After the application of 
a clustering technique and once meaningful biological clus-
ters are found, the identification of the relations among the 
data is a common problem in bioinformatics. Thus, the last 
step of the proposed approach is an evolutionary algorithm 
for the identification of novel metabolic pathways [Figure 
1(e)]. Inside a cluster, the identification of biochemical links 
between its elements (genes, proteins, reactions, etc.) is not a 
trivial task, and it is of particular interest for the reconstruc-
tion of a metabolic network. Finding novel or non-standard 
metabolic pathways has important applications in metabolic 
engineering, metabolic network analysis and construction, as 
well as in the elimination of gaps in metabolic models [18]. 
Traditionally, this has been a manual and time-consuming 
process. We will present here a novel evolutionary algorithm 
for finding metabolic pathways, which, when given the 
desired beginning and target compounds, can identify path-
ways that link them and that are biologically meaningful.

This paper is organized as follows. Section 2 shows the use of 
self-organizing maps for data clustering and identification of 

Figure 1 Data mining of biological data as an integrated computational intelligence approach: (a) different biological data sources; (b) data 
pre-processing, normalization and integration; (c) self-organizing map clustering; (d) validation measures for cluster selection; and (e) evolution-
ary algorithm for metabolic pathway inference.

(a) (b) (c) (d) (e)
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coordinated patterns variations. Section 3 presents a new training 
algorithm that can include a priori biological information to 
obtain more biologically meaningful clusters. A validation mea-
sure that can assess the biological significance of the clusters 
found is explained in Section 4. Section 5 introduces an evolu-
tionary algorithm for the inference of unknown metabolic path-
ways from data in clusters. Finally, the conclusions can be found 
in Section 6.

2. *omesOM: Transcript/Metabol-ome  
self-Organizing Map
In this section the focus is primarily on class discovery or clus-
tering, where data are explored from the perspective that previ-
ously unknown relations can be identified and could lead to 
the formulation of novel hypotheses [19]. For the analysis of 
biological data, clustering is implemented under the assump-
tion that behaviorally similar samples may be related to  
common pathways. According to this principle, a set of genes 
involved in a biological process is co-expressed under the con-
trol of the same regulatory network [20].

Most of the clustering algorithms assume, at least indirectly, 
that the cluster structure of the data under consideration exhibits 
particular characteristics. For instance, HC assumes that the clus-
ters are well separated and KM supposes that the shape of clus-
ters is spherical [21]. When the number of samples and features 
involved is large, neural networks such as self-organizing maps 
(SOMs) [22] may be considered as a guide for an exploratory 
analysis of the data. Such models represent complex high-
dimensional input patterns into a simpler low-dimensional dis-
crete map, with prototype vectors that can be visualized in a 
two-dimensional lattice structure, while preserving the proxim-
ity relationships of the original data as much as possible. Thus, 
SOM can be appropriate for cluster analysis when looking for 
underlying hidden patterns in data.

SOMs have been used for unsupervised clustering of tran-
scriptome profiles increasingly over the past decade [23], [24], 
[25]. Recently, a method for automatically clustering SOM 
ensembles of high-dimensional data, such as those from whole 
genome microarrays, was proposed [26]. Regarding metabo-
lites, in [27] a correlation network analysis has revealed gene-
metabolite relationships in Arabidopsis thaliana. In [28], [29] 
SOM clustering is used for the analysis of Arabidopsis thaliana 
metabolome and transcriptome datasets, helping in the 
hypothesis validation of a metabolic mechanism responding to 
sulfur deficiency. In [13] an SOM model is proposed for find-
ing relationships among introgression lines compared to a wild 
type control at a given developmental stage in contrast to gen-
otypespecific data representing a time-course.

The *omeSOM software implements a 
neural model for biological data clustering 
[14]. It trains a two-dimensional SOM for 
the analysis and interpretation of large 
amounts of different types of data, such as 
gene expression and metabolite profiling. 
The software is focused on the easy identi-

fication of groups including different molecular entities, 
independently of the number of clusters formed. The 
*omeSOM software provides easy-to-visualize interfaces for 
the identification of coordinated variations, offering several 
visualization features, which are easy to understand by non-
expert users. Additionally, this information is linked to the 
most widely used gene annotation and metabolic pathway 
databases. It is a software designed to give support to the 
data mining task on biological datasets derived from differ-
ent databases.

2.1 *omeSOM Main Features
The *omeSOM software builds an SOM model oriented 
towards discovering unknown relationships among biological 
data, showing groups of coordinated up-regulated and down-
regulated patterns in each genotype. The initial vectors are set by 
a principal component analysis, obtaining a learning process 
independent of the order of vector input, and hence reproduc-
ible. The learning method is the standard batch training algo-
rithm [22], where the whole training set is gone through at once, 
and only afterwards is the map updated with the net effect of all 
the samples.

The *omeSOM software provides the following  
main options:

 ❏ Training *omeSOM model: creating an *omeSOM model 
requires an input file with comma separated values, for 
example datasetname.csv. The map size ( n n#  neurons) 
should be typed by the user in the command line. Several 
model topologies, map sizes, number of training epochs and 
initialization strategies are possible.

 ❏ Neurons map: several views of a trained map are possible, 
showing transcript (red), metabolite (blue) and both molec-
ular entities (black) grouped into neurons. The marker size 
indicates the number of patterns grouped. Detailed plots of 
normalized and un-normalized data are shown. Additionally, 
in the case of genes, their corresponding Arabidopsis [15] 
and Solanaceae Unigene [30] annotations can be retrieved. 
Also, a list of KEGG metabolic pathways [16] associated 
with each metabolite is shown.

 ❏ Search: any input data point can be located on *omeSOM 
by name. This function returns the neuron number where a 
given compound has been grouped.

 ❏ Neurons error measure: a typical measure of clustering quality 
(cohesion) is calculated for each neuron and graphically 
shown over the feature map with different marker sizes.

The features described above constitute the fundamental func-
tions of the software, which are constantly extended according 
to the users’ feedback.

For the analysis of biological data, clustering is 
implemented under the assumption that behaviorally 
similar samples may be related to common biological 
processes (pathways).
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2.2 *omeSOM Visualizations
In a standard SOM, clusters are recognized as a group of 
nodes rather than considering each node as a cluster. The 
identification of neuron clusters is mainly achieved through 
visualization methods such as the U-matrix [31]. It computes 
the average distance between the codebook vectors of adja-
cent nodes, yielding a landscape surface where light-colors 
stands for short distance (a valley) and dark-colors for larger 
distance (a hill). Then, the number of underlying clusters must 
be determined by visual inspection.

The visualizations provided by *omeSOM model, instead, 
present a simple interface for quick identification of co-expressed 
and co-accumulated genes and metabolites through a simple 
color code. An appropriate visualization of the resulting charac-
teristics map, painting the neurons according to the type of data 
grouped, is proposed for helping the rapid identification of  
combined data types. The focus is on the easy identification of 
groups, independent of the number of neurons in a cluster.  
The setting of several possible visualization neighborhoods of a 
neuron is also helpful for the easy detection of groups of com-
bined data types. When a visualization neighborhood is defined, 
all the neurons in the neighborhood radius are considered as a 
group and treated altogether accordingly.

An example is presented in Figure 2 for a real biological 
data set that comprises primary metabolites and transcripts 
measured in Arabidopsis thaliana leaves. The purpose of the inte-
grated analysis of these data is to study the effects of cold tem-
peratures on circadian-regulated genes in this plant [32]. The 
data set includes metabolites and transcripts under light-dark 
cycles at two control temperatures (20 ºC and 4 ºC), involved 
in diurnal cycle and cold-stress responses. More details on how 
these data were processed, filtered and normalized can be found 
in [32]. A total of 1549 genes and 51 metabolites were used in 
the integrated analysis. The plus/minus sign of each transcript/
metabolite was reversed as suggested in [33], [34] to obtain 
items inversely correlated to each other. The inverted-patterns 
were added to the training set, resulting in a total of 3200 data 
points. Figure 2 shows a SOM map obtained with *omeSOM 
when trained with this dataset and the painting of the neurons 

according to the color codes mentioned before. The influence 
of two visualization neighborhoods on the neurons painting is 
shown as well.

For the special case of *omeSOM, many interesting represen-
tations of clusters can be obtained from the projection of pat-
terns in the lattice of neurons. If the dataset includes the original 
data and all the data with inverted sign, the resulting map shows 
a symmetrical triangular configuration. This means that the top-
right and bottom-left zones of the map group exactly the same 
data but have opposite sign. This way, it can be directly seen from 
the data visualization the genes and metabolites that are up-reg-
ulated and down-regulated together or inversely (down regu-
lated genes grouped together with up-regulated metabolites).

*omeSOM provides support for data mining tasks and it is 
applicable to basic research as well as applied breeding programs. 
This software could be used to analyze many different types of 
omics data. The source code and sample datasets are available 
free of charge at http://sourcesinc.sourceforge.net/omesom/.

3. Biological self-Organizing Maps
As previously introduced, systems biology clustering is imple-
mented under the guilt-by-association principle [20], that is to 
say, the assumption that compounds involved in a biological 
process behave similarly under the control of the same regula-
tory networks [35]. It is presumed that if a metabolic com-
pound with unknown function varies in a similar fashion with 
a known metabolite of a defined metabolic pathway, it can be 
inferred that the unknown element is also likely to be involved 
in the same pathway [36]. Therefore, those clusters that group 
metabolites provide evidence about the metabolic pathways 
associated with them. This pathway-based approach to identify 
metabolic traits results in more biological information or 
hypotheses that have to be tested through the design of biolog-
ical experiments (wet experiments) to confirm the results [37].

In this context, when evaluating a clustering solution, it is a 
common and necessary practice to validate each group 
returned by a clustering algorithm through manual analysis and 
visual inspection, according to a priori biological knowledge. 
For each pattern, its annotations and memberships to well-
known metabolic pathways are generally assessed. Traditionally, 
the known annotations have been used only as a second step, 
after data have been clustered according to their expression 
pattern. Only those clusters in which many data points are 
annotated with the same information (for example, the same 
biologic process), are then selected for further analysis [38], 
[39]. The results obtained after the examination of each cluster 
by hand may indicate functionally related patterns [40], [41].

Therefore, there is a growing interest in improving the clus-
tering of biological data by incorporating prior knowledge into 
it, such as the Gene Ontology (GO) [42] annotations of genes, 
in order to improve the biological meaning of clusters that are 
subjected to later scrutiny [43]. In the last few years, several 
methods have been introduced with that aim, since integrating a 
biological similarity measure into a clustering method can lead 
to potential enhancement in the performance of the clustering 

(a) (b)

Figure 2 *omeSOM neuron map visualizations. Color code for data 
type grouped into neurons: transcript (red), metabolite (blue), both 
(black). (a) Visualization neighborhood of radius 0. (b) Visualization 
neighborhood of radius 1.
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[44], [45], as a result of a good correlation between biological 
similarity and gene co-expression [46]. In [47] the proposal is to 
shrink the distances between pairs of genes that share a common 
annotation. In fact, the similarity measure between genes can 
combine expression profiles and functional similarity [48] [49]. 
Most of these proposals utilize only the annotations provided by 
the GO ontology or its hierarchical structure, that can be taken 
advantage of through the use of similarity measures between 
terms. However, genes that are currently unannotated are either 
excluded or handled as exceptional cases in those methods.

In this section, we describe a novel training algorithm that 
integrates biological similarities, derived from metabolic path-
way information, into the procedure of obtaining clusters with 
an SOM model when used over biological datasets. We will 
demonstrate that doing so improves the quality of the clustering. 
This new approach named biological SOM (bSOM) weighs the 
biological significance of the patterns during the training of the 
clustering method, through the use of a new term for the bio-
logical assessment of clusters while they are being formed.

3.1 Biological-SOM Training Algorithm
In bSOM, we propose the use of a combination of a classical 
metric to measure distance between patterns and neuron cen-
troids, plus an additional term that measures the internal bio-
logical connectivity of the patterns grouped in a cluster. Thus, 
when forming the clusters, the distances among patterns are 
computed using the weighted sum 

 ( ) ( ),d 1ij ij i j i ja e a r r= - + -g !  (1)

where ije  is a standard metric distance between a pattern i  and 
a neuron prototype j , (for example, x wij i j 2; ;e = - ); i jr g  is 
the average number of biological connections between all the 
patterns clustered in neuron j not including pattern i; i jr !  is the 
average number of biological connections between all the pat-
terns clustered in neuron j including pattern i; and a  is a regu-
larization parameter that can be varied between 0 and 1 and 
controls the importance that is given to the biological distance 
during training. The biological connections are calculated as 
the average number of metabolic pathways in common among 
the patterns clustered in a neuron.

The biological term ( )bij i j i jr r= -g !  measures how 
close a pattern i is to a neuron j, in terms of the improvement 
of the common number of known pathways in that cluster j. If 
the pattern has already been correctly assigned to a neuron, 
b 0ij = . If a pattern has b 0>ij  with respect to neuron j, it 
means that if the pattern i is assigned to neuron j, the average 
number of common pathways among all the data patterns clus-
tered in that neuron would decrease. Instead, if b 0<ij , the 

assignment of the pattern i to neuron j would 
certainly increase the number of average 
common pathways connections, clearly 
enhancing the biological value of that cluster. 
The parameter a  is used to balance the two 
goals: when , d0 ija =  becomes a classical 

metric distance and the algorithm becomes the standard SOM 
clustering (sSOM); and when 1a =  the algorithm completely 
disregards the expression measures and groups data only 
according to biological connections.

3.2 Analysis of bSOM Results
This subsection presents the results obtained from the applica-
tion of the new biologically-inspired training algorithm, in 
comparison to standard training, to the direct metabolites of 
the Arabidopsis thaliana data set presented in Section 2.2. Table 1 
reports the results of the comparison of bSOM vs. sSOM train-
ing algorithms for three standard validation measures: compact-
ness C^ h , separation S^ h  and the combined index of 
Davies-Bouldin [50], [51], [17].

For the evaluation of clusters from the viewpoint of their 
biological meaning, we will use the number of common path-
ways among patterns grouped in a cluster normalized by the 
number of all the possible shared pathways among  
patterns grouped in this cluster and any other pattern in the 
dataset. The average biological connectivity P  is defined as the 
average of this relation over all the clusters. For the calculation 
of this biological connectivity index we used the KEGG1 path-
way database [16]. SOM was trained during 10 epochs with 
both training methods, weighing the Euclidean distance and 
the biological terms during clusters formation in bSOM using 
a regularization term .0 75a = .

As shown in Table 1, improved cohesion and average sepa-
ration of the clusters are achieved when using bSOM in com-
parison to sSOM. The DB measure does not improve when 
using bSOM. However, this measure is designed to qualify 
well-separated clusters better, and in the biological data set the 
average separation and clusters cohesion are large. Therefore, 
DB does not provide good results in any case since it should be 
closer to zero, and this does not happen independently of the 
training algorithm used and data distribution. Finally, consider-
ing the average biological connectivity of the clusters found, P  
has clearly improved in the new proposed algorithm bSOM 

1 http://www.genome.jp/kegg/pathway.html/

Table 1 Validation measure comparison for ssOM and bsOM. 
The best value for each measure is underlined.

Training " sSOM bSOM 

C 6.92 6.81

S 4.25 4.19

DB 8.38 9.55

( )log P- 1.22 0.89

The average biological connectivity of the clusters 
found has clearly improved in the new proposed 
algorithm when compared to standard sOM training.
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when compared to sSOM. It can be stated that, in general, the 
new algorithm has a better performance than the standard one. 
That is to say, it effectively improves the clusters obtained, from 
the viewpoint of their biological meaning, which is measured 
in terms of belonging to known metabolic pathways.

We have performed a detailed analysis of one of the clusters 
obtained after training using sSOM and bSOM. The metabo-
lites grouped together when using sSOM were: Valine, Aspartate, 
Xylose, Raffinose and Citrate. The number of common pathways 
among these metabolites was only one: ko20102.  The equiva-
lent cluster obtained by bSOM has grouped: Valine, Aspartate, 
Xylose, Raffinose, Citrate, Glutamine and Arginine. In this case, the 
pathways in common are five: ko2010, ko0970, ko1060, ko2010 
and ko4974. This example shows how the patterns grouped in 
the cluster obtained by the biological training have significantly 
increased the number of pathways in common in the cluster, 
increasing the biological meaning of the clusters found.

4. Global Measure for Linked Clustering
As shown in the previous section, after the application of an 
unsupervised mining technique, it is rather difficult to validate the 
results obtained. A good clustering solution should perform rea-
sonably well under multiple measures. Although a set of objective 
measures can be used to quantify the quality of the clusters 
obtained by the different methods available, it is very difficult to 
clearly indicate one as providing interesting clusters to be ana-
lyzed by biologists in order to discover new relationships among 
data. As stated before, it is common practice to validate the group-
ings returned by a clustering algorithm through manual analysis 
and visual inspection, according to a priori biological knowledge.

Most existing validation measures [50] evaluate different 
aspects of a clustering solution separately, which are based only 
on the raw data. None of them uses explicit information from 
the application domain to evaluate the clusters found nor do 
they evaluate the differences among the solutions found from a 
biological point of view. Therefore, a way of measuring the 
biological relevance of the results might be useful, since unsu-
pervised clustering may produce useless clusters.

The clustering results are evaluated by examining the rela-
tionship between the clusters produced and the known attri-
butes (annotations) of the genes in those clusters. Existing 
proposals [52], however, mainly concentrate on enriching or 
evaluating clusters according to well-known gene functions 
only. Looking at the analysis made by biologists when they 
evaluate the elements that are part of a cluster, coherent 
groupings are verified, as well as their belonging to well-

2KEGG pathway code.

known metabolic pathways. These aspects are 
important when qualifying a cluster.

A Global Measure for Linked Clustering 
(GMLC) [17], which compactly assesses the 
kind of cluster analysis often made by biologists, 
is explained here. In our work, the use of path-
way information for assessing clusters allows the 

integration of both transcriptional data and metabolic profiles for 
a more general evaluation. This is addressed from the perspective 
of the usefulness of clusters to identify those patterns that change 
in coordination and belong to common pathways of metabolic 
regulation. The proposed GMLC compactly reflects the objec-
tive analysis of clustering methods regarding coherence and clus-
ter distribution. Moreover, it also evaluates their biological 
internal connections considering common pathways.

4.1 Combined Biological Assessment Validation Measure
In this subsection, the following notation is used: X  is the 
dataset formed by x i  data samples; X  is the set of samples that 
have been grouped in a cluster; and W  is the set of w j  cen-
troids of the clusters in X . To define the GMLC, we need the 
following three factors:

1) Clustering homogeneity:

 
med

| |

| |
,
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H
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m m

m m

X
X
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,

where the numerator counts the median of the number 
of elements in the clusters and the denominator is the 
maximum number of elements in the clusters. Hs  is a 
measure of the flatness of the pattern distribution along 
clusters. For the analysis of their possible biological  
relations, it is preferable to have many small clusters than 
a few large ones (with many data points).

2) Grouping coherence:
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where ( )iX  is the node in which pattern x i  is grouped; 
( )iH -  is the number of misplaced inverted-patterns 

grouped in the node where x i-  is grouped; and the 
indicator x( )ie -  is 1 only when x .( )i iz X-  This factor 
indicates if the data sample x i  has been coherently 
grouped when having an inverted value. That is to say, the 
normal and inverted-sign versions of a data point should 
have the same behavior. For example, let us suppose x i  
has been grouped together with x j  and xk . If the sign of 
each data point in the dataset is changed, one should 
expect that x i-  would be grouped together with x j-  
and x .k-  If this is the case, 0( )iH =- . If not, ( )iH -  counts 
how many of the original data points that were grouped 
together with x i  are not grouped now with x i- .

3) Internal biological connectivity:

 ,P k p
p1

m

m

m *

= /  

Although a set of objective measures can be used 
to quantify the quality of the clusters obtained, it 
is very difficult to clearly indicate one as providing 
interesting clusters to be analyzed by biologists.
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where

 p 1
,

m
i j j i

ij
m m

t= +
!! !X X

/ /  

is the number of common pathways among patterns 
grouped in cluster m , with ijt  the number of pathways 
that contain patterns i  and j , and

 p 1m
i j i

ij*

m

t= +
!!X

/ /  

is the number of all the possible shared pathways among 
patterns grouped cluster m  and any other pattern in the 
dataset. This measure is, conceptually, the same one used 
in Section 3.2 for bSOM result evaluation, but it is  
formally defined here.

The Global Measure for Linked Clustering is defined as a 
weighted combination

 ( ) ( ) ( ),log log logG H PH Pc c cC= + +Cs  (2)

where the c  parameters are empirically determined. A simple 
criterion to set them, according to their distribution in a given 
dataset, could be to define 1Pc =-  and calculate the other 
weights as the ratio of the expected values
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Here, E,  may be simply the average over all the cluster meth-
ods and configurations evaluated with the dataset. Thus, in 
order to equate the influence of all three terms in the final 
GMLC score, one of the c  parameters (any of them) can be 
taken as a reference and the others scaled accordingly.

4.2 Application to Clustering Methods
The application of standard measures to the clusters obtained on 
the Arabidopsis thaliana data are presented in Table 2. We included 
the clustering methods most widely used in bioinformatics 

research nowadays [5], [9], [53]: HC, KM (100 repetitions)  
and SOM. For all the methods, we used the Euclidean norm to 
measure the distance between patterns. The Gap Statistic [54] 
was used to select an appropriate number of clusters for the 
comparisons among methods to show the application and use of 
the GMLC. These three top gap scores were selected for the 
comparisons: ,k k50 2001 2= =  and k 4503 = . For further 
details on this study and additional comparisons see [17].

Additionally, we tested the significance of all the results 
obtained by performing 100 resamplings of 80% of the tran-
scripts and metabolites in the dataset, for all the methods in 
each k. We have statistically analyzed the significance of such 
results using an ANOVA to test the null hypothesis in which, 
for each partition k, the difference among the clustering meth-
ods, in a given measure, is not significant. The analysis revealed 
that all the measures, including the new GMLC, show signifi-
cant differences .p 0 011^ h among the methods in each parti-
tion, validating the conclusions obtained from the detailed 
analysis of each of the measures in the presented table.

It can be seen from compactness and separation that SOM 
is the best clustering method in any of the tested configura-
tions. Since these two types of measures evaluate opposite 
aspects of a clustering solution, a combined measure such as 
DB was calculated because it combines compactness and sep-
aration into one single index. Due to this fact, one would 
expect a better discerning capacity. Interestingly, DB has 
favored HC for all the configurations tested. However, being 
a measure that summarizes compactness and separation, it 
contradicts those indications in the table. In particular, SOM 
always obtains the worst DB scores because the distances 
between centroids are always the smallest since these cen-
troids are better distributed and are not associated with 
remote and isolated patterns. As patterns that are at large dis-
tance to a centroid (possible outliers) have to be associated 
with any centroid, cluster compactness also decreases. How-
ever, from a biological point of view, it would be useful to 
have clusters with a high DB index because there are patterns 
that should be close to many other patterns, if we think that 
the groupings reflect components of common metabolic 
pathways and that there are patterns that certainly participate 
in several pathways simultaneously.

These contradictory results can be very confusing. As stated, a 
good clustering solution should perform well under multiple 
evaluation points. However, as it can be seen, it is very difficult to 
indicate one of the evaluated methods as the clear winner 
according to all the measures applied; or to indicate a solution 
and configuration as the most adequate. Although objective mea-
sures should give an indication of which clustering technique 
would be more appropriate for the dataset under study, it is very 
difficult to explicitly select one method as the one providing 
more interesting clusters to be analyzed by further computational 
analysis or by biologists in order to discover new relationships 
among data. It can be observed that the GMLC is consistent 
with the results obtained from the application of compactness 
and separation measures. In fact, the GMLC could aid in  

Table 2 Comparison of validation measures for the clustering 
methods. The best value of each k for each measure is underlined.

HC KM SOM

k1 k2 k3 k1 k2 k3 k1 k2 k3

C 7.06 7.21 8.66 6.85 7.11 7.19 6.55 6.33 6.29

S 7.09 7.36 7.06 6.35 6.69 6.99 4.58 4.55 5.40

DB 2.67 2.89 3.63 5.12 4.93 4.52 14.9 15.7 13.0

G 10.08 10.32 9.55 17.1 21.7 19.8 8.72 8.27 6.49
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deciding which clustering solution to use in order to obtain a 
coherent and biologically significant solution for a particular bio-
logical experiment. In future works, a fuzzy-GMLC measure 
could be defined using fuzzy memberships for the pathways.

Nevertheless, the analysis performed does not provide a clear 
clue regarding the connection or the reason why the data were 
clustered, from the viewpoint of their involvement in a common 
metabolic pathway. This point is addressed in the next section.

5. Evolutionary Metabolic Pathway search
Although SOM can be applied to group biochemical entities 
into clusters, the relationships among them remain hidden. In 
fact, searching metabolic pathways is a relevant task in bioinfor-
matics, particularly when working with different types of data. 
In many cases, employing classical strategies for sequential state 
space exploration allows solutions to be found more rapidly 
[55]. However, it is a well-known fact that there are several 
problems where a very high number of solutions must be 
explored, making classical methods practically inapplicable [56]. 
In the last few years, nature inspired approaches have been pro-
posed to tackle these problems. Among them, the ones with 
higher impact and relevance were evolutionary algorithms, pro-
viding outstanding results in several disciplines [57], [58], [59]. 
Their success is related to their ability to perform an effective 
and efficient global search in complex solution spaces. Some 
interesting aspects about them are the simplicity of the opera-
tors used, the possibility of using fitness functions with very 
few formal requirements, and the ability to explore multiple 
points of the search space in each iteration [60].

Different search strategies to find metabolic pathways that 
relate compounds have been recently proposed. PathComp [61] 
uses an algorithm based on a classical search algorithm to build 
paths that connect the compounds, taking them in pairs and 
combining them through allowed relations (metabolic reactions). 
Linked Metabolites [62] builds an integrated graph first and per-
forms the pathway search by specifying the maximum number 
of reactions between source and target compounds. Metabolic 
PathFinding Tool [63] assigns to each operator a cost that is equal 
to the number of reactions where the compound participates. 
PathMiner [64] uses the A* search algorithm in which its heuris-
tic function employs the structural information of the com-
pounds to generate characteristic descriptors, and explores the 
search space using a cost function based on the Manhattan dis-
tance. Most of these methods require detailed and specific infor-
mation about the molecular structure of metabolic compounds, 
which in many cases is not available. The proposals based on clas-
sical methods suffer from limitations in the computational 

resources associated with the path length and 
degree of branching of the tree search. Fur-
thermore, the order in which the nodes of the 
tree are visited can bias the search for particu-
lar solutions.

In literature, there are many different 
applications of evolutionary algorithms to 
bioinformatics [18], and in particular, to meta-

bolic pathway analysis [65] and optimization [66], [67]. A genetic 
algorithm can be used for specific optimal metabolic network 
design of energetically favorable pathways for production of a 
determined compound of interest [68]. An optimum metabolic 
pathway can be found by studying a large number of alternative 
pathways. This could show if very efficient pathways share com-
mon structural properties, which can be used, for example, for 
the optimization of the flux and stoichiometry of a determined 
biological system [69]. An evolutionary algorithm can be also 
used for the determination of the kinetic parameters of a time-
varying model of a metabolic system [70]. Another recent field 
of application is metabolic engineering within biotechnology–
the targeted manipulation of cells and enhancement of a desired 
product. Evolutionary algorithms can be used for the under-
standing of how regulatory elements interact with each other, to 
control such processes [71]. In line with this last application field, 
this section will present an evolutionary algorithm to find meta-
bolic pathways (EAMP) that relates two compounds, and com-
pare its performance with solutions based on classical search 
algorithms. To achieve this the *omeSOM data mining tool was 
used to generate clusters from a real biological dataset, and pairs 
of compounds within the clusters were used for metabolic  
pathways search. Afterwards, objective measures are defined to  
quantify the performance of the algorithms.

5.1 Evolutionary Algorithm  
for the Search of Metabolic Pathways
The state space is defined as the set C  of all metabolic com-
pounds in the KEGG database [16]. This database contains 
information of genes, proteins and metabolic compounds of 
hundreds of different organisms, and the allowed binary  
relations between compounds are described by r  transforma-
tions. The compound on which the transformation is applied 
will be called substrate s , and p  will be the product or new 
resulting state. Transformations will be represented as ordered 
pairs ( , )r s pi i i= , with ,s p C s pi i i i/ !! , being st and pt  the 
initial and final compounds of the metabolic pathway. In this 
way, a metabolic pathway is built as a sequence of transforma-
tions that produce pt  starting from .st  Finally, the sequence of 
possible states q , , , . . .. ,s p p p1 2= t t6 @ is defined as the sequence 
of compounds that take part in the transformation. Thus, the 
sequence of ri  transformations leading to the production of pt  
from st can be coded in a chromosome c , , , , ,r r r ri N1 2 f f=6 @, 
where N  indicates the number of genes and the sequence is 
read from left to right3.
3In the context of evolutionary computation, in spite of the name, chromosomes and genes 
are not biological entities but data structures that model a problem.

Although sOM can be applied to group biochemical 
entities into clusters, the relationships among them 
(metabolic pathways) remain hidden. Evolutionary 
algorithms can be used for the understanding of how 
regulatory elements interact with each other.
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Due to the requirements of the application under study, 
it has been necessary to make various changes to classical 
genetic operators, which, if directly applied, would limit the 
convergence of the algorithm. In order to facilitate their 
explanation, four sets of transformations are defined: R*  
contains the complete set of allowed transformations; 

{ / ( , )}R r r s p R R*i i i
1 1/ 1= = t  contains only those transfor-

mations that use  ; { / ( , )} ,s R r r s p R R*N
i i i

N/ 1= =t t  contains 
all transformations that produce pt ; and .R R RN1 ,=+

The crossover point kz  for each parent ck  is randomly 
selected from a set containing pairs of positions ( , )1 2z z  that 
satisfy s pi j=  for cc .s pi j1 2/! !  Figure 3 shows a diagram 
of this crossover operator in the case of two parents having 
reactions that are not completely valid. Each gene codes a 
chemical reaction in which letters represent the substrates and 
products. It can be noticed that if a simple crossover method 
is applied without considering the sequence of reactions, the 
validity of the generated offspring will probably diminish. 
However, if the crossover is carried out in one of the high-
lighted pairs of positions ( , )1 2z z , the validity of the  
offspring will increase or, at least, remain constant.

The mutation operator replaces a gene with another 
according to 
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where si 1+  is the substrate of the gene that is located in the 
position next to the mutated gene ri , and pi 1-  is the product 
of the gene that is in the position previous to the mutated gene. 
Value u is random with uniform distribution in [0,1]. Figure 4 
presents a diagram of the mutation operator. It is observed that 
in the chromosome placed at the top of the figure the gene 
selected to mutate has a valid relation with the previous gene. If 
a classical mutation operator is applied, there is high probability 
that the validity of the chromosome will diminish. If, on the 
contrary, a valid mutation strategy is applied, the new chromo-
some increases its validity, as it can be seen in the chromosome 
at the bottom of the figure.

To evaluate the solutions, a fitness function was built tak-
ing into account features of biochemical reactions, and it was 
employed to guide the search. The fitness function for the 
chromosome c is defined as c c c c c( ) ( ) ( ) ( ) ( )f V E Q IbD= + + +6 @

c c c c c( ) ( ) ( ) ( ) ( )f V E Q IbD= + + +6 @, where /( )1 3 bD = +  is a normalization con-
stant and b  determines the relative contribution of E mea-
sure. This fitness function takes value 1 when a valid and 
loop-free metabolic pathway that transforms st  in pt  is found. 
In case of having information about the relative abundance of 
compounds, this function could be modified to weight the 
reactions according to the probability of occurrence. The four 
measurements of the fitness function are:

 ❏ Validity (V): it quantifies the number of valid concatena-
tions present in the chromosome, defining them as those 
consecutive pairs of transformations where the product pi  
of ri  is the substrate si 1+  of the transformation ri 1+ . V var-
ies in the range [0,1], being 1 when all operators are well 
concatenated.

 ❏ Valid extremes (E): this term evaluates transformations  
r1  and rN  to verify they contain the desired st  and pt   
compounds. The calculation is done according to

c( ) ( , ) ( , ) ,E s s p p2
1

N1d d= +t t6 @  where d  is the Kronecker 
delta. This term varies in the range [0,1] and reaches its maxi-
mum value when compounds s1 and pN are the desired ones.

 ❏ Unique reactions rate ( )Q : it penalizes the repetition of 
transformations in the chromosome. The rate is calculated as 

c c( ) ( ( ) )/( )Q N1 1{= - -  where {  counts the number 
of unique elements present in c , and c( )Q 0=  when 

.N Q1=  varies in the range [0,1] and reaches its minimum 
value when the sequence contains a unique element 
repeated N  times.

 ❏ Unique compound rate (I  ): this term penalizes the repeti-
tion of compounds in the pathway. The rate is calculated as 
c q( ) ( ( ) )/( )I N2 1{= - -  and it is defined c( )I 0=  

when .N I1=  varies in the range [0,1] and reaches its 
minimum value when the chromosome contains transfor-
mations that lead only to ors p1 1 . For example, for the 
metabolic pathway c a a, , ,, bb bb a d" " " "=6 6 6 6@ @ @ @  
the number of reactions is N 4=  and the sequence of states 
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Figure 4 Mutation operator. The selected gene to mutate is marked 
with a black rectangle. This mutation may lead to maintaining or 
increasing the validity of the chromosome.
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Figure 3 Crossover operator. Each block corresponds to a gene 
encoding a transformation. In each gene, substrate and product are 
represented by letters on the left and right of each arrow, respectively. 
Shaded elements indicate pairs of positions ( , )1 2z z  where a valid 
crossover can be made.
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associated to it is q , , , ,a b a b d=6 @ where only three com-
pounds are unique q( ( ) ) .3{ =  In consequence, 
c( ) /I 1 3= .

5.2 Evolutionary Algorithm Results and Discussion
The proposed EAMP has been compared with two classical 
search algorithms that do not require specific information 
from the problem: breadth-first search (BFS), the classical 
method most widely used by related work, and deep-first 
search (DFS) [55]. However, since the length of the paths 
found by DFS tended to be equal to the maximum allowed 
value (100 reactions in our experiments) and metabolic path-
ways containing such number of transformations are of no 
biological interest, the results obtained with this algorithm are 
not presented.

Several performance measures obtained for the search of 
metabolic pathways on different number of clusters were used. 
Table 3 shows measures obtained with EAMP and BFS for 
each pair of compounds searched4. The rows in the table corre-
spond to: the mean search time tr^ h; the maximum, median, 
and minimum number of transformations ( ,L LM W  and )Lm ; 
and the maximum and mean number of cluster compounds 
incorporated into the pathway ( ) .andM} }  An analysis of  
his table reveals that BFS employed times which are 10 times 
higher than EAMP to perform every search (p < 0.003). With 
regard to the length of the paths, it can be noticed that the 
median for each algorithm was similar, whereas the diversity in 
the number of transformations was higher for the EAMP, as 
reflected in the maximum length for each algorithm. On the 
other hand, it was observed that measures related to the pres-
ence of cluster compounds in the paths were similar for both 

4Named using KEGG codes.

algorithms. It must be highlighted that the EAMP generated a 
higher dispersion of lengths in the paths, which translates into 
an increase in the variety of pathways found and the richness of 
possibilities for further analysis from a biological point of view.

As an example of a biological evaluation, a search for a path-
way linking two metabolic compounds, C01019 (Fucose) and 
C0037 (Glycine), was performed. The linked metabolites have 
been clustered in neighborhood neurons in an SOM map and 
they do not have any common metabolic pathway inside KEGG. 
Figure 5 shows the obtained results. Initial and final compounds 
are drawn as bold hexagons. Large gray rectangles indicate, as a 
reference, parts of well-known pathways. Their compounds (cir-
cles) and reactions (arrows) are shown with the KEGG codifica-
tion. The pathway found by the EAMP is indicated in bold lines. 
It presents a novel mechanism for the conversion of L-Fucose in 
Glycine, not reported so far in literature. This mechanism could 
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Figure 5 Metabolic pathway found by using EAMP (indicated in bold lines) for linking compounds C01019 and C00037. Initial and final  
compounds are drawn as bold hexagons. Large gray rectangles indicate related known pathways and their compounds (circles) and reactions 
(arrows), shown with the KEGG codification.

Table 3 Comparison between BFs and EAMP. Time t  is 
expressed in seconds and L in number of transformations. W  
indicates the number of compounds in each cluster.
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be of interest since it corresponds to an alternative route for the 
production of Glycine, which is an amino acid of great impor-
tance that acts as precursor of many other metabolites [72]. All 
metabolites in this pathway have been reported in Arabidopsis 
thaliana [73] with the exception of the compounds C01721 
(L-Fuculose) and C01099 (L-Fuculose 1-Phosphate). This might 
be due to the fact that they have not been determined experi-
mentally yet. With respect to the enzymes necessary for the reac-
tions that produce these metabolites, a gene encoding the 
enzyme that may catalyze the first reaction was found in Oryza 
sativa [74], while a gene encoding an enzyme associated to the 
third reaction was found in Medicago truncatula (legume) [74]. 
Although a gene encoding the enzyme needed for the second 
reaction has not been found in these plants yet, it should not be 
excluded that it could be found in the future. In fact, the func-
tionality of a large variety of Arabidopsis thaliana genes is cur-
rently unknown [75]. The verification of inferred non-standard 
pathways should be performed through the corresponding bio-
logical “wet” experiments.

6. Conclusions
In this article we have presented a novel integrated computa-
tional intelligence approach for biological data mining. It is an 
approach encompassing several steps, which involves the appli-
cation of two of the most important and well-tested techniques 
in the computational intelligence field: neural networks and 
evolutionary algorithms. Each step has been explained in detail, 
through a real case study involving genes from microarray 
measurements and metabolite profiles from Arabidopsis thaliana.

First of all, we have proposed the use of self-organizing maps 
for the integration and clustering of data from heterogeneous 
sources, since SOM has proved to be a useful tool for the identi-
fication of coordinated variations in data patterns. We have also 
presented a novel algorithm for training an SOM model, in such 
a way that a priori biological information could be used during 
clusters formation to obtain more biologically meaningful results. 
Several quality measures have been applied to the results, show-
ing improved clusters formation in comparison to standard 
methods. Due to the need for further validation of clustering 
results, not only from an objective point of view but also taking 
into account knowledge from the application domain, a valida-
tion measure that can assess the biological significance of the 
clusters has been presented. It explained how such measure could 
aid in deciding which clustering configuration to use in order to 
obtain a coherent and a biologically significant solution. Finally, 

an evolutionary algorithm for the search of 
novel metabolic pathways among data 
grouped inside clusters was presented. Such an 
algorithm was able to find a biological path-
way between two metabolic compounds, in 
spite of the fact that they have no known 
pathway that relates them. The sequence of 
reactions found by the proposed evolutionary 
method could provide clues for hypothesis 
formulation and further investigation of the 

biological processes involving those compounds.
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