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Abstract. We investigate the entanglement-related features of the eigenstates of two exactly soluble
atomic models: a one-dimensional three-electron Moshinsky model, and a three-dimensional two-electron
Moshinsky system in an external uniform magnetic field. We analytically compute the amount of entan-
glement exhibited by the wavefunctions corresponding to the ground, first and second excited states of
the three-electron model. We found that the amount of entanglement of the system tends to increase
with energy, and in the case of excited states we found a finite amount of entanglement in the limit of
vanishing interaction. We also analyze the entanglement properties of the ground and first few excited
states of the two-electron Moshinsky model in the presence of a magnetic field. The dependence of the
eigenstates’ entanglement on the energy, as well as its behaviour in the regime of vanishing interaction,
are similar to those observed in the three-electron system. On the other hand, the entanglement exhibits
a monotonically decreasing behavior with the strength of the external magnetic field. For strong magnetic
fields the entanglement approaches a finite asymptotic value that depends on the interaction strength. For
both systems studied here we consider a perturbative approach in order to shed some light on the entan-
glement’s dependence on energy and also to clarify the finite entanglement exhibited by excited states in
the limit of weak interactions. As far as we know, this is the first work that provides analytical and exact
results for the entanglement properties of a three-electron model.

1 Introduction

Entanglement is an essential ingredient of the quantum
mechanical description of Nature [1–3]. Besides its central
role for the basic understanding of the quantum world,
entanglement constitutes a physical resource admitting
numerous technological applications. The study of entan-
glement sheds new light on the mechanisms behind the
quantum-to-classical transition [4] as well as on the foun-
dations of statistical mechanics [5]. On the other hand,
the controlled manipulation of entangled states of mul-
tipartite systems is fundamental for the implementation
of quantum information processes, such as quantum com-
putation [6,7]. Quantum entanglement is also relevant in
connection with the physical characterization of atoms
and molecules. The exploration of the entanglement fea-
tures exhibited by atoms and molecules is a captivating
field of enquiry because these composite quantum ob-
jects play a central role in our understanding of both
Nature and technology. In point of fact, the entanglement
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properties of atomic systems have been the subject of con-
siderable research activity in recent years [2,8–17]. This
line of research is contained within the more general one
aimed at the application of information-theoretic concepts
and methods to the study of atomic and molecular sys-
tems [18–30].

Some of the most detailed results on the entanglement
properties of atomic systems, particularly in the case of
excited states, have been obtained from analytical inves-
tigations of soluble two-electron models [8,15]. Partial re-
sults were also obtained numerically for the eigenstates
of helium-like systems, employing high quality wave func-
tions [15]. Some general trends are beginning to emerge
from these investigations. It is observed that the amount
of entanglement of the atomic eigenstates tends to in-
crease with the concomitant energy. It also increases with
the strength of the interaction between the constituent
particles. On the other hand, the entanglement of ex-
cited states shows an apparent discontinuous behaviour:
it does not necessarily vanish in the limit of very small
interactions [8]. It would be desirable to extend these
studies to more general scenarios, particularly to models
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consisting of more than two electrons, or involving mag-
netic fields. The aim of the present contribution is to in-
vestigate the entanglement properties of the eigenstates
of the exactly soluble Moshinsky model [31,32], extend-
ing previous works to the cases of a three-electron system
and a three-dimensional two-electron system in a uniform
external magnetic field.

The paper is organized as follows. In Section 2
we briefly discuss entanglement in systems of identical
fermions. We review the measure used in order of quantify
the amount of entanglement of pure states, focusing on ap-
propriate measures for two- and three-electrons systems.
In Section 3 we investigate the entanglement properties of
the eigenstates of the Moshinsky model with three elec-
trons. The entanglement features of the three-dimensional
Moshinsky model with two electrons in the presence of a
uniform magnetic field are studied in Section 4. Then, in
Section 5 we consider a perturbative approach to clarify
some entanglement features found in the previous models.
Finally, some conclusions are drawn in Section 6.

2 Entanglement measure

Correlations between two identical fermions that are only
due to the antisymmetric nature of the two-particle state
do not contribute to the state’s entanglement [33–38]. The
entanglement of the two-fermion state is given by the
quantum correlations existing on top of these minimum
ones. A practical quantitative measure for the amount of
entanglement exhibited by a pure state |ψ〉 of a system
of N identical fermions is (see [39] and references therein)
that given (up to an appropriate multiplicative and addi-
tive constant) by the linear entropy of the single particle
reduced density matrix ρr,

ε(|ψ〉) = 1 −NTr[ρ2
r]. (1)

Notice that, according to this entanglement measure, a
pure state that takes the form of a single Slater determi-
nant has no entanglement. The measure (1) is normalized
to adopt values in the interval [0, 1].

We shall apply the measure given by equation (1) to a
pure state |Ψ〉 of a one dimensional system consisting of
three spin- 1

2 fermions (electrons). This pure state has an
associated wave function given, in self-explanatory nota-
tion, by Ψ(x1σ1, x2σ2, x3σ3) = 〈x1σ1, x2σ2, x3σ3|Ψ〉 with
|x1σ1, x2σ2, x3σ3〉 = |x1, x2, x3〉 ⊗ |σ1, σ2, σ3〉. Here x1,2,3

are the coordinates of the three electrons and the di-
chotomic variables σ1,2,3 (each adopting the possible val-
ues ± and corresponding to the Sz component of spin) de-
scribe the spin degrees of freedom of the three electrons.
In order to evaluate the amount of entanglement of the
system we have to compute the following integrals,

〈x1σ1|ρr|x′1σ′
1〉 =

∑

σ2,σ3=±

∫ ∞

−∞
〈x1σ1, x2σ2, x3σ3|ρ|x′1σ′

1, x2σ2, x3σ3〉dx2dx3

(2)

where 〈x1σ1|ρr|x′1σ′
1〉 are the elements of the one-particle

reduced density matrix ρr(x1, x
′
1), ρ = |ψ〉〈ψ| and

〈x1σ1, x2σ2, x3σ3|ρ|x′1σ′
1, x2σ2, x3σ3〉 =

Ψ(x1σ1, x2σ2, x3σ3)Ψ∗(x′1σ
′
1, x2σ2, x3σ3).

The square reduced spin density matrix is given by

〈x1σ1|ρ2
r |x′1σ′

1〉 =
∑

σ=±

∫ ∞

−∞
〈x1σ1|ρr|xσ〉〈xσ|ρr |x′1σ′

1〉dx

and finally the expression for the trace is

Tr[ρ2
r] =

∑

σ=±

∫ ∞

−∞
〈xσ|ρ2

r |xσ〉dx.

In the three-electron case it is not possible to find totally
antisymmetric factorizable between coordinates and spin
wave functions, however in the two-electron case, follow-
ing [8] we focus on states with factorized wave functions.
The corresponding density matrix takes the form

ρ = ρ(c) ⊗ ρ(s) (3)

and then, the entanglement measure evaluated on these
states is given by

ε = 1 − 2Tr[(ρ(c)
r )2]Tr[(ρ(s)

r )2], (4)

where ρ
(c)
r and ρ

(s)
r are the single-particle reduced

coordinate and spin density matrices. So, in the case of
two-electron system studied in Section 4, we consider sep-
arately the cases of parallel and antiparallel spin wave
function. In the case of parallel spins, described by |++〉 or
|−−〉, the coordinate wave function must be antisymmet-
ric and we have Tr[(ρ(s)

r )2] = 1. On the other hand if we
have antiparallel spins, we can distinguish two cases: sym-
metric coordinate wave function with spin wave function
of the form 1√

2
(|+−〉−|−+〉) or antisymmetric coordinate

wave function with spin wave function 1√
2
(|+−〉+ |−+〉),

both of them with Tr[(ρ(s)
r )2] = 1

2 . And finally, to calculate
the amount of entanglement we will compute the integrals

〈r1|ρ(c)
r |r′1〉 =

∫

R3
〈r1r2|ρ(c)|r′1r2〉dr2

=
∫

R3
Ψ(r1, r2)Ψ∗(r′1, r2)dr2 (5)

and the trace of the coordinate part is

Tr[(ρ(c)
r )2] =

∫

R3
|〈r1|ρ(c)

r |r′1〉|2dr1dr′1. (6)

3 The three-electron Moshinsky atom

The Moshinsky atom [31,32] is a system formed by
harmonically interacting particles confined in a com-
mon, external isotropic harmonic potential. The total
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Hamiltonian of the one-dimensional Moshinsky atom with
three electrons is

H = −1
2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
+

1
2
ω2(x2

1 + x2
2 + x2

3)

± 1
2
λ2[(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2] (7)

where x1, x2 and x3 are the coordinates of the three par-
ticles, ω is the natural frequency of the external harmonic
field, and λ is the natural frequency of the interaction har-
monic field. The positive sign in the last term describes an
attractive interaction between the electrons and the nega-
tive a repulsive interaction. We use atomic units (me = 1,
� = 1) throughout the paper, unless indicated otherwise.

Introducing the Jacobi coordinates for three particles,

R1 =
1√
3
(x1 + x2 + x3), R2 =

1√
6
(−2x1 + x2 + x3)

and R3 =
1√
2
(x2 − x3) (8)

the Hamiltonian separates in the following way,

H =
(
−1

2
∂2

∂R2
1

+
1
2
β1R

2
1

)
+
(
−1

2
∂2

∂R2
2

+
1
2
β2R

2
2

)

+
(
−1

2
∂2

∂R2
3

+
1
2
β3R

2
3

)
(9)

where β1 = ω2 and β2 = β3 = Λ2 = ω2 ± 3λ2 (again,
the + sign corresponds to an attractive interaction, while
the − sign corresponds to a repulsive one). In the case
of a repulsive interaction it is necessary to impose the
constraint λ < ω√

3
in order to obtain bound eigenstates.

The general eigenfunctions of the system are

Ψ(x1, x2, x3) = Ψ(R1, R2, R3)
= ΨnR1

(R1)ΨnR2
(R2)ΨnR3

(R3) (10)

with

ΨnRi
(Ri) =

(
β

1/4
i

2nRinRi !π1/2

) 1
2

e−
1
2

√
βiR

2
iHnRi

(
β

1/4
i Ri

)
,

(11)
where Hn(x) denote the Hermite polynomials. The
eigenenergies of these states are

E = ER1 + ER2 + ER3

= ω

(
nR1 +

1
2

)
+ Λ (nR2 + nR3 + 1) . (12)

We will denote by |nR1nR2nR3〉 the eigenstates of the
Hamiltonian (9), which are characterized by the three
quantum numbers nR1 , nR2 and nR3 . To fully define the
three-electron system’s eigenstates we must take into ac-
count combinations of such functions of the coordinates
together with the spin ones |σ1σ2σ3〉 to obtain total an-
tisymmetric wave functions. In this case the wave func-
tions corresponding to the energy eigenstates cannot al-
ways be chosen to be separable between coordinates and

spin and there are no spin functions totally antisymmetric
by themselves. The Hamiltonian commutes with the spin
observables, since it does not explicitly involve the spins.
In particular, it commutes with the total z-component of
spin angular momentum Sz. Consequently, it is possible to
choose energy eigenstates that are also eigenstates of Sz .
It is plain that the wave functions associated with these
eigenstates can always be written (up to a global normal-
ization constant) in one of the forms

|Φ(++−)〉| + +−〉 + |Φ(+−+)〉| + −+〉 + |Φ(−++)〉| − ++〉,
(13)

|Φ(+++)〉| + ++〉, (14)

or in the forms obtained substituting + by − (and
viceversa) in the above expressions. In (13)−(14) the
kets |Φ(σ1,σ2,σ3)〉 correspond to the translational degrees
of freedom and have associated coordinate wave func-
tions Φ(σ1,σ2,σ3)(x1, x2, x3) = 〈x1, x2, x3|Φ(σ1,σ2,σ3)〉. For
the states (13)−(14) to be fully antisymmetric the co-
ordinate wave functions Φ(σ1,σ2,σ3)(x1, x2, x3) must sat-
isfy the following set of relations. If σ1 = σ2 we must
have Φ(σ1,σ2,σ3)(x2, x1, x3) = −Φ(σ1,σ2,σ3)(x1, x2, x3),
(that is, in this case the coordinate wave func-
tion Φ(σ1,σ2,σ3)(x1, x2, x3) has to be antisymmetric
with respect to x1 and x2). On the other hand, if
σ1 = −σ2 we must have, Φ(σ1,σ2,σ3)(x2, x1, x3) =
−Φ(σ2,σ1,σ3)(x1, x2, x3). Similar relations must hold in
connection with the pairs of labels (σ2, σ3) and (σ3, σ1).
These relations imply, in particular, that the wave func-
tion Φ(+++)(x1, x2, x3) (and also Φ(−−−)(x1, x2, x3)) must
be fully antisymmetric in the three coordinates x1, x2, x3.
Finally, it is clear that in order to be energy eigenstates
the states (13)−(14) must involve spatial wave functions
Φ(σ1,σ2,σ3)(x1, x2, x3) that are themselves eigenfunctions
of the Hamiltonian (7). In particular, the three coordi-
nate eigenfunctions associated with (13) must be eigen-
functions of (7) corresponding to the same energy eigen-
value. The ground state and few excited eigenstates of the
three-electron system that we are going to study in the
present work do not correspond to the form (14). Thus,
we are going to restrict our considerations to eigenstates
of the form (13). A direct way to construct the ground and
first few excited states according to the structure (13) is
to use combinations of the forms,

|n1n2n3〉 = N
[(

|nR1nR2nR3〉 − |nR′
1
nR′

2
nR′

3
〉
)
| + +−〉

+
(
|nR′′

1
nR′′

2
nR′′

3
〉 − |nR1nR2nR3〉

)
| + −+〉

+
(
|nR′

1
nR′

2
nR′

3
〉 − |nR′′

1
nR′′

2
nR′′

3
〉
)
| − ++〉

]

(15)

or

|n1n2n3〉 = N ′
[
|nR′′

1
nR′′

2
nR′′

3
〉| + +−〉

+ |nR′
1
nR′

2
nR′

3
〉| + −+〉 + |nR1nR2nR3〉| − ++〉

]
, (16)
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where

R1 = R′
1 = R′′

1 , R
′
2 =

1√
6
(x1 − 2x2 + x3),

R′′
2 =

1√
6
(x1 + x2 − 2x3),

R′
3 =

1√
2
(x3 − x1), R′′

3 =
1√
2
(x1 − x2), (17)

n1 = nR1 = nR′
1

= nR′′
1
, n2 = nR2 = nR′

2
= nR′′

2
,

n3 = nR3 = nR′
3

= nR′′
3
,

and N , N ′ are appropriate normalization constants. Note
that the three spatial wave functions corresponding re-
spectively to the three kets |nR1nR2nR3〉, |nR′

1
nR′

2
nR′

3
〉

and |nR′′
1
nR′′

2
nR′′

3
〉 (which appear in (15) and in (16))

are obtained via cyclic permutations of the particles co-
ordinates x1, x2, x3 in the definition of the Jacobi coor-
dinates. Therefore, it is evident that these three spatial
wave functions are eigenfunctions of (7) sharing the same
eigenenergy. We will use combinations of type (15) if the
quantum number n3 is even, and of type (16) when it is
odd, ensuring in this way the antisymmetry of the wave
function. As already mentioned, we have chosen these
states because they are also special in the sense that
they all are eigenstates of Sz. States of the forms (15)
and (16) correspond to a wave function with total spin
Sz = S

(1)
z + S

(2)
z + S

(3)
z = + 1

2 of the three-electron sys-
tem but one can also construct eigenstates of the same
type with total spin Sz = − 1

2 . As the entanglement of the
Sz = − 1

2 states is the same as the entanglement of states
with Sz = + 1

2 , in the rest of this work we will mainly
focus on states with Sz = + 1

2 .
We must remember that these states are written in

Jacobi relative coordinates of a three-particle system and
the quantum numbers n1, n2 and n3 refer to these coor-
dinates. However, to determine the amount of entangle-
ment between the particles we have to express the wave
functions associated with the eigenstates in terms of the
coordinates and spins of the particles,

Ψn1n2n3(x1σ1, x2σ2, x3σ3) = 〈x1σ1, x2σ2, x3σ3|n1n2n3〉.
(18)

In the case of the eigenfunctions (18) of the Moshinsky
system the entanglement measure ε can be computed
in an exact analytical way. However, for highly excited
states the corresponding expressions become very awk-
ward. Therefore, we are going to calculate this quantity
only for the ground state and the first and second ex-
cited states. In each case we shall provide the final closed
expressions for ε (arising from the evaluation of the afore-
mentioned integrals) and discuss the behavior of the eigen-
state’s entanglement. The value of ε corresponding to the
state |n1n2n3〉 (with Sz = + 1

2 ) will be denoted by εn1n2n3 .
As a compact alternative notation for the alluded state we
shall also use |n1n2n3〉R1R2R3 .

We compute the state’s entanglement in terms of the
dimensionless parameter τ = λ

ω , which constitutes a mea-
sure of the relative strength of the interaction between two

particles in the Moshinsky system. Remark that the sys-
tem is decoupled when τ = 0. The larger the value of τ ,
the larger is the (relative) contribution of the interaction
term in the Moshinsky atom.

3.1 Ground state |010〉R1R2R3

Let A =
√

1 ± 3τ2, and using the right spin combina-
tion given by (15) we can express the entanglement of the
ground state in terms of the parameter τ as

ε010 = 1 −
√

2A+ 5A2 + 2A3

4 (2 + 5A+ 2A2)3

× (59 + 232A+ 390A2 + 232A3 + 59A4
)
. (19)

We see from (19) that the entanglement of the ground
state depends upon the parameters of the Moshinsky atom
only through the dimensionless quantity τ . Decoupling the
system, that is, making τ → 0 (which corresponds, for in-
stance, to λ → 0 or equivalently Λ → ω) makes ε010 = 0
showing that in the decoupled system the ground state is
not entangled. On the other hand, with maximum cou-
pling τ → ∞ (τ → 1√

3
) for attractive (repulsive) inter-

actions we find that ε010 = 1, that is, the entanglement
measure adopts its maximum possible value.

3.2 First excited states |110〉R1R2R3 and |011〉R1R2R3

The first excited state in energy, when the system
is coupled (τ > 0) and with attractive interaction,
is |110〉R1R2R3 and the next one with higher energy is
|011〉R1R2R3 , the excitation order is reversed in the case
of repulsive interaction. Both states have the same energy
when we decouple the system, that is, when τ → 0. For
these states, using (15) and (16) respectively, we have

ε110 = 1 − A1/2

4 (2 +A)9/2 (1 + 2A)9/2

× (177 + 1034A+ 6213A2 + 12582A3

+15392A4+12582A5+6213A6+1034A7 + 177A8
)

(20)

and

ε011 = 1 − A1/2

640 (2 +A)9/2 (1 + 2A)9/2
(3057 + 24608A

+ 93180A2 + 196704A3 + 251366A4 + 196704A5

+93180A6 + 24608A7 + 3057A8
)
. (21)

Decoupling the system makes ε011 = ε110 =
8
27

, so in the
limit of a decoupled system the first excited states are
entangled. On the other hand, with maximum coupling
we find that ε011 = ε110 = 1, that is, the entanglement is
maximum.
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To both states (|011〉R1R2R3 and |110〉R1R2R3) having
Sz = + 1

2 , which we will denote by |011〉+ and |110〉+, one
can associate the states |011〉− and |110〉− respectively
with the same energy and same entanglement but with
Sz = − 1

2 . Then, as these are degenerate states because
the energy does not depend on the spin, we compute the
amount of entanglement of a combination of them in the
following way:

|Ψ011〉 = cos θ |011〉+ + sin θ |011〉−
|Ψ110〉 = cos θ |110〉+ + sin θ |110〉− (22)

where 0 ≤ θ < 2π. These states exhibit an amount of en-
tanglement that is independent of the parameter θ. To un-
derstand this behaviour let us consider the unitary trans-
formation U (acting on the single-particle Hilbert space)
defined by

U |φk〉|+〉 = |φk〉|p〉, k = 1, 2, . . .
U |φk〉|−〉 = |φk〉|n〉, k = 1, 2, . . . , (23)

where (|εk〉 = |φk〉|±〉, k = 1, 2, . . .) is a single-particle
orthonormal basis (with the kets |φk〉 corresponding to
the spatial degrees of freedom) and

|p〉 = cos θ|+〉 − sin θ|−〉,
|n〉 = sin θ|+〉 + cos θ|−〉. (24)

It can be verified after some algebra that,

|Ψ011〉 =
(
U ⊗ U ⊗ U

)
|011〉+,

|Ψ110〉 =
(
U ⊗ U ⊗ U

)
|110〉+. (25)

Now, it is clear that the amount of entanglement of a
three-fermions state does not change under the effect of
unitary transformations of the form U ⊗ U ⊗ U and, con-
sequently, the entanglement of the states defined in (22)
does not depend upon θ.

3.3 Second excited states |210〉R1R2R3 , |111〉R1R2R3 ,|012〉R1R2R3 , |021〉R1R2R3 and |003〉R1R2R3

For these states we have that the lowest-energy second
excited state when the system is coupled and with attrac-
tive interaction is |210〉R1R2R3 , the next one with higher
energy is |111〉R1R2R3 , and the following three states, all of
them with the same energy, are |012〉R1R2R3 , |021〉R1R2R3

and |003〉R1R2R3 . All these states have the same energy
when the system is decoupled.

Defining the parameter B = A1/2

(2+A)13/2(1+2A)13/2 , using
equations (15) for the states |210〉R1R2R3 and |012〉R1R2R3 ,
and (16) for the states |111〉R1R2R3 , |021〉R1R2R3 and

|003〉R1R2R3 , we found that

ε210 = 1 − B

16
(
2419 + 19480A+ 218138A2 + 564200A3

+ 1466241A4 + 2943840A5 + 3743124A6

+ 2943840A7 + 1466241A8 + 564200A9

+218138A10 + 19480A11 + 2419A12
)
,

ε111 = 1 − B

64
(
9171 + 80546A+ 700555A2 + 2659770A3

+ 6668841A4 + 11416740A5 + 13615794A6

+ 11416740A7 + 6668841A8 + 2659770A9

+700555A10 + 80546A11 + 9171A12
)
,

ε012 = 1 − B

256
(
42739 + 506008A+ 3123242A2

+ 11179160A3 + 26922957A4 + 44982480A5

+ 53234988A6 + 44982480A7 + 26922957A8

+ 11179160A9 + 3123242A10

+506008A11 + 42739A12
)
,

ε021 = 1 − B

4096
(
727363 + 8982520A+ 54219206A2

+ 196856600A3 + 469858317A4 + 776694000A5

+ 915625428A6 + 776694000A7 + 469858317A8

+ 196856600A9 + 54219206A10 + 8982520A11

+727363A12
)
,

and

ε003 = 1 − B

4096
(
762395 + 9419160A+ 61156086A2

+232139320A3 + 576896949A4 + 982782000A5
)
.

+ 1171448436A6 + 982782000A7 + 576896949A8

+ 232139320A9 + 61156086A10 + 9419160A11

+762395A12
)
.

Taking the limit for the decoupling case of the system,

makes ε111 = ε210 = ε012 =
4
9
, ε021 =

43
108

and ε003 =
1
4

showing again that these excited states are entangled in
the decoupled system. In the maximum coupling limit we
find for all second-excited states that the entanglement
reaches again its maximum value.

The behaviour of the eigenstates’ entanglement as a
function of the parameter τ (which corresponds to the
relative strength of the interaction between the two par-
ticles) is depicted in Figure 1 for an attractive interaction
and in Figure 2 for a repulsive interaction.

Comparing Figures 1 and 2 one observes that in the
repulsive case (Fig. 2) maximum entanglement is reached
when the parameter τ approaches the finite limit value
1√
3
≈ 0.577. In the attractive case (Fig. 1) entanglement

behaves in a different way: maximum entanglement corre-
sponds to the limit τ → ∞. This difference between the
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Fig. 1. (Color online) Entanglement of the ground, first and
second excited states of one-dimensional Moshinsky atom with
three electrons attractively interacting. All depicted quantities
are dimensionless.
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Fig. 2. (Color online) Entanglement of the ground, first and
second excited states of one-dimensional Moshinsky atom with
three interacting electrons for the repulsive case. All depicted
quantities are dimensionless.

attractive and the repulsive cases is due to the fact that
the Moshinsky model with repulsive interaction admits
bound states only for τ -values in the finite range [0, 1√

3
).

On the other hand, in the attractive case the Moshinsky
model admits bound states for all τ ≥ 0. In the case of
the repulsive interaction the eigenstates of the system are
no longer bounded for τ ≥ 1√

3
. Thus, the eigenstates ex-

hibit a qualitative structural change at the “critical” value
τc = 1√

3
, resembling a quantum phase transition. A sim-

ilar situation occurs in the case of the Moshinsky atom
with two electrons in a uniform magnetic field studied in
the next section (see Fig. 4). This system, when the inter-
action is repulsive, admits bound states only for τ -values
smaller than the critical value τc = 1.

4 Two-electron Moshinsky atom
in a magnetic field

The Hamiltonian of the two electron Moshinsky atom in
a three dimensional space is

HM =
p2
1

2me
+

p2
2

2me
+

1
2
meω

2(r21 + r22) ±
λ2

2
(r1 − r2)2

where subscripts 1 and 2 denote each of the electrons. As
before, the positive (negative) sign refers to a attractive
(repulsive) interaction between the electrons. To study the
presence of a uniform magnetic field acting on the system,
we perform the following change in the Hamiltonian

p1 → p1 +
e

c
A and p2 → p2 +

e

c
A with A =

1
2
(B∧ r)

being B the magnetic field. Assuming that the magnetic
field is homogeneous and have z-axis direction, that is
B = Bẑ, we can write:

p2
i → p2

i+
(
eB

2c

)2

(x2
i +y

2
i )+

eB

c
(xipyi−yipxi) with i = 1, 2.

(26)
By replacing (26) in the Hamiltonian HM and setting
atomic units (me = � = 1, c = 1/α), we obtain

H =
1
2
(p2

1 + p2
2) +

ω2

2
(r21 + r22) +

b2

2
(x2

1 + y2
1 + x2

2 + y2
2)

+ b(L1z + L2z) ± λ

2
(r1 − r2)2 (27)

where

b =
B

2c
; Liz = (xipyi − yipxi)

and ri = (xi, yi, zi) with i = 1, 2. (28)

We change the variables to the center of mass (CM) and
relative coordinates, i.e.

R =
1√
2
(r1 + r2) y r =

1√
2
(r1 − r2) (29)

respectively. This transformation satisfies the relations

p2
1 + p2

2 = p2
R + p2

r and
L1z + L2z = LRz + Lrz

= (RxpRy −RypRx) + (rxpry − ryprx), (30)

and therefore, introducing equations (29) and (30) in the
Hamiltonian (27) we obtain

H =
1
2
(p2

R + p2
r) +

ω2

2
(R2 + r2) +

b2

2
(R2

x +R2
y + r2x + r2y)

+ b(LRz + Lrz) ± λ2

2
r2, (31)

which is separable in the CM and relative coordinates, so
that we can express as

H = HR +Hr
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where

HR =
1
2
(p2

Rx + p2
Ry) +

ω2 + b2

2
(R2

x +R2
y)

+
1
2
(p2

Rz + ω2R2
z) + bLRz (32)

and

Hr =
1
2
(p2

rx + p2
ry) +

ω2 + b2

2
(r2x + r2y)

+
1
2
(p2

rz + ω2r2z) + bLrz ± λ

2
r2. (33)

Introducing the following dilation canonical transforma-
tion for the Hamiltonian HR

p′Ri = (ω2 + b2)−
1
4 pRi, R

′
i = (ω2 + b2)

1
4Ri with i = x, y

p′Rz = ω− 1
2 pRz , R

′
z = ω

1
2Rz , (34)

and

p′ri = (ω2 + b2 ± λ2)−
1
4 pri,

r′i = (ω2 + b2 ± λ2)
1
4 ri with i = x, y

p′rz = (ω2 ± λ2)−
1
4 prz, r

′
z = (ω2 ± λ2)

1
4 rz , (35)

we obtain

H ′
R =

HR

ω
=

1
2

(
1 +

b2

ω2

) 1
2

(p′Rx
2 + p′Ry

2 +R′
x
2 +R′

y
2)

+
1
2
(p′Rz

2 +R′
z
2) +

b

ω
LR′z (36)

H ′
r =

Hr

(ω2 ± λ2)
1
2

=
1
2

(
1 +

b2

ω2 ± λ2

) 1
2

× (p′rx
2 + p′ry

2 + r′x
2 + r′y

2)

+
1
2
(p′rz

2 + r′z
2) +

b

(ω2 ± λ2)
1
2
Lr′z. (37)

The Hamiltonian describing the whole system will be
therefore

H = ωH ′
R + (ω2 ± λ2)

1
2H ′

r. (38)

Using cylindrical coordinates, that is

ρR = (R′
x
2 +R′

y
2)

1
2 , ϕ = arctan

(
R′

y
2

R′
x
2

)
, zR = R′

z,

(39)

ρr = (r′x
2 + r′y

2)
1
2 , ϕ = arctan

(
r′y

2

r′x
2

)
, zr = r′z , (40)

we immediately have the eigenfunctions of H ′
R y H ′

r given
by [40]

ΨνRmRnR(R) =
1√
2π
RνR|mR|(ρR)eimRϕRχnR(zR) (41)

ΨνRmRnR(r) =
1√
2π
Rνr |mr|(ρr)eimrϕrχnr(zr), (42)

where Rν|m|(ρ) are the two-dimensional oscillator radial
eigenstates, whose normalized expressions are

Rν|m|(ρ) =
(

2 ν!
(ν + |m|)!

) 1
2

ρ|m|e−
ρ
2L|m|

ν (ρ2) (43)

being L
|m|
ν the Laguerre polynomials with the quantum

numbers ν and m taking the values ν = 0, 1, 2, ... and
m = 0,±1,±2, ... respectively. The functions χτ (z) are
the eigenstates of the unidimensional harmonic oscillator
which are given by

χn(z) =
(

1
2nn!π

1
2

) 1
2

e−
z2
2 Hn(z) (44)

where Hn(z) are the Hermite polynomials and n takes the
values n = 0, 1, 2, . . .

The final eigenstates of the Hamiltonian (38) will be

|νRmRnR, νrmrnr〉 = |νRmRnR〉 ⊗ |νrmrnr〉 (45)

and the wave function

ΨνRmRnR,νrmrnr (r1, r2) = ΨνRmRnR,νrmrnr (R, r)|J |1/2 =
〈x1, y1, z1;x2, y2, z2|νRmRnR, νrmrnr〉 (46)

where J is the Jacobian of the configuration part of the
transformation (34) and (35).

The eigenvalues of the harmonic oscillators in one and
two dimensions are (n+ 1

2 ) and (2ν+|m|+1), respectively.
Defining the quantities

yR =
(

1 +
b2

ω2

) 1
2

+
b

ω

and yr =
(

1 +
b2

ω2 ± λ2

) 1
2

+
b

(ω2 ± λ2)
1
2
, (47)

we obtain the eigenvalues of the Hamiltonians H ′
R and H ′

r

in the form

E′
νRmRnR

(yR) =
yR

2
(2νR + |mR| +mR + 1)

+
1

2yR
(2νR+|mR|−mR + 1)+

(
nR +

1
2

)

(48)

E′
νrmrnr

(yr) =
yr

2
(2νr + |mr| +mr + 1)

+
1

2yr
(2νr+|mr|−mr+1)+

(
nr+

1
2

)
.

(49)

Then, the total energy of the system, which is the eigen-
value of the Hamiltonian H , is given by

EνRmRnRνrmrnr(ω, b) = ωE′
νRmRnR

(yR)

+ (ω2 ± λ2)
1
2E′

νrmrnr
(yr). (50)

We calculate the exact form of the trace of the reduced
density matrix associated to a general eigenfunction (45)
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ε000, 000 = 1 − 8
√

1 + σ2
√

1 + τ 2
√

1 + σ2 + τ 2
(
2 + 2σ2 + τ 2 − 2

√
1 + σ2

√
1 + σ2 + τ 2

)

τ 4
(
1 +

√
1 + τ 2

)√
1

1− 4
τ2 + 4+5τ2

τ2
√

1+τ2

√
τ2+2

(
1+3

√
1+τ2

)

1+
√

1+τ2

(51)

ε000, 100 = ε100, 000 = 1 − 4
√

1 + σ2
√

1 + τ 2
√

1 + σ2 + τ 2
(
8 + 8σ4 + 8τ 2 + τ 4 + 8σ2

(
2 + τ 2

))

(
1 +

√
1 + τ 2

)√ 1+τ2+
√

1+τ2

2+τ2+6
√

1+τ2

√
2+τ2+6

√
1+τ2

1+
√

1+τ2

(√
1 + σ2 +

√
1 + σ2 + τ 2

)6
(53)

ε000, 001 = ε001,000 = 1 − α

2
√

1 + σ2
√

1 + σ2 + τ 2
(
6 + 3τ 2 + 2

√
1 + τ 2

)√ 1+τ2+
√

1+τ2

2+τ2+6
√

1+τ2

√
2+τ2+6

√
1+τ2

1+
√

1+τ2

(
1 +

√
1 + τ 2

)3 (√
1 + σ2 +

√
1 + σ2 + τ 2

)2 (54)

of the two-electron Moshinsky system with magnetic field
for the ground and the first excited states in nR, nr, νR

and νr. Next we are going to provide and discuss the cor-
responding amounts of entanglement exhibited by each
eigenstate (arising from the evaluation of the aforemen-
tioned integrals). In what follows, ενRmRnR,νrmrnr denotes
value of ε when evaluated on the state |νRmRnR, νrmrnr〉
that we also will denote |νRmRnR, νrmrnr〉Rr . In order to
obtain physically acceptable solutions in the case of a re-
pulsive interaction between the particles we have to take
into account the constraint λ < ω.

4.1 Ground state |000 000〉Rr

The ground state is symmetric in coordinates, so we must
combine it with the only antisymmetric spin function to

ensure the antisymmetry of the wave function. Let σ =
b

ω

and τ =
λ

ω
as before. In this case we have

see equation (51) above.

Decoupling the system makes ε000 000 = 0, therefore in the
decoupled system the ground state is not entangled. With
maximum coupling τ → ∞ (τ → 1) in the attractive (re-
pulsive) case, we find that ε000 000 = 1; that is, the entan-
glement measure is maximum. The behaviour of entangle-
ment as a function of the parameters τ and σ is shown
in Figure 3. Figures 3a and 3b correspond, respectively,
to the attractive and the repulsive cases. More detailed
information concerning the asymptotic behaviour of en-
tanglement is provided in Figure 4.

From Figure 3 it can be observed that in the limit of
large magnetic fields, that is σ → ∞, the entanglement
reaches a constant value which depends on the relative
strength of interaction given by the parameter τ , i.e.

lim
σ→∞ ε000, 000 =

1 − 8
(
1 + τ2

) (
2 + τ2 − 2

√
1 + τ2

)

τ4
(
1 +

√
1 + τ2

)√
2+τ2+6

√
1+τ2

1+
√

1+τ2

√
1

1− 4
τ2 + 4+5τ2

τ2
√

1+τ2

.

(52)

4.2 First excited states |100, 000〉Rr, |000, 100〉Rr,
|001,000〉Rr, |000, 001〉Rr

We study the excited states in νR, νr and nR that have
symmetric coordinates wave functions and therefore must
be combined with the antisymmetric or antiparallel spin
function. We also study in this section the excited state
in nr which is antisymmetric in coordinates and there-
fore, it can be combined with parallel or antiparallel spin
functions. Excited eigenstates in νR and νr and in nR and
nr have the same energy respectively when the system is
decoupled. In this case we obtain

see equation (53) above,

see equation (54) above.

where α = 1(2) for antiparallel (parallel) spin.
Taking the decoupled limit system, we obtain

the following entanglement values regardless of the

magnetic field value: εa
100, 000 = εa

000, 100 =
3
4

and

εa
001,000 = εa

000, 001 =
1
2

for the first excited states with

antiparallel spin, which are entangled, and εp
000, 001 = 0

for the only possible state with parallel spin. We have
used εa (εp) to indicate the entanglement of states with
antiparallel (parallel) spin.

On the other hand, with maximum coupling we find
that εa

100, 000 = εa
000, 100 = εa

001,000 = εa
000, 001 = εp

000, 001 =
1, the entanglement is maximum.

In the limit for large magnetic fields, i.e. σ → ∞, we
obtain

lim
σ→∞ ε100, 000 = lim

σ→∞ ε000, 100

= 1 − 3
√

1 + τ2

2
(
1 +

√
1 + τ2

)√
1+τ2+

√
1+τ2

2+τ2+6
√

1+τ2

√
2+τ2+6

√
1+τ2

1+
√

1+τ2

(55)

lim
σ→∞ ε001,000 = lim

σ→∞ ε000, 001 = 1 − α

×
3
(
6 + 3τ2 + 2

√
1 + τ2

)√
1+τ2+

√
1+τ2

2+τ2+6
√

1+τ2

√
2+τ2+6

√
1+τ2

1+
√

1+τ2

(
1 +

√
1 + τ2

)3

(56)
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Fig. 3. (Color online) Entanglement of the ground state of the three-dimensional Moshinsky atom with two interacting electrons
and a magnetic field. (a) Attractive interaction, (b) repulsive interaction. All depicted quantities are dimensionless.
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Fig. 4. (Color online) Entanglement of the ground state of the three-dimensional Moshinsky atom with two interacting electrons
in a uniform magnetic field, (a) as a function of τ for different values of σ with attractive interaction, (b) as function of σ for
different values of τ with attractive interaction, (c) as a function of τ for different values of σ with repulsive interaction and
(d) as a function of σ for different values of τ with repulsive interaction. All depicted quantities are dimensionless.

which, as we observe, depends on the value of the inter-
action. The behaviour of the entanglement exhibited by
these states is shown in Figure 5 (for excited states with
νr = 1 and νR = 1) and in Figure 6 (for excited states
with nr = 1 and nR = 1).

It transpires from the calculations summarized in Fig-
ures 3−6 that the amount of entanglement exhibited by
the eigenstates of the Moshinsky atom tends to decrease
with the strength of the magnetic field. To understand
the physics behind this trend let us first recall the general
way in which entanglement depends on the strength of
the interaction between the two particles constituting the
system. Entanglement tends to increase with the relative

strength of the interaction. However, it is important to
stress that the determining factor here is not the “abso-
lute” strength of the interaction, but its strength as com-
pared with the strength of the external confining poten-
tial. In other words, entanglement increases both if one
increases the strength of the interaction keeping constant
the external potential or, alternatively, if the strength of
the confining potential is weakened while keeping con-
stant the interaction. These general trends have been ob-
served in all the atomic models where entanglement has
been studied in detail: the Moshinsky model, the Crandall
model, and also in Helium and in Helium-like atomic sys-
tems [8,15]. For instance, when one considers decreasing

http://www.epj.org


Page 10 of 15 Eur. Phys. J. D (2012) 66: 15

Fig. 5. (Color online) Entanglement of the first excited state in νR and νr of the three dimensional Moshinsky atom with
two interacting electrons and magnetic field. (a) Attractive interaction, (b) repulsive interaction. All depicted quantities are
dimensionless.

Fig. 6. (Color online) Entanglement of the first excited state in nR and nr of the three dimensional Moshinsky atom with two
interacting electrons and magnetic field. (a) Attractive interaction, antiparallel spin, (b) repulsive interaction, antiparallel spin,
(c) attractive interaction, parallel spins, (d) repulsive interaction, parallel spins. All depicted quantities are dimensionless.

values of the nuclear charge Z in Helium-like systems
(weakening the Coulombic confining potential) the entan-
glement of the system’s ground state increases [15]. These
general patterns admit a clear and intuitive physical inter-
pretation. When the external confining potential becomes
physically dominant (as compared with the interaction)
the behaviour of the system resembles the behaviour of a
system of independent, non-interacting particles, and en-
tanglement tends to decrease. On the other hand, when
the interaction is dominant (as compared with the confin-
ing potential) the system’s behaviour departs from that
of a system of non-interacting particles and entanglement
tends to increase.

The dependence of entanglement with the magnetic
field can now be physically understood. This dependence
follows the same general patterns explained above. In-
deed, the basic fact about the magnetic field in the
Moshinsky model (which of course is a common external
field acting on both particles) determining its effect upon

entanglement is the following: increasing the strength of
the magnetic field tends to increase the confining effect of
the combined external fields (that is, the harmonic exter-
nal field and the magnetic field). To illustrate this basic
property let us briefly consider the behaviour of a single
particle (in 3D-space) under the combined effects of the
external fields (harmonic field plus uniform magnetic field)
involved in the Moshinsky model that we study here. The
probability density corresponding to the ground state of
the particle is

ρ(x, y, z) =
√
ω
√
b2 + ω2

π3/2
e−z2ω−(x2+y2)

√
b2+ω2

. (57)

A direct way to study the dependence of the confine-
ment of this particle on the strength of the magnetic
field is to compute the entropy of the spatial prob-
ability density and determine its behaviour with the
magnetic field (decreasing values of the entropy corre-
spond to increasing confinement). The linear entropy,
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Fig. 7. (Color online) Linear and von Neumann entropies as
a function of b with ω = 1

S(L) = 1 − Tr[ρ2] = 1 − ∫ [ρ(r)]2dr, and von Neumann en-
tropy, S(vN) = −Tr[ρ ln(ρ)] = − ∫ ρ(r) ln[ρ(r)]dr, of
the probability density (57) are given, respectively,
by S

(L)
|gs〉(ω, b) = 1 −

√
ω
√

b2+ω2

2
√

2π3/2 and S
(vN)
|gs〉 (ω, b) =

1
2

[
3 (1 + lnπ) − lnω − ln

(
b2 + ω2

)]
. The entropies S(L)

|gs〉
and S(vN)

|gs〉 describing the spatial “spreading” of the prob-
ability density associated with ground state wave function
are plotted against the magnetic field in Figure 7. It can
be clearly appreciated that confinement increases with the
intensity of the magnetic field. The probability densities
corresponding to the excited states of this single-particle
case, as well as the two-particle spatial probability densi-
ties corresponding to the eigenfunctions of the Moshinsky
system, also become more confined when the magnetic
field becomes more intense. As already explained, this be-
haviour is consistent with the decrease of entanglement
with an increasing magnetic field.

5 Perturbative approach

In this section we consider a perturbative approach to the
two previously studied models, regarding the term that
describe the interaction (between the three or two elec-
trons) as a small perturbation (λ2 ∼ 0). Let us consider
both systems governed by a Hamiltonian of the form

H = H0 + λ2H ′, (58)

where the unperturbed Hamiltonian H0 takes different
forms for each case (see Eqs. (62) and (72)). H0 corre-
sponds to three independent (non-interacting) particles
and two independent particles in a magnetic field, re-
spectively, and λ2H ′ describes the interaction between the
electrons, being λ a small parameter. A perturbative treat-
ment of this system involves an expansion of its eigenen-
ergies and eigenstates in terms of powers of λ2. If this
approach is valid we expect the gross properties of the

energy spectrum to be given by the eigenvalues of the
unperturbed Hamiltonian. It is clear that within this sce-
nario the leading, zeroeth-order contribution to the energy
spectrum is independent of the detailed structure of the
perturbation H ′. However, the situation is different when,
instead the energy, we calculate the entanglement of the
system’s eigenstates. When the unperturbed energy eigen-
values are degenerate the leading (zeroeth-order) contri-
bution to the eigenfunction’s entanglement does depend,
in general, on the details of the perturbation.

Let us consider an m-fold degenerate energy level of
H0, with an associated set of m orthonormal eigenstates
|ψj〉, j = 1, . . .m. Since H0 describes non-interacting par-
ticles, the m eigenstates |ψj〉 can always be chosen to be
Slater determinants written in terms of a family of or-
thonormal single-particle states |φ(1,2,3)

j 〉 in the case of

three particles and in terms of |φ(1,2)
j 〉 in the case of two

particles. So we have for a three-particle system,

|ψj〉 =
1√
6

(
|φ(1)

j 〉|φ(2)
j 〉|φ(3)

j 〉 − |φ(1)
j 〉|φ(3)

j 〉|φ(2)
j 〉

+ |φ(2)
j 〉|φ(3)

j 〉|φ(1)
j 〉 − |φ(2)

j 〉|φ(1)
j 〉|φ(3)

j 〉
+|φ(3)

j 〉|φ(1)
j 〉|φ(2)

j 〉 − |φ(3)
j 〉|φ(2)

j 〉|φ(1)
j 〉
)
,

and for a two-particles systems

|ψj〉 =
1√
2

(
|φ(1)

j 〉|φ(2)
j 〉 − |φ(2)

j 〉|φ(1)
j 〉
)
.

All the members of the subspace Hs spanned by the
states |ψj〉 are eigenstates ofH0 corresponding to the same
eigenenergy. The different members of this subspace have,
in general, different amounts of entanglement. Typically,
the interactionH ′ will lift the degeneracy at least partially
of the degenerate energy level. If we solve the eigenvalue
problem corresponding to the (perturbed) Hamiltonian
H and take the limit λ → 0, the perturbation H ′ will
“choose” one particular basis {|ψ′

k〉λ→0} among the in-
finite possible basis of Hs. The states constituting this
special basis will in general be entangled. These states are
of the form [41]

|ψ′
k〉λ→0 =

m∑

j=1

ckj |ψj〉, (59)

where the m-dimensional vectors vT
k = (ck1, ..., ckm) are

the eigenvectors of the m × m H̃ matrix with elements
given by,

H̃ij = 〈ψi|H ′|ψj〉. (60)

It is then clear that, in the limit λ→ 0 the eigenstates of
H will in general be entangled.

Let m̃ be the number of different single-particle
states within the family {|φ(1,2,3)

j 〉, 1, . . . ,m} or

{|φ(1,2)
j 〉, 1, . . . ,m}. m̃ tends to increase with m which,

in turn, tends to increase with energy; that is, m̃
tends to increase as one considers higher excited states.
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This explains (at least in part) why the range of entan-
glement values available to the eigenstates {|ψ′

k〉λ→0}
tends to increase with energy. Indeed, the amount of
entanglement that can be achieved for a given energy of
a N -fermion system admits an upper bound given by

εSL = 1 − N

m̃
· (61)

5.1 Moshinsky model with three electrons

Let the unperturbed Hamiltonian be,

H0 = −1
2
∂2

∂x2
1

− 1
2
∂2

∂x2
2

− 1
2
∂2

∂x2
3

+
1
2
ω2x2

1 +
1
2
ω2x2

2 +
1
2
ω2x2

3

(62)
and the perturbation,

λ2H ′ = λ2 1
2
[(x1 − x2)2 + (x2 − x3)2 + (x1 − x3)2]. (63)

Then, we have H = H0 + λ2H ′. When λ = 0 the
model consists of three-independent harmonic oscilla-
tors with the same natural frequency. Let |n±〉 (n =
0, 1, 2 . . .) the eigenstate of each of these oscillators. For
the first excited state which is four-fold degenerate, let
{|0,±〉, |1,±〉, |2,±〉} be the single-particle orthonormal
basis. Then, for λ = 0, we can choose the four eigenstates
with zero entanglement, all of them with the same energy
as |011〉R1R2R3 and |110〉R1R2R3

|ψ1〉 = |0+, 0−, 2 + |
|ψ2〉 = |0+, 0−, 2− |
|ψ3〉 = |0+, 1+, 1− |
|ψ4〉 = |0−, 1+, 1− |

(64)

where we have introduced the notation

|i, j, k| =
1√
6

(|i, j, k〉 − |i, k, j〉
+|j, k, i〉 − |j, i, k〉 + |k, i, j〉 − |k, j, i〉)

and i = j = k = 0±, 1±, 2±.
For the first excited energy level of H0 (E = 7

2ω), we
have

H̃ ∝

⎛

⎜⎜⎜⎝

4 0 1√
2

0
0 4 0 1√

2
1√
2

0 7
2 0

0 1√
2

0 7
2

⎞

⎟⎟⎟⎠ , (65)

and the corresponding eigenvectors can be written as

|ψ′
1〉 =

√
2
3
(− 1√

2
|ψ2〉 + |ψ4〉)

|ψ′
2〉 =

√
2
3
(− 1√

2
|ψ1〉 + |ψ3〉)

|ψ′
3〉 =

1√
3
(
√

2|ψ2〉 + |ψ4〉)

|ψ′
4〉 =

1√
3
(
√

2|ψ1〉 + |ψ3〉). (66)

In the decoupled limit the eigenstates |011〉R1R2R3 and
|110〉R1R2R3 tend to the states (66) (or any combination
of them) which have ε = 8

27 . This value coincides with the
amount of entanglement for the first excited state obtained
from the exact calculation in the limit τ → 0 (equivalently
λ→ 0).

The states |ψ′
1〉 and |ψ′

2〉 (|ψ′
3〉 and |ψ′

4〉) share the
same energy eigenvalue. A linear combination of eigen-
states sharing the same eigenenergy is also a valid en-
ergy eigenstate. Then, let us consider for instance |ψ′

34〉 =
cos θ |ψ′

3〉 + sin θ|ψ′
4〉, (0 ≤ θ < 2π). As already discussed

at the end of Subsection III.B, the amount of entangle-
ment of these linear combinations does not depend on θ.

We have seen that in the case of some excited states
of the Moshinsky model an arbitrarily weak interaction
between the particles leads to a finite amount of entan-
glement. This naturally suggests the following issues: to
what extent is this weak-interaction entanglement robust?
What happens with this entanglement if some other small
perturbation acts upon the system? The detailed entan-
glement features of the eigenstates corresponding to this
scenario will evidently depend on the precise form of the
new perturbation. Therefore, these entanglement proper-
ties can only be studied in a case-by-case way. However,
it is possible to gain some valuable insights on the robust-
ness of the weak-interaction entanglement by recourse to a
statistical approach. We can consider the typical features
of the weak-interaction entanglement corresponding to a
random perturbation.

Let us consider again the four eigenstates (64) of the
unperturbed (with no interaction) system. Any weak per-
turbation acting on top of the already considered weak
interaction will lead (in the lowest order of perturbation
theory for a degenerate eigenenergy) to a new set of four
perturbed energy eigenstates that will be linear combina-
tions of the four unperturbed states (64). That is, the new
perturbed states are orthonormal states belonging to the
four-dimensional linear space spanned by the states (64).
We can consider the statistical distribution of entangle-
ment values corresponding to random states in this sub-
space uniformly distributed according to the Haar mea-
sure (see [42,43] and references therein). To this end we
generate three-electron states randomly distributed ac-
cording to the Haar measure of the form,

|ψ′〉 =
4∑

i=1

ci|ψi〉, (67)

with |ψi〉, i = 1, . . . , 4 as given in equation (64). A state
of the form |ψ′〉 can be thought as an eigenvector cor-
responding to an arbitrary perturbation. The amount of
entanglement of the state |ψ′〉 is,

ε(|ψ′〉) = 1− 1
3

[
2
(|c1|2 + |c2|2

)2
+ 2

(|c3|2 + |c4|2
)2

+ 1
]
.

(68)
Optimizing equation (68) we obtain the maximum possi-
ble value of entanglement εm(|ψ′〉) = 1

3 associated to the
state with coefficients satisfying: |c1|2 + |c2|2 = |c3|2 +
|c4|2 = 1

2 .
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Table 1. Entanglement distribution for perturbed excited
states of a three-electron Moshinsky system. These states cor-
respond to a four-fold degenerate unperturbed energy level.

% of states in 0 < ε ≤ 1/9 4.75%
different 1/9 < ε ≤ 2/9 18.25%

entanglement ranges 2/9 < ε ≤ 1/3 77%
Average entanglement 〈ε〉 = 0.26667

Maximum entanglement εm = 1/3

In Table 1 we show the percentual number of three-
electron pure states belonging to the linear subspace
spanned by the states (64) that have entanglement values
in different ranges. To compute these percentual values we
generated 107 random states distributed according to the
Haar measure. The average and maximum entanglement
values corresponding to perturbed states spanned by (64)
are also given in Table 1. These results constitute sug-
gestive evidence for the robustness of the entanglement
exhibited by excited eigenstates of the Moshinsky atom
in the weak-interaction limit. Indeed, the statistical study
summarized in Table 1 suggests that any new perturbation
is likely to produce a small decrease in the entanglement
of the excited state considered here (ε = 8/27 ≈ 0.2963)
but, in the typical case, it will still result in an appreciable
amount of entanglement in the weak-interaction limit.

Let us now study the entanglement properties for the
second excited state of the Moshinsky atom. In this case,
we have ten-fold degenerate eigenstates, (all of them with
E = 9

2ω). The single-particle orthonormal basis is given by
{|0,±〉, |1,±〉, |2,±〉, |3,±〉}. The matrix of the harmonic
perturbation can be expressed as follow:

H̃ ∝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
2 0 0 0 −

√
3

2 0
√

3
2 0 0 0

0 9
2 0 0 0 −

√
3

2 0
√

3
2 0 0

0 0 6 0 0 0 0 0 0 0
0 0 0 5 1 0 0 0 0 0

−
√

3
2 0 0 1 9

2 0 1
2 0 0 0

0 −
√

3
2 0 0 0 11

2 0 1
2 0 0√

3
2 0 0 0 1

2 0 11
2 0 0 0

0
√

3
2 0 0 0 1

2 0 9
2 1 0

0 0 0 0 0 0 0 1 5 0
0 0 0 0 0 0 0 0 0 6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (69)

Following a similar procedure and after a laborious algebra
we compute the entanglement amount of the eigenvectors
of H̃ ,

ε(|ψ′
1〉) = ε(|ψ′

6〉) = 0

ε(|ψ′
7〉) = ε(|ψ′

8〉) = ε(|ψ′
9〉) = ε(|ψ′

10〉) =
4
9

ε(|ψ′
3〉) = ε(|ψ′

4〉) =
1
4

ε(|ψ′
2〉) = ε(|ψ′

5〉) =
20
49

(70)

where |ψ′
j〉 (j = 1, ..., 10) are the eigenvectors of the

H̃ matrix. The states |ψ′
j〉 with j = 1, . . . , 6 share the

same eigenvalue. The same occurs for the state pairs |ψ′
7〉

and |ψ′
8〉, and |ψ′

9〉 and |ψ′
10〉. As we mention before, the

interaction lift only partially the degeneracy. The degen-
eracy due to the spin degree of freedom (Sz = ± 1

2 ) is
present in all the states. The obtained values agree with
some of those calculated in Section 3. Different combina-
tions of the states sharing eigenvalues result in the non-
coincident entanglement amount ε021 = 43

108 . For instance,
let |ψ′

56〉 = pψ′
5 +

√
1 − p2ψ′

6, (0 ≤ p ≤ 1); then

ε(p) =
4

147
p2(8p2 + 7), (71)

and ε021 is re-obtained for p ∼ 0.992.

5.2 Moshinsky model with two electrons in a uniform
magnetic field

We consider also a perturbative approach for a three-
dimensional Moshinsky atom with two electrons in a mag-
netic field. Let the unperturbed Hamiltonian be,

H0 =
1
2
(p2

1 + p2
2) +

ω2

2
(r21 + r22) +

b2

2
(x2

1 + y2
1 + x2

2 + y2
2)

+ b(L1z + L2z) (72)

and the perturbation,

λ2H ′ =
λ2

2
(r1 − r2)2. (73)

The eigenenergies of H0 are given by equation (50), taking
νR = ν1, νr = ν2, mR = m1, mr = m2, nR = n1, nr = n2

and setting λ = 0. Then, for the excited states of H0 with
energy given by

Eνm = ω

(
2y +

2
y

+ 1
)
, y =

(
1 +

b2

ω2

) 1
2

+
b

ω
,

resulting of setting one of the quantum numbers ν1, ν2,
|m1|, |m2| equal to one and the rest equal to zero, we
obtain

H̃ ∝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 0 0 0 0 0 0 0
0 c1 0 0 0 c2 −c2 0
0 0 c1 0 0 −c2 c2 0
0 0 0 c1 0 0 0 0
0 0 0 0 c1 0 0 0
0 c2 −c2 0 0 c1 0 0
0 −c2 c2 0 0 0 c1 0
0 0 0 0 0 0 0 c1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where c1 = 1
2ω + 2√

b2+ω2 and c2 is obtained numerically
and its exact numerical value is not relevant for the next
calculations.

H̃ has six degenerate eigenvectors and two non-
degenerate ones that take the following entanglement val-
ues: {0, 1

2 ,
3
4}. The entanglement value obtained from the

exact computations in the limit λ → 0 of the states with
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the same energy, |100, 000〉Rr and |000, 100〉Rr, coincide
with one of the above values (ε = 3

4 ).
We consider also states setting n1 = 1 or n2 = 1 and

the rest equal to zero, with energy given by

En = ω

(
y +

1
y

+ 2
)

and with y as before. For these excited states we obtained

H̃ ∝

⎛

⎜⎝

d1 + d2 0 0 0
0 d1 d2 0
0 d2 d1 0
0 0 0 d1 + d2

⎞

⎟⎠ ,

where d1 = 1
ω + 1√

b2+ω2 and d2 = 1
2ω . This matrix has

three eigenvectors corresponding to the same eigenval-
ues and with entanglement {0, 1

2} and one non-degenerate
eingevector with entanglement 1

2 . Again the obtained re-
sults are in perfect accordance with the entanglement ob-
tained for states |001, 000〉Rr and |000, 001〉Rr in the de-
coupled regime.

6 Conclusions

We explored the entanglement properties of two versions
of the Moshinsky model: one comprising three electrons
and another one consisting of two electrons in a uniform
external magnetic field. The amount of entanglement of
the eigenstates of the three-electron system considered
here depends only on the dimensionless parameter τ de-
scribing the relative strength of the interaction between
the particles (as compared with the strength of the ex-
ternal confining potential). We obtained closed analytical
expressions for the amount of entanglement of the ground,
first and second excited states. As a general trend we
found that the entanglement exhibited for these states
tends to increase both with the state’s energy and with
the strength of the interaction between the particles (that
is, with τ). Non-vanishing entanglement is obtained in
the limit of vanishing interaction in the case of excited
states. This (apparent) discontinuous behaviour of the
entanglement is related to the degeneracy of the energy
levels of the “unperturbed” Hamiltonian describing non-
interacting particles. The non-vanishing entanglement in
the limit of zero interaction is determined by the partic-
ular basis of H0 “chosen” by the interaction. We also
found that in the case of an attractive interaction the
eigenstates’ entanglement approaches its maximum possi-
ble value in the limit of an infinitely large interaction. On
the other hand, in the case of a repulsive interaction the
maximum possible entanglement is obtained when the in-
teraction strength approaches a finite, critical limit value
corresponding to τc = 1√

3
. The system does not admit

bound eigenstates when the strength of the (repulsive) in-
teraction is equal or larger than the one corresponding
to τc.

As far as the entanglement’s dependence on the inter-
action strength and the energy are concerned, the behav-
ior of the Moshinsky model with two electrons in a uni-
form magnetic field is similar to the one observed in the
three-electron model. With regards to the external mag-
netic field, we found that the eigenstates’ entanglement
decreases when considering increasing magnetic fields. In
the limit of very strong magnetic fields the entanglement
approaches a finite asymptotic value that depends on the
interaction strength. The essential aspect of the magnetic
field in the Moshinsky model that determines its effect
upon the amount of entanglement exhibited by the sys-
tem’s eigenstates is the following: increasing the intensity
of the magnetic field tends to increase the confining effect
of the combined external fields (that is, the harmonic ex-
ternal field and the magnetic field). For a given strength of
the interaction between the particles, this increasing con-
finement leads (according to a general pattern that has
been observed in all atomic models where entanglement
was studied in detail) to a decrease in the eigenstates’ en-
tanglement. As happens in the case of the three-electron
model, a perturbative treatment highlights the essential
role played by the degeneracy of the energy levels of the
interactionless system in determining how the eigenstates’
entanglement depends on the interaction strength and on
the energy.
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Phys. A Math. Theor. 40, 1845 (2007)
24. A.R. Plastino, A. Plastino, Phys. Lett. A 181, 446 (1993)
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