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We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a
magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the
molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction
induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a
non-Fermi-liquid phase. A transition into a Fermi-liquid phase could then be achieved, by means of mechanical
stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization-group
results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.

DOI: 10.1103/PhysRevB.86.035437 PACS number(s): 73.23.−b, 75.30.Gw

I. INTRODUCTION

The electronic properties of nanostructures depend criti-
cally on their symmetries. As a consequence, the ability to
modify these microscopic symmetries makes it possible to
drive the system through different physical regimes at will,
possibly resulting in quantum phase transitions (QPTs) as the
system visits different ground states.1

Quantum dots2–4 and molecular devices consisting of
complex molecules deposited on metallic break junctions5–8

are good examples of systems where physical regimes can be
explored by tuning their parameters. The electronic transport
through molecular devices is very sensitive to the hybridization
of the molecular energy levels with the bands of the metallic
leads in the break junction, as well as to electron-electron (e-e)
and electron-vibron interactions within the molecule.9–18

Success has been achieved in the past few years in
controlling the properties of molecular junctions through
tuning of the molecular levels by different means. It has been
shown, for example, that a gate voltage is capable of inducing a
singlet-triplet transition in a C60 (buckyball) molecule trapped
between metallic leads, due to distinct hybridizations of these
states with the electronic states of the leads.5

In recent experiments by Parks et al.,6 it was shown that
mechanical stretching of the spin-1 molecule Co(tpy-SH)2 (4′-
mercapto-2, 2′:6′,2′′-terpyridine) along the transport axis in
a break junction setup can be used to control the magnetic
properties of the molecule. The stretching induces a splitting
of the spin-1 triplet ground state,19–22 raising the energy of the
doublet with spin projection Sz = ±1 by as much as 4 meV
with respect to the state of Sz = 0 (Ref. 6) and leaving the
latter as the molecular ground state.

This magnetic anisotropy is critical to the low-temperature
transport through the molecular junction in this experiment.
In the absence of anisotropy, the system exhibits an under-
screened spin-1 Kondo effect, signaled by enhanced conduc-
tivity for temperatures below the Kondo temperature T 0

K .23

Any positive (hard-axis) anisotropy breaks the ground-state
degeneracy of the isolated molecule and drives the system
into a Fermi-liquid (FL) ground state with an associated low
conductance.24,25

The converse case of negative (easy-axis) anisotropy could
be reached, in principle, by compressing the molecule. This sit-
uation would set the Sz = ±1 doublet as the molecular ground
state, yielding non-Fermi-liquid (NFL) behavior.24,26–28

In this context, visiting different ground states becomes a
matter of adjusting the magnetic anisotropy. The system will
go from an ordinary FL in the hard-axis regime to a NFL
in the easy-axis regime, passing through an underscreened
Kondo ground state28—a singular Fermi liquid—when the
triplet is exactly degenerate.29 These different regimes and
the associated QPTs can be studied as functions of a single
parameter: the magnetic anisotropy.

All of the effects described above can be caused by static
deformations of the molecule. Moreover, it is to be expected
that dynamical effects may arise via an analogous coupling
between the spin and the mechanical degrees of freedom
of the molecule.30 As we show below, a coupling between
molecular vibrations and spin will induce a deformation in
the molecular ground state, opening access to an easy-axis
regime. With this motivation, in this paper we study a model
that encompasses the anisotropy regimes described above and
considers in addition the mechanical degrees of freedom of
the molecule through a vibrational mode. In the same way
as the static deformation, vibrations along the axis couple
naturally to the spin projection of the molecule. In the case
of an isolated molecule, we find that the coupling to the
vibrational mode indeed opens access to the easy-axis regime;
i.e., the spin-1 doublet of Sz = ±1 becomes the ground state.
When the molecule is coupled to leads, we find that the
magnetic anisotropy is further renormalized. The resulting
effective anisotropy could be tuned to explore a variety of
ground states which we will discuss below. We studied the
different highly correlated regimes of the model by means
of numerical renormalization-group (NRG) calculations.31–33

The results are summarized in the phase diagram shown in
Fig. 1, to which we will come back later.

II. MODEL

We model the molecular device shown in Fig. 2(a) as
depicted in Fig. 2(b). The Hamiltonian of the spin-1 molecule
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FIG. 1. (Color online) Phase diagram of a deformable spin-1
molecular break junction in the presence of a local vibrational mode.
A rich variety of phases can be found at temperatures below TK ,
at which Kondo physics dominates the transport properties of the
system. The effective anisotropy Aeff, induced by both static and
dynamic deformations of the molecule, drives the system through
different quantum phases.

can be represented by a two-orbital model of the form

H0 =
∑
i=a,b

(ε ni + U ni↑ni↓) − J �Sa · �Sb. (1)

Here, i = a,b are the two degenerate molecular orbitals
with energy ε and intraorbital Coulomb repulsion U , niσ =
d
†
iσ diσ , d

†
iσ (diσ ) is the creation (annihilation) operator of

(a) (b)

(c)
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FIG. 2. (Color online) Spin-1, deformable molecular device.
(a) A break junction supporting a spin-1 molecule that can be
stretched by mechanical means. (b) The molecule modeled by two
coupled orbitals, only one of them connected to metallic leads. The
spin-1 regime is enforced by an interorbital ferromagnetic coupling.
Magnetic anisotropy, induced by static and dynamic (vibrational)
stretching of the molecule, is accounted for by the term A(z)S2

z in the
Hamiltonian. (c) Lowest-lying level energies of the isolated molecule,
obtained for different values of the effective static anisotropy.

the corresponding orbital, ni = ni↑ + ni↓, and �Si is the spin
operator associated to orbital i. For simplicity, we consider the
electron-hole (e-h) symmetric case where ε = −U/2 and the
Fermi level of the leads is εF = 0. The ferromagnetic (J > 0)
coupling enforces Hund’s rule, setting the spin-1 triplet as the
ground state of the molecule. These states are defined as

|T ,+1〉 = |↑a ↑b〉, |T ,−1〉 = |↓a ↓b〉,
(2)

|T , 0〉 = 1√
2

(|↑a ↓b〉 + |↓a ↑b〉),

where |σa σb〉 are the states with one electron on each orbital.
The deformation-induced anisotropy arising from the

breaking of the octahedral symmetry can be written as a
function of the elongation along the ẑ axis, as A(z)S2

z . A purely
static model [A(z) = A0] of this kind was applied in Ref. 21
to describe the system of Ref. 6. For small oscillations around
the equilibrium position z0 we take A(z) = (A0 + A1 δz) S2

z ,
where δz = z − z0. The coupling A0 represents the static
deformation, whereas A1 arises due to the e-ph coupling.
We choose units such that δz = a + a†, where a and a† are
phonon operators. The Hamiltonian of the molecule including
the electron-vibron interaction becomes

HM = H0 + A0S
2
z + A1S

2
z (a + a†) + ω0 a†a, (3)

with ω0 the phonon frequency. By means of the unitary
transformation

H̃M = U HM U†, U = exp

[
−A1

ω0
S2

z (a − a†)

]
, (4)

we diagonalize Eq. (3), which adopts the form

H̃M = H0 + ÃS2
z + ω0 b†b, (5)

where b = a + (A1/ω0) S2
z is a displaced phonon operator.

Note that the magnetic anisotropy of the isolated molecule

Ã = A0 − A2
1

/
ω0 (6)

is negative in the absence of a static distortion (A0 = 0). The
lowest-energy eigenstates of Eq. (5) for each molecular spin
projection are

|T ,±1; 0̃〉 = |T ,±1〉|0̃), |T , 0; 0〉 = |T , 0〉|0), (7)

where |n) is an eigenvector of the operator a†a and |ñ) =
e

A1
ω0

(a−a†)|n) is an eigenvector of b†b, with eigenvalue n.
We now leave the isolated molecule (molecular limit) to

explore the consequences of coupling the metallic leads to the
molecular orbital a, through the hybridization term

HM−E =
√

2 V
∑
�k,σ

(d†
aσ c�kσ + H.c.). (8)

This “hanging-level” arrangement correctly describes the low-
energy behavior of the system, and other configurations can
be related to it by means of a level rotation, so there is no loss
of generality.21 Because we assume identical right (R) and left
(L) leads and couplings, we have defined the lead-symmetric
operators

c�kσ ≡ (cL�kσ + cR�kσ )/
√

2, (9)
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which are the only combinations that couple to the molecule.
Their antisymmetric counterparts contribute only a constant
energy term to the Hamiltonian.

In the displaced basis the full transformed Hamiltonian
reads

H̃ = H0 + Ã S2
z + ω0 b†b +

∑
�k,σ

(Ṽσ c
†
�kσ

daσ + H.c.), (10)

with hybridization operator

Ṽσ =
√

2V exp

{
A1

4ω0
(a − a†)

[
1 − 2naσ̄ + 4σSb

z

]}
. (11)

Although the expression for the transformed Hamiltonian is
more complicated than the starting one, we can appreciate an
interesting feature, namely, that it couples the ±1 and 0 spin
projections of the triplet to the electronic states of the band
with different strengths. As we will see below, this asymmetry
leads to a contribution to the total magnetic anisotropy.

A. Analytical results

To expose the splitting of the triplet due to the spin
dependent couplings to the band, we perform a Schrieffer-
Wolff transformation34 in the limit of large U and J . Here we
set Ã = 0 so that the isolated molecule ground state is triply
degenerate. We obtain the anisotropic Kondo Hamiltonian35

HK = AdS
2
z + J

‖
KszSz + J⊥

K (sxSx + sySy), (12)

with exchange couplings

J
‖
K =

∞∑
n=0

4V 2|(0̃|n)|2
U
2 + J

4 + nω0
, J⊥

K = e
−( A1

ω0
)2/2

J 0
K, (13)

where J 0
K = 4V 2/(U

2 + J
4 ) is the Kondo coupling in the

absence of e-ph coupling (A1 = 0), and

Ad = 4V 2

(
1

U
2 + J

4

−
∑

n

|(0̃|n)|2
U
2 + J

4 + nω0

)
> 0, (14)

where

|(0̃|n)|2 =
(

A1

ω0

)2n
e
−( A1

ω0
)2

n!
. (15)

The anisotropy term Ad is a consequence of the hybridiza-
tion shifting the state |T , 0; 0〉 down in energy further than the
states |T ,±1; 0〉, for any state of the band.

The e-ph interaction induces a reduction of both Kondo
couplings that become anisotropic (J⊥

K ,J
‖
K < J 0

K ). In the
experimentally relevant case U � ω0 we have J⊥

K < J
‖
K . For

weak e-ph interaction (A1/ω0  1) and U � ω0 we obtain

J
‖
K/J 0

K ∼ 1 − ω0
J
4 + U

2

(
A1

ω0

)2

, (16)

J⊥
K /J 0

K ∼ 1 − 1

2

(
A1

ω0

)2

, (17)

Ad/J
0
K ∼ ω0

J
4 + U

2

(
A1

ω0

)2

. (18)

The expressions for J⊥
K and Ad are also valid in the strong e-ph

coupling regime (A1 � ω0), provided A2
1/ω0  U , while J⊥

K

is exponentially suppressed [see Eq. (13)], making the Kondo
couplings strongly anisotropic.

As a result of the correction Ad , the degeneracy of the
triplet is broken, preventing the underscreened spin-1 Kondo
effect from taking place at Ã = 0. Therefore, a shift in the static
anisotropy will be needed to restore the full spin-1 degeneracy.
It is also important to point out that the anisotropy of the
Kondo couplings leads to effects similar to those obtained by
a static magnetic anisotropy term (A0). In our case of J

‖
K >

J⊥
K > 0, this anisotropy results in a shift toward the easy-axis

regime.24,36

To summarize, the exact solution of the isolated spin-1
molecule, along with a perturbative analysis to second order in
the hybridization, suggest that the main effect of the electron-
phonon interaction considered in this break junction setup is
to reduce the Kondo couplings and to introduce corrections
to the magnetic anisotropy. The different contributions to the
magnetic anisotropy result in an effective anisotropy given by

Aeff = A0 − A2
1

/
ω0 + Ad + δA,

where δA stems from the anisotropy of the Kondo couplings.

FIG. 3. (Color online) (a) Spectral density at orbital a for A0 =
A1 = 0 (reference system). The screening of the molecular triplet
ground state by the band is characterized by the sharp Kondo
resonance of width T 0

K at the Fermi level (ω = 0), followed by
shoulders at approximately the singlet-triplet (red dashed lines) and
the charge (blue dashed lines in the inset) excitation energies of
the isolated molecule. The Kondo effect yields unitary conductance
at low (T 0

K ) temperatures. (b) Same as (a), but for finite magnetic
anisotropy (A0 = ω0 = 5 T 0

K , A1 from 2 T 0
K to 11 T 0

K ). In the easy-axis
regime of Aeff < 0 (red curves), the system presents a finite amplitude
of the spectral density at the Fermi level. The hard-axis regime
(Aeff > 0, blue curves) presents a dip at the Fermi level, keeping
the system in a Coulomb blockade. The underscreened Kondo state
is recovered when Aeff = 0 (black curve).
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III. NUMERICAL RESULTS

We analyze the different magnetic anisotropy regimes of
the system as a function of A0, A1, and ω0, by means of NRG
calculations. In this nonperturbative method, the continuum
of electronic states in the leads is logarithmically discretized
according to a parameter � > 1. It is then mapped onto a
chain of states with exponentially decaying hopping terms that
are diagonalized iteratively, defining a renormalization-group
transformation to the low-energy spectrum.32

All calculations shown below were obtained with dis-
cretization factor � = 2.5, with no fewer than 1200 states
kept, and a constant hybridization � = π |V |2/2D = 0.005 D,
where D is the half bandwidth. We choose the parameters ε =
−U/2 = −5 �, with ferromagnetic coupling set to J = 0.2 �.
Our conclusions, however, remain qualitatively unchanged for
other parameters within the Kondo regime (such as J > �).
The spectral densities were calculated following Ref. 37.

For A0 = A1 = 0, the system is expected to have an
underscreened spin-1 Kondo ground state; we have verified
this with NRG calculations. This regime serves as a reference

(b)
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FIG. 4. (Color online) Conductance as a function of temperature,
for different values of Aeff, (a) varying A1 from 2 T 0

K to 12 T 0
K for

ω0 = A0 = 5 T 0
K , (b) varying A0 from 4 T 0

K to 9 T 0
K for A1 = ω0 =

5 T 0
K , and (c) as a function of A0 for different isotherms. The zero-

temperature conductance vanishes for positive anisotropy, due to the
lack of available states for transport in the molecule at the Fermi level
(see Fig. 3). As Aeff → 0 the conductance curves vary as indicated by
the blue arrows until the unitary limit is reached, signaled in the plot
by a plateau that extends to lower temperatures. Unitarity is then lost
due to many-body scattering of the leads’ electrons off the Sz = ±1
degenerate ground state of the molecule at negative anisotropies. As
Aeff goes from zero to negative the conductance curves follow the
trend indicated by the red arrow. In (c) we show isotherms for the
conductance as a function of A0 [corresponding to the curves in (b)],
which can be directly related to experiments in which the conductance
is measured in a stretchable device, at constant temperature. The
quantum critical point becomes apparent at very low temperatures,
where a sudden drop in conductance signals the change of sign of Aeff.
The Kondo temperatures of these cases are lower than the reference
scale T 0

K by one order of magnitude, as can be seen by the onset of
the conductance plateaus below T = T 0

K .

for comparison with our results in other regions of parameter
space.

The infinite-dimensional boson sector of the Hilbert space
has to be truncated for the numerical calculation. We analyze
the regime of ω0 � T 0

K and A1/ω0 < 1, so that relevant phonon
excitations include transitions from the ground state with
the boson component given by |0̃) to states with occupation
n; these have amplitudes given by Eq. (15). This Poisson
distribution peaks at n = A1/ω0 < 1 and then falls to zero
rapidly, suggesting a cutoff at phonon occupation n ∼ 1.38

A. Transport properties at low temperatures

The low-temperature, linear transport properties of the
system can be obtained in terms of the spectral density at
orbital a, ρa(ω) = ∑

σ ρσ
a (ω), which relates to the conductance

through39,40

G(T )

G0
= π�

∫ ∞

−∞
dω

[
−∂f (ω,T )

∂ω

]
ρa(ω), (19)

where G0 = 2e2/h and f (ω, T ) is the Fermi distribution.
In the reference system, where A0 = A1 = 0, ρa(ω) shows
a sharp Kondo resonance of width T 0

K ∼ 10−5 D at the
Fermi level23,41 (εF , set here to zero) as shown in Fig. 3(a).
At low temperatures the conductance reaches the unitary
limit. Shoulders in the reference spectral density appear at
approximately the singlet-triplet excitation energy, ω ∼ ±J ,
and peak at the charge excitation energies ω ∼ ±U/2.

FIG. 5. (Color online) Effective magnetic moment squared, μ2 ≡
T χ (T ), as a function of temperature for different values of the
magnetic anisotropy. Solid lines are for a system with e-ph interaction
(A1 �= 0), whereas dashed lines correspond to a system without e-ph
interaction, and with a static magnetic anisotropy tuned to match
the effective anisotropy of the e-ph interacting system. As expected
from the e-ph mediated reduction of the Kondo exchange couplings,
the first-stage Kondo temperature is lower in the e-ph interacting
system [solid arrows in (b)], that is, TK < T 0

K . This in turn increases
the second-stage Kondo temperature T ∗

K [arrows in (a)], as expected
from Eq. (20).

035437-4



DYNAMICAL MAGNETIC ANISOTROPY AND QUANTUM . . . PHYSICAL REVIEW B 86, 035437 (2012)

FIG. 6. (Color online) (a) and (c) Magnetic moment squared of the molecule at zero temperature [μ2(T → 0)] as a function of A1 and ω0,
for (a) A0 = 5 T 0

K and (c) A0 = 6 T 0
K . In each case, the red curve (A1 = √

ω0A0) indicates the parameters of full degeneracy of the spin-1 triplet
in the molecular limit. The black dots indicate the parameters where the underscreened spin-1 Kondo effect is recovered (μ2 = 0.25). (b) and
(d) Correction to the magnetic anisotropy due to the coupling to the leads for the parameters of (a) and (c), respectively.

With this in mind we move on to analyze Fig. 3(b) in
the hard-axis regime (Aeff > 0). The spectral density has two
peaks close to the Fermi level separated by a sharp dip, which
according to Eq. (19) puts the device in a transport blockade
with a vanishing zero-bias conductance at T → 0.

In the easy-axis regime (Aeff < 0), conduction electrons
will scatter off the molecule’s ground state,24 the doublet
|T ,±1〉. At zero temperature ρa(εF ) presents a nonzero
amplitude, which means that the system will conduct at zero
bias, although not unitarily as in the case of zero anisotropy.
The different regimes described above are shown in Fig. 3(b)
from NRG calculations in which Aeff was tuned by varying
A1, at constant static anisotropy A0 and phonon frequency ω0.

Curves of conductance as a function of temperature,
corresponding to the parameters of Fig. 3(b), are shown in
Fig. 4(a), whereas in Fig. 4(b) the same regimes are explored
by varying A0 instead. As mentioned above, tuning A0 in
molecular devices has been achieved experimentally by Parks
et al.,6 through stretching. Assuming that the value of A0

increases from zero by stretching the molecule, it could be used
to change the sign of the effective magnetic anisotropy. This
is depicted in Fig. 4(b), where we begin with a positive value
of A0 such that the effective anisotropy is negative and then
increase A0 until we reach the hard-axis regime. Experiments
such as those of Ref. 6 may perhaps be more easily related

to Fig. 4(c), where we show the zero-bias conductance at
constant temperature, for different values of A0. The sudden
drop in conductance is a clear signature of the transition from
hard-axis to easy-axis behavior at zero temperature.

B. Effective anisotropy and underscreened
Kondo effect restoration

As we will see below, the numerical results confirm that the
main effect of the e-ph coupling considered is to renormalize
the magnetic anisotropy toward the hard-axis regime and
reduce the Kondo exchange couplings. In fact, the static
anisotropy term can be tuned to recover the underscreened
spin-1 Kondo effect. We define � = Aeff − Ã and calculate
it numerically through an analysis of the effective magnetic
moment squared, μ2, at low temperature.33 The onset of Kondo
screening is signaled by a drop in the molecule’s magnetic
moment at temperatures below some TK (A0, A1, ω0). Notice
that TK < T 0

K due to the reduced Kondo couplings [see
Eq. (13)]. An example of this is shown in Fig. 5(b).

As the molecule is coupled to a single conduction-electron
channel, the electrons in the leads are able to screen one half
of the molecule’s spin, leaving an asymptotically free spin-1/2
object28,42 and producing a plateau μ2(T < TK ) = 0.25, as in
Fig. 5. Further screening associated to a second-stage Kondo
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FIG. 7. (Color online) Second-stage Kondo temperature, T ∗
K , for different values of A1 and ω0. (a) An observed fast fall of T ∗

K as a function
of A1/ω0, consistent with a vibronic induced shift of the magnetic anisotropy and Eq. (20). (b) Plotting T ∗

K against A2
1/ω0 = A0 − Ã, making

the presence of a correction � to the anisotropy evident; the dotted lines indicate the value of A1 where the molecular limit anisotropy Ã

changes sign, for the corresponding values of A0. The numerical results are clearly shifted toward positive values of Aeff. (c) Verification of
Eq. (20) within our picture of effective anisotropy and suppressed Kondo exchange couplings, for fixed A1 and ω0, varying A0. We substitute
Aeff in the equation, with � computed from numerical results such as those of Figs. 6(b) and 6(d). The slope of each curve is proportional to
−2

√
TK/T 0

K , with TK the Kondo temperature corresponding to the curve.

effect is known to arise when a net positive anisotropy 0 <

Aeff  TK is present. We have μ2(T ) ∼ 0 for temperatures
below a second-stage Kondo temperature T ∗

K , given by21

T ∗
K = c1 TK e

−2 c2

√
TK
Aeff , (20)

with constants c1, c2 ∼ 1 that depend weakly on the
parameters.

On the easy-axis side, the Kondo screening is suppressed by
the energy gap between the molecular ground state |T ,±1; 0〉
and the first excited state |T , 0; 0〉. In other words, Kondo
screening becomes increasingly less efficient as we go farther
away from full degeneracy of the triplet, and we obtain 0.25 <

μ2 < 1 for all temperatures (not shown).
In order to quantify Aeff and estimate �, we carry out NRG

calculations at fixed A0, varying A1 and ω0. The transition
from a hard to an easy axis is observed as a sudden jump (at
zero temperature) from the hard-axis value of μ2 = 0 to 0.25
in the spin-1 Kondo regime, as shown in Fig. 6(a).

For the molecular limit where the magnetic anisotropy
coefficient is exactly given by Ã, the change of regime is
indicated by the red curve in Figs. 6(a) and 6(c), given

by Ã = 0. When the coupling to the band is taken into
account, the transition occurs for Aeff = 0 and is signaled by
μ2(T → 0) = 0.25. We indicate this transition with black dots
in the figures and find � = Aeff − Ã > 0 as expected from our
discussion above. The values of � for every ω0 are presented
in Figs. 6(b) and 6(d) for their respective maps. Notice that
the points at larger ω0 correspond to smaller A1/ω0, which
explains the decreasing trend of � with increasing ω0.

The e-ph interactions suppress the Kondo couplings, re-
ducing the spin-1 Kondo temperature TK of the device. This
results, according to Eq. (20), in an enhancement of T ∗

K . This
can be observed in Fig. 5, where we compare our device to
one with only static anisotropy and find that the two behave
similarly, differing only in the values of TK and T ∗

K .
As further verification, we utilize the values of � obtained

from Fig. 6 to compute values of Aeff for substitution into
Eq. (20), and the degree of agreement is excellent, as can be
appreciated in Fig. 7(c).

The excellent fit to the theory reassures us of our picture, in
which all the effects of the electron-phonon (e-ph) interactions
can be absorbed into an effective anisotropy term and a reduced
hybridization due to polaronic effects.
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IV. CONCLUSIONS

We have studied the behavior of a stretchable spin-1
molecule deposited on a break junction, that presents a
vibrational mode along the junction axis. We performed NRG
calculations to study the Kondo physics of this system: its
signatures in transport and thermodynamic quantities as well
as the nature of the system’s ground state. We find that the
vibrational degrees of freedom induce a negative magnetic
anisotropy that shifts the ground state of the undeformed
molecule toward an easy-axis regime, which would be accessi-
ble to the static molecule only through compression. Polaronic
corrections arising from the electron-phonon interactions
suppress the Kondo exchange couplings of the molecular
spin with the leads’ fermionic states, in a spin-asymmetric
fashion. This reduces the Kondo temperature of the de-
vice and introduces an effective correction to the magnetic
anisotropy.

Static stretching of the molecule could then be used
to explore a QPT from the non-Fermi-liquid ground state
of the easy-axis regime, to the Fermi liquid of the
hard-axis regime, visiting an underscreened Kondo critical
point at zero anisotropy. The resulting phase diagram of
the system is presented in Fig. 1. The different phases

exhibit clear conductance signatures that can be explored
experimentally.

From our analysis, we may expect the unstretched device in
the experiment of Parks et al.6 to be in an easy-axis regime due
to the coupling to molecular vibrations. In that case, a careful
analysis of the low-temperature behavior of the conductance,
such as that indicated in Fig. 4(c), would make it possible
to identify the signatures of this QPT in a well-controlled
environment.
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