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Precision agricultural maps are required for agricultural machinery navigation, path planning and plan-
tation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm
solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM
algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the envi-
ronment is based on the detection of olive stems from the plantation. The olive stems are acquired by
means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM)
is implemented on the vision system to detect olive stems on the images acquired from the environment.
Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is
based on the correction of the SLAM system state vector using only the most meaningful stems – from an
estimation convergence perspective – extracted from the environment information without compromis-
ing the estimation consistency. The optimization criterion, its demonstration and experimental results
within real agricultural environments showing the performance of our proposal are also included in this
work.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In this work, we present a Simultaneous Localization and Map-
ping (SLAM) algorithm based on stems detection for the creation
of agricultural maps. An unmanned car-like mobile robot navigates
the agricultural environment while it creates a map of such environ-
ment. That map is then stored for precision agricultural processes.

The SLAM algorithm is a recursive estimation process that
simultaneously minimizes both: the vehicle’s localization errors
and the mapping errors of the environment which the mobile
agent is navigating through. The SLAM algorithm was formerly
introduced by Chatila and Laumond (1985) and Ayache and Faug-
eras (1989). In these works, the environment information was first
included within the movements of the mobile robot while the
automata was interacting with the environment at the same time.
The works of Durrant-Whyte and Bailey (2006a,b) offer a concise
introduction to the SLAM algorithm origins.

Up to these days, the SLAM problem can be efficiently solved by
means of different filters available in the scientific literature. The
most used method to solve the SLAM algorithm (Durrant-Whyte
and Bailey, 2006a) is the Extended Kalman Filter (EKF). When an
ll rights reserved.
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EKF-based SLAM is implemented, the system state vector is com-
posed by both: the pose of the vehicle – its position and orientation
within the environment – and the parameters that define the fea-
tures from the environment. In Garulli et al. (2005), for example, an
EKF-SLAM is implemented to model the environment exclusively
using lines. Therefore, the mobile robot acquires only the geomet-
ric information from the environment that could be modeled by
lines (such as walls, doors, etc.). The work of Guivant et al.
(2000) shows the implementation of an EKF-SLAM based on point
features extraction (such as trees, corners, etc.). Thus, the map cre-
ated by a SLAM algorithm can be composed by any element from
the environment that could be mathematically modeled. The main
disadvantage of the EKF-SLAM is its processing time (whose com-
plexity polynomially increases with the number of features (Dur-
rant-Whyte and Bailey, 2006b)) associated with its correction
stage.

As an alternative to the EKF to solve the SLAM problem, the UKF
(Unscented Kalman filter, Thrun et al. (2005)) shows a better per-
formance than the EKF when dealing with the nonlinearities asso-
ciated with the process and observation models. On the other
hand, the EIF (Extended Information Filter) improves the process-
ing time of the correction stage of the SLAM algorithm, due to its
linear computational cost (Thrun et al., 2005). Therefore, the EIF
is more appropriate for real time applications.

Another solution to the SLAM algorithm is the Particle Filter
(PF). Unlike the EKF, the PF is not restricted to Gaussian processes
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and it has a better managing of non-linearities involved in the esti-
mation process (Thrun et al., 2005). Although, the real time imple-
mentation of the PF is still restricted. Despite of the nature of the
filter used to solved the SLAM problem, the solution should ensure
the consistency of the estimated map and the convergence of the
estimation process (Dissanayake et al., 2001).

The nature of the features extracted from the environment to be
used within the SLAM algorithm intrinsically depends on the type
of sensor used. Thus, a vision sensor does not acquire the same
information than an ultrasonic – or laser – range sensor or than
a GPS (Global Positioning System), a gyroscope, an accelerometer,
etc.

The use of vision systems allows the extraction of features from
the environment – such as texture, color and shapes – that can be
considered as supplementary information for the SLAM algorithm
(Gonzalez and Wooks, 1993). The use of cameras and stereo vision
systems is currently a research trend within the mobile robot
SLAM field (Chekhlov et al., 2007; Flint et al., 2010).

Image classification techniques such as support vector machine
(SVM, Haykin (1999)) allows the robust detection of an object of
interest in the given scene. The SVM is a supervised learning meth-
od whose training stage-based on positive and negative samples of
the object of interest-allows the learning of a general model of
such object. Thus, the SVM is then able to classify new objects.
The last is accomplished by the partition of a feature space where
the objects of the scene are represented. This representation of the
objects within the feature space is known as descriptor, where the
Histogram of Oriented Gradients (HOG, He et al. (2008)) is one of
the most used descriptors presented in the scientific literature.

In this work we present the implementation of an EIF-based
SLAM for agricultural environments. The SLAM algorithm also
has an optimization criterion associated with the information ma-
trix of the EIF which allows the selection of the most significant
features of the environment from a SLAM convergence perspective.
Only these selected features will be used by the correction stage of
the SLAM algorithm, although the mapping process remains un-
changed for all features from the environment. The SLAM algo-
rithm implemented in this work is oriented to precision
agricultural environments (olive groves).

The features extracted from the environment correspond to ol-
ive stems. The olive stems are modeled as point-based features
(Masson et al. (2005)). The stems extraction procedure is based
on a vision sensor and a range laser sensor. The monocular vision
system uses a Support Vector Machine for detection of stems from
the images captured from the environment. From the detection of
stems within an image, the implemented system estimates then
the orientation of the stem with respect to the mobile robot (angle
information). The range laser sensor returns the distance informa-
tion from the mobile robot to the detected stem after searching in a
neighborhood of the angle information provided by the SVM. The
range and angle information is then sent to the SLAM algorithm
which uses them to estimate the position of the mobile robot with-
in the environment and to construct a map of such environment.
Real experimental results performed at the National Institute of
Agricultural Technology (INTA), Argentina, are presented to show
the advantages of our proposal.

This work is organized as follows. Section 2 shows the recent
works published in the field related to our proposal; Section 3
shows the general system architecture implemented in this work;
Section 4 shows the kinematic model of the mobile robot used;
Section 5 presents the stems extraction procedures based on both:
artificial vision and laser; Section 6 shows the SLAM structure and
Section 7 shows the EIF-based SLAM. Section 8 shows the experi-
mental results of our work and Section 9 presents the conclusion
and discussion of this article.
2. Related work

The mobile robot applications for precision agriculture is an
increasing field within the robotic community. For example, the
work of Cariou et al. (2009) presents a navigation strategy for a
four-wheeled car-like mobile robot, which is kinematically com-
patible with the mobile robot’s kinematic constrains. This strategy
allows the automata to maneuver in order to accomplish accurate
tasks. Also, the work of Benton Derrick and Bevly (2009) presents a
solution to the navigation of a farm tractor based on an adaptive
control strategy. The main difference with Cariou et al. (2009) is
that the work of Benton Derrick and Bevly (2009) solves the navi-
gation problem using control laws whereas Cariou et al. (2009)
uses path planning techniques. The work of Johnson et al. (2009)
presents a multi-agent system of mobile robots for harvesting.
These works do not have into account the current map information
in order to plan the mobile robot actions.

The work of Nagasaka et al. (2009) presents an autonomous
mobile robot whose navigation is based on GPS and inertial mea-
surements. Therefore, no map is managed during the mobile robot
task. On the other hand, the work of Jin and Tang (2009) introduces
a mapping strategy based on detection of corn plants using a stereo
camera. Although Jin and Tang (2009) efficiently extracts the fea-
tures from the environment (corn plants), the localization of the
mobile robot is not considered during the mapping procedure.
Also, the lightening conditions of the environment compromise
the certainty of the features detection.

The SLAM algorithm is still an open issue in precision agricul-
ture. Most of the SLAM developments of the last years have been
focused in solving the outdoor mapping for unstructured environ-
ments. In this line of research, the work of Nüchter et al. (2007)
introduces an SLAM algorithm with six degrees of freedom to
map 3D environments. This algorithm is appropriate for aerial
SLAM and therefore for extensive plantation reconstruction,
although it is unable to characterize features from such plantation.
On the other hand, the work of Schleicher et al. (2009) presents an
urban SLAM which localization method is based on GPS measure-
ments and the features extraction procedure consist of patterns ex-
tracted from an stereo vision system associated with natural
landmarks from the environment. Also, the work of Cole and New-
man (2006) presents an outdoor reconstruction based on 3D laser
data. In this work, the processing time becomes crucial for large
environments and features extracted are no associated with plan-
tation type features.

Our work studies both: the localization and the mapping prob-
lem of a mobile robot navigating within an olive grove while
detecting the olive stems of the environment. This way, a map of
the environment can be automatically produced and updated dur-
ing the navigation of the robot. The localization and mapping prob-
lem is solved by the implementation of an optimized EIF-SLAM
algorithm. The olive stems detection is based on a SVM imple-
mented on a monocular vision system and a range laser sensor.

3. General system architecture

The general architecture of the system proposed herein is pre-
sented in Fig. 1. It can be briefly described as follows.

(i) The agricultural environment is an olive grove placed at the
INTA (National Institute of Agricultural Technology), Argentina.

(ii) The vision and laser blocks refer to the devices used for the
detection of olive stems from the environment. The monoc-
ular vision system estimates the orientation of the stem
position from the camera point of view. The range sensor
laser provides the range information associated with each
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Fig. 1. General system architecture.
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detected stem from the monocular vision system. The range
and orientation information are considered as parameters
associated with the feature stem. These parameters are then
passed to the SLAM algorithm.

(iii) The SLAM algorithm recursively estimates the map of
the environment and the pose of the vehicle within that
environment.

In the following sections, each block of Fig. 1 will be explained
in detail.
4. Mobile robot model

The vehicle used in this work is an unmanned non-holonomic
car-like type mobile robot. Eq. (1) shows the kinematic equation
associated with the robot; Fig. 2 shows the graphical representa-
tion of the robot, where r is the minimum radius of turning of
the mobile robot and L is the distance between axes; V is linear
velocity of the vehicle and h is the vehicle’s heading; w is the ori-
entation of the mobile robot within the environment. The motion
control command of the robot is defined by its linear velocity
and its heading (u = [Vh]T).

_xrobot ¼ V cosðwÞ
_yrobot ¼ V sinðwÞ
_w ¼ V

L tanðhÞ
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5. Features extraction

In this work, the features extracted from the environment cor-
respond to the stems of the olive grove. The stems are defined by
two parameters: range and angle (Masson et al., 2005). The range
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Fig. 2. Graphic representation of a car-like robot used in this work.
is the distance from the stem to the mobile robot position whereas
the angle is the orientation of the stem position with respect to the
pose of the vehicle. Fig. 3 shows the graphical representation of the
stem’s parameters. In addition, Eq. (2) shows the analytical model
of the stems which are considered as point-based features by the
SLAM algorithm – see Masson et al. (2005).

zstem ¼ hi½xrobot ; yrobot ;w; xstem; ystem;w� ¼
zR

zb

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In Eq. (2), zstem is the vector with the parameters associated with the
stem of an olive tree. As was stated before, zstem is composed by the
range information (zR) and the angle information (zb). xrobot, yrobot

and w represent the position and orientation of the robot within
the environment whereas xstem and ystem represent the Cartesian
coordinates of a stem with respect to a local reference system at-
tached to the mobile robot. w is the Gaussian vector noise associ-
ated with the measurement procedure. Fig. 3 shows a graphical
representation of the variables involved in Eq. (2). As it can be seen,
the stem is considered as a point-based feature (Masson et al.,
2005).

The features extraction procedure is divided into two phases:
the angle extraction of each stem and the range extraction of each
stem. The angle extraction of a stem is performed by the processing
of images acquired by the monocular vision system used in this
work. A support vector machine (SVM) is implemented in this
work to detect the stems of the olive trees. The SVM stem detection
method gives the position of the stems within the image. From the
stem position and using projective geometry, it is calculated the
angle of the stem position with respect to the principal axis of
the camera. Due to the fact that in this way we can only calculate
angle measurements, a range laser sensor is used to estimate the
distance of the detected stem from the mobile robot. The use of
two sensor devices for range and angle measurements of a stem
is based on the following:
X
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Fig. 3. Graphic representation of the stems in the olive grove environment.
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(i) A single monocular vision camera does not return depth
information.

(ii) A range laser sensor is able to acquire range and angle mea-
surements although it cannot distinguish between tree
stems, people or any other obstacle with a shape morphol-
ogy equivalent to a stem.

Following, each of the features extraction method used in this
work is explained.

5.1. Monocular vision-based stem detection

For the monocular vision-based olive stem detection we have
implemented machine learning techniques for environment recog-
nition. Environment recognition techniques are usually used to
build a map of structures, rigid objects, people, etc., surrounding
the mobile robot. The environment recognition task can be done
with most kind of exteroceptive sensors, such as cameras, ultra-
sonic or laser range finder sensors. Particularly, in the present work
a monocular camera is olive stem computer vision-based
detection.

The environment recognition process can be divided into two
stages:

(i) Features extraction.
(ii) Classification using the extracted features.

Feature space representation is performed by means of HOG
(Histograms of Oriented Gradients, Dalal and Triggs (2005)). This
method is commonly used for people detection and it is based on
a simplified version of SIFT descriptor (Lowe, 2004), applied in
the image. In order to classify objects of interest within the image,
in this work we use the SVM learning technique.

5.1.1. HOG descriptors
HOG descriptors (Dalal and Triggs, 2005) are used to represent

the image into a feature space of lower dimensionality. The follow-
ing steps are carried out to obtain a HOG descriptor.

(i) Compute the spatial derivative of the image in both x-axis
and y-axis direction, which are used to get the gradient mag-
nitude and direction at each image point.

(ii) Divide the image into block descriptors of fixed size. These
blocks are distributed to cover the whole image overlapped
in a fixed number of pixels.

(iii) Each block is divided into cells.
(iv) A vector v is computed for each cell whose elements repre-

sent gradient directions (bins). Each gradient pixel of the cell
contributes to elements of this vector according to its mag-
nitude and direction.

(v) Due to a large variations in the lighting and contrast condi-
tions it is necessary to normalize this vector. Using the L2-
Fig. 4. Details of the 8 � 8 cell with the vect
norm, proposed in Dalal and Triggs (2005) to normalize this
vector such that L2-norm is ||v||2 and adding and small con-
stant e to avoid division by zero, the normalized vector is
or descr
v  vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvk2

2 þ e2
q

(vi) The vectors of bins representing each cell in a block are con-
catenated, resulting in a vector block descriptor.

(vii) Finally, these vector blocks are grouped in a single image
descriptor vector.

Fig. 4 shows the process of the HOG transformation described
above.

5.1.2. SVM classification
Support Vector Machines (SVM, Vapnik (1998)) are kernel ma-

chines (Müller et al., 2001) used in supervised learning for classifi-
cation tasks. A classification task usually consists of two stages: the
training stage and the test or evaluation stage. The training stage
data consists of a set of labeled target objects and a set of attributes
or features. The goal of the SVM is to generate a model with the
ability to classify objects of the testing data using only features that
represent these objects.

Formally, given a set of n training data D of the form

D ¼ ðxi; yiÞjxi 2 Rp; yi 2 f�1;1gf gn
i¼1

where yi are the class of given xi, and xi are real vectors of dimen-
sion p, the SVM gives the hyperplane that maximizes the margin be-
tween these two classes (yi = ± 1).

Given a set of separable points, there exists an hiperplane
p:w � x + b = 0 which divides these vectors xi, i = 1, . . . ,n into two
different groups. Therefore, the SVM solves the following quadratic
optimization problem:

min
w;b

1
2 kwk

2

s:a: yi w � xi þ bð ÞP 1
ð3Þ

Non linear classification can be solved by changing the dot product
by a kernel function. The kernel is related to the transformation /
(xi) by K(xi, xj) � /(xi) � /(xj).

5.1.3. Implementation issues
In order to obtain the best image descriptor, the HOG imple-

mentation uses a set of parameters that needs to be tuned. In the
present work the following parameters were used,

� block size (2 � 2 cells),
� block overlap (8 pixels),
� cell size (8 � 8 pixels),
� numbers of bins (9 bins, with only the direction of the gradient,

which gives 9 bins in 180 degrees),
� image size to be describe (32 � 72 pixels).
iptor of 8 bins in a 2 � 2 block.
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The SVM classification uses a linear kernel, which was previ-
ously trained with a positive images set (with olive stems) and a
negative set (without olive stems). Training images and the subse-
quent classification should be of the same size. For any other image
size a grid is generated that partitions the image in blocks of the
appropriate size. These blocks are classified separately.

Another issue associated with the implementation is the scale.
Searching in a grid of a fixed size, only the olive stems of the train-
ing image size can be detected. To circumvent this, multi-scale
descriptions were used, i.e., we have used a pyramid of images
(Lindeberg, 1994) with a series of smoothing filters and downsam-
pling, where each level of this pyramid represents a scale of the
original image. Applying the searching criterion of the image grid
to each level, gives a set of olive stems detections at different
scales. Fig. 5 shows an example of the SVM classification of a pic-
ture taken at the olive grove from the INTA. As it can be seen, sev-
eral stems are effectively detected.

5.1.4. Angle measurement
The bearing or angle measurement is based on the pin-hole

model of a perspective camera. The scene projection in the image
plane is represented by a 3 � 4 homogeneous matrix known as
camera projection matrix – see Eq. (4).

P ¼ KR I; �C½ � ð4Þ

where K is the intrinsic parameters matrix; R (the rotation matrix)
and C (optical center) are the extrinsic parameters. The projection
matrix has 11 degrees of freedom. In general, the camera projection
matrix is a 3 � 4 full-rank matrix and, being homogeneous, it has 11
degrees of freedom. The camera parameters can be obtained by a
calibration process (Zhang, 1999).

The intrinsic parameter matrix is of the form:

K ¼
fku 0 u0

0 fkv v0

0 0 1

2
64

3
75 ð5Þ

where the main parameters are the focal length f and the coordinate
of the principal point (u0,v0).
Fig. 5. SVM stems classification example. The successive blue squares circumscribing the
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6 shows how vertical segments are projected onto the cam-
era image plane. The 3D scene points Xi are projected to the image
points mi over the image plane P, which is at a distance f of the
camera coordinates system, so that the image plane is normal to
the principal ray or principal axis. 3D points are projected to image
points as

mi ’ PXi ¼ KR I;�C½ �Xi ¼ Kxi

where ’ means that they are equal but a given scale factor.
Given a line representing the object of interest in the image

plane, and knowing the camera intrinsic parameters matrix, a
point in this line can be transformed to the camera coordinates
system by means of the following transformation: xi ’ K�1mi,
stem represent the multi-scale stem detection. (For interpretation of the references
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where xi ¼ xi yi f½ �T . The angle or bearing of the vertical line can be
compute as hi ¼ tan�1ðxi=f Þ. This angle corresponds to the rotation
around the yc axis of the camera. Thus, considering that that line
passes through the center of mass of the a detected stem from
the environment, we can obtain the bearing of the stem with re-
spect to the mobile robot’s pose by using the procedure presented
in this section.

5.1.5. Laser-based stem detection
The information extracted by the range laser sensor from the

environment consists of the range information associated with
the detection of olive stems. The range sensor used in this work
is a range sensor laser built by SICK. This laser acquires 181 mea-
surements between 0 and 180 degrees with a maximum range of
30 m. The stem extraction algorithm based on laser measurements
was previously published by Masson et al. (2005) and Auat Cheein
et al. (2010). The stem extraction algorithm consists of considering
the stem as a point-based feature, as was stated in Eq. (2). This
algorithm extracts the distance from the mobile robot to the stem
using the range histogram associated with the laser measure-
ments. This situation is shown in Fig. 7. Further information
regarding this algorithm can be found in Masson et al. (2005)
and Auat Cheein et al. (2010).

In order to integrate the laser-based stem detection algorithm
with the monocular vision-based stem detection, we have used
the following procedure.

(i) The system first detects the olive stems from an image
acquired by the monocular vision sensor using SVM as was
stated in 5.1 and returns the angle measurements associated
with the center of mass of each detected stem.

(ii) Considering that the camera remains fixed to the vehicle, the
angle associated with each detected stem from an image is
directly associated with the local reference frame attached
to the mobile robot (e.g., if a stem is detected to be 30
Stem

Mobile
Robot

laser
measurement

range associated with
the detected stems

Fig. 7. Representative graphic of the laser-based stem detection used in this work.

Fig. 8. Algorithm for the correction s
degrees with respect to the center of the image, it is also
30 degrees with respect to the robot’s pose – see Section 8).

(iii) Once the angle of each detected stem is determined by the
monocular vision features extraction method, the laser is
used to confirm the presence of a stem in the neighborhood
of the detected angle. Thus, if the monocular vision system
finds a stem at 30 degrees, then the laser searches in a neigh-
borhood of 30 degrees to find a possible stem using the
method presented above. If a stem is found, then it is asso-
ciated with the angle given by the monocular vision features
extraction method and the range given by the range laser
sensor method. If a single stem is not detected by both the
vision and laser measurements, then it will not be used by
the EIF-SLAM algorithm.

(iv) The process is repeated for all detected stems from the
image.

6. SLAM algorithm

The SLAM algorithm implemented in this work is based on an
Extended Information Filter (EIF). The EIF algorithm is shown in
Eq. (6).

lt�1 ¼ X�1
t�1nt�1

�Xt ¼ ðGtX
�1
t�1GT

t þ Q tÞ�1

�nt ¼ �Xtgðut ;lt�1Þ
�lt ¼ gðut;lt�1Þ

Xt ¼ �Xt þ HT
t R�1

t Ht

nt ¼ �nt þ HT
t R�1

t ½zt � hð�ltÞ þ Ht �lt �

ð6Þ

In Eq. (6), l is the system state vector which contains the infor-
mation related to the pose of the vehicle within the environment
as well as all the features extracted from such environment; n
and X – the information matrix– are the parameters of the EIF,
where n has the same dimension of l and X has the same dimen-
sion of the covariance matrix associated with the system state vec-
tor; G is the Jacobian matrix associated with the model of the
system process whereas Q is its covariance matrix; u represents
the command control vector. H is the Jacobian matrix associated
with the model of the measurements and R its covariance matrix;
the current feature processed by the EIF-SLAM is denoted by z. Fi-
nally, �n and �X are the predicted parameters of the EIF (further
information regarding the EIF can be found in Thrun et al. (2005)).

The correction stage of the sequential EIF (Thrun et al., 2005)
can be expressed as shown in Fig. 8. The correction stage of the
SLAM algorithm is only performed with the features extracted
from the environment that have a correct association with respect
to the predicted features (Thrun et al., 2005; Durrant-Whyte and
Bailey, 2006a). In this work, an optimization criterion is proposed
within the correction stage of the sequential EIF-SLAM. The optimi-
zation criterion will be presented in Section 7.1.
tage of the sequential EIF-SLAM.
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7. EIF derived from the Extended Kalman Filter

The parametrization of the EIF can be derived directly from the
EKF formulation (Thrun et al., 2005). Thus,

Pt ¼ X�1
t

nt ¼ Xtlt

(
: ð7Þ

In Eq. (7), P is the covariance matrix associated with the EKF system
state vector (n). According to Thrun et al. (2005), the correction
stage of the EIF is linear whereas the correction stage of the EKF
is square (O2) – thus, the EIF is faster than the EKF. This situation
can be seen from Eqs. (6) and (8), where Eq. (8) represents the Ex-
tended Kalman Filter.

On the other hand, the prediction stage of the EIF requires the
inversion of an n � n square matrix – where n is the dimension
of the system state vector, whereas the prediction stage of the
EKF is linear.

n̂�t ¼ f ðn̂t ;utÞ
P�t ¼ AtPt�1AT

t þWtQt�1WT
t

Kt ¼ P�t HT
t ðHtP

�
t HT

t þ RtÞ�1

n̂t ¼ n̂�t þ Ktðzt � hðn̂�t ÞÞ
Pt ¼ ðI � KtHtÞP�t :

ð8Þ

In Eq. (8), f is the model of the process, n̂ is the system state vec-
tor, u is the control commands vector, P is the covariance matrix
associated with n̂. A is the Jacobian matrix of f with respect to n̂;
Q represents the covariance matrix of the Gaussian noise of the
process and W is its Jacobian matrix; K is the Kalman gain, H is
the Jacobian matrix associated with the observation model and R
is its associated covariance matrix. Vector z is the current feature
of the environment extracted by the algorithm whereas h is its pre-
diction. Further information of the EKF and its implementation in
an SLAM algorithm can be found in Auat Cheein et al. (2010), Dur-
rant-Whyte and Bailey (2006a) and Thrun et al. (2005).

7.1. EIF-SLAM optimization criterion

During the navigation of a mobile robot while performing the
SLAM algorithm, not all the information acquired from the envi-
ronment is useful for the estimation process, although all the infor-
mation might be used during the mapping procedure. For example,
if the system detects two olive stems, perhaps only one of them
will contribute the most to the estimation process instead of the
other. Thus, both stems should be used for the map construction
of the plantation but only one should be used during the estima-
tion process. This features selection criterion also contributes to
decrease the computational costs of the correction stage of the
SLAM because only the most meaningful features with correct
association will be used instead of all detected features. In this
work, we propose an optimization criterion based on a features
selection procedure in order to decrease the SLAM computational
costs without compromising the estimation convergence, as it will
be shown herein.

According to Thrun et al. (2005) and Auat Cheein et al. (2010),
when an EKF-SLAM is executed, the determinant of the covariance
matrix of the SLAM system state converges to zero as time tends to
infinity and the convergence of the estimation process is not lost,
as it is shown in Eq. (9).

lim
t!1
jPtj ¼ 0: ð9Þ

Changing Pt in Eq. (9) with the parameters of the EIF – see Eq. (7),
we have that,
lim
t!1
jPt j ¼ lim

t!1
1
jXt j ¼ 0

lim
t!1
jXt j ¼ 1

ð10Þ

Eq. (10) establishes that the determinant of the EIF information
matrix tends to infinity as time also tends to infinity. Considering
that P is symmetric and positive definite, then X – which is the in-
verse of P – is also symmetric and positive definite. According to
the correction stage of the information matrix shown in Eq. (6),
we have that Xt and �Xt are symmetric positive definite matrices;
also, HT

t R�1
t Ht is symmetric positive semi-definite matrix – due to

the fact that Rt is a symmetric positive semi-definite matrix. Then,
the following holds – see Harville (1997).

jXtj ¼ j�Xt þ HT
t R�1

t Htj
jXtjP j�Xt j
jXtjP jHT

t R�1
t Ht j

ð11Þ

Eq. (11) is consistent with the results shown in Auat Cheein
et al. (2010) due to the fact that jPt j 6 jP�t j and replacing by Eq.
(7) we have that: jPt j ¼ 1

jXt j 6
1
j�Xt j
¼ jP�t j, which turns into: jXt jP

j�Xt j.
Let us consider the following theorem extracted from Harville

(1997).

Theorem 1. Let A and B be two n � n-positive definite matrices
and let C be a n � n-positive semi-definite matrix such that
A = B + C. Then,

jAjP jBj ^ jAjP jCj
Furthermore, let kAi
> 0, i = 1 . . . n, be the set of eigenvalues of

A – eig(A); also, let kBi
> 0, i = 1 . . . n, be the set of eigenvalues of B

– eig(B) – and kCi
P 0, i = 1 . . . n be the set of eigenvalues of C –

eig(C). Then, jAj ¼ kA1 � . . . � kAn ; jBj ¼ kB1 � . . . � kBn and jCj ¼
kC1 � . . . � kCn . By inspection, it is possible to see that if one of
the eigenvalues of B increases its value, then —B— also increases.
Considering Theorem I the last implies that the lower bound of —
A— will also increase. Equivalent reasoning can be applied to matrix
C.

According to the last paragraph and having into account Eq.
(11), we can see that it is possible to increase the lower bound of
jXtj by increasing either j�Xt j or jHT

t R�1
t Ht j. However, j�Xt j remains

constant during the correction stage for every observation zj as it
was shown in the algorithm of Fig. 8. Thus, only jHT

t R�1
t Ht j is able

to change with a given observation zj.
Therefore, it is possible to establish an optimality criterion of

the EIF-SLAM based on the selection of the most significant fea-
tures. In this work, the most significant features will be those fea-
tures that increase the most the lower bound of the determinant
of the information matrix jXtj. In this way, the set Mt of features
with correct association in the algorithm of Fig. 8 will be restricted
to the most significant features. Eq. (12) shows the optimization
criterion based on the selection of the most significant features.

zopt
i : argzmaxðjXt jÞ ¼ argzmaxðjHT

t R�1
t Ht jÞ ð12Þ

The EIF-SLAM correction stage algorithm with the optimization
criterion proposed herein is shown in Fig. 9. The prediction stage of
the EIF-SLAM remains unchanged.

In line of code 3 in Fig. 9, LIM is the maximum number of fea-
tures with correct association that will be used by the correction
stage – i.e., LIM = 2 means that the EIF-SLAM will correct only with
the two most significant features (if they exist) from the conver-
gence perspective of the estimation process; line of code 5 shows
the determination of zopt

j based on the optimization criterion
shown in Eq. (12). In line of code 9, if zopt

j is used in one iteration



Fig. 9. Algorithm of the optimized correction stage of the sequential EIF-SLAM.
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of the for-loop, that feature is deleted from Mt and it will be not
used again during the for-loop.
8. Material and methods

The experimental results were carried out at the National Insti-
tute of Technological Agriculture (Instituto Nacional de Tecnología
Agropecuaria, INTA), Argentina. Fig. 10(a) shows a geo-referenced
satellite image of the olive grove environment. The vehicle used
is an unmanned car-like mobile robot, shown in Fig. 10(b). The ro-
bot is equipped with two laser range sensors mounted at the front
part (built by SICK, see Fig. 10(c)). Only the laser pointing to the
front of the vehicle was used in this work. The robot also has a
Bumblebee 2 stereo camera (see Fig. 10(d)) although only one cam-
era was used in this work (because the camera aperture was appro-
priate for the experiments shown herein). The vehicle has two
Fig. 10. Materials for the experimentation stage. (a) A geo-referenced image of the INTA’
mobile robot used in this work; (c and d) the range laser sensor and the camera sensor
computers mini ITX dual atom processor on it, in which all the pro-
cessing is performed on line.

As it can be seen in Fig. 10(b), the laser and the camera are align
to a same vertical axis. Therefore, no further transformations are
needed to manage the laser nor the vision information.

In addition, the maximum range of the laser was set to 30 m.
Also, the maximum number of features to be used within the cor-
rection stage of the EIF-SLAM was set to three. That is, LIM = 3 in
the algorithm of Fig. 9. Therefore, in this work we have used only
the three most significant features – according to the optimality
criterion proposed in Section 7.1 – to correct the EIF-SLAM estima-
tion process. The entire sampling time of the system was of 1 s.
This sampling time involves the features extraction procedures
and the SLAM prediction-correction stages. The maximum linear
speed of the robot was set to 0.2 m/s and the maximum angular
velocity was of 10 deg/s. Also, the EIF-SLAM algorithm was exe-
cuted in real-time on the mobile robot.
s olive grove where the experimentation was carried out; (b) the unmanned car-like
used herein.
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8.1. EIF-SLAM results

Fig. 11 shows four cases of visual-based stem detection. The
four cases correspond to the olive grove shown in Fig. 10(a).

On the other hand, Fig. 12 shows two environment reconstruc-
tions based on the odometric information of the mobile vehicle. As
it can be seen, the odometric information is noisy and cannot be
used for localization purposes. The initial pose of the robot was
Fig. 11. Four examples of olive stems detection by the monocular vision system presente
scale stem detection. In red are the labels associated with each scale. (For interpretatio
version of this article.)
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Fig. 12. Odometric-based reconstruction of the olive grove environment. (a) Shows a c
example. The red points correspond to raw laser data and the blue-dotted line is the path
(For interpretation of the references to color in this figure legend, the reader is referred
set to [xrobot, yrobot, w] = [0,0,0]. Although Fig. 12(a) shows a very
consistent map laser scanner – furrows are parallel –, when the ro-
bot turns into the following furrow, odometric information is not
longer reliable – see Fig. 12(b). Therefore, the map information
looses its consistency. The range of the laser used in the experi-
ments shown herein was of 30 m.

Fig. 13 shows a partial map of the olive grove. It corresponds to
a portion of Fig. 10(a). The blue triangles correspond to the position
d in this work. The blue rectangles that circumscribe the stems represent the multi-
n of the references to color in this figure legend, the reader is referred to the web
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travelled by the mobile robot according to the odometric information of the vehicle.
to the web version of this article.)
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Fig. 13. Partial map reconstruction of the olive grove. Four snap-shoots are shown in this figure. (a) Shows the first snap-shoot and the covariance matrix representation
(figure (d) of the EIF-SLAM system state associated with the pose of the mobile robot at the moment of the snap-shoot). (b) and (e) show the second snap-shoot and the
corresponding EIF-SLAM covariance matrix representation. (c, f ) and (g, h) show the third and the fourth snap-shoot of the experimentation, respectively. The mobile robot is
represented in solid-red triangle; the path travelled by the vehicle is shown in black – estimated path – and in magenta – path measured by the differential GPS. The blue
triangles are the olive stems of the environment whereas the red crosses represent the olive stems detected by the SLAM algorithm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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of the trees within the environment. The trees’ position were calcu-
lated based on differential GPS information regarding the environ-
ment. The differential GPS used was built by Novatell with a mean
error of 0.2 m. In Fig. 13, the path travelled by the mobile robot and
estimated by the EIF-SLAM algorithm is shown in black, whereas in
magenta it is shown the path according to the differential GPS
measurements. The detected stems from the olive grove are
marked by red crosses which also have a covariance ellipse associ-
ated with them. The Mobile robot pose is represented by a solid-
red triangle. On its front, the mobile robot representation has the
covariance ellipse associated with its pose. The robot’s initial pose
was [xrobot, yrobot, w] = [ � 0.3,6.85,0]. The mobile robot’s navigation
was controlled by a hand-joystick because autonomous navigation
problem is not the objective of this work.
Fig. 13 shows four snap-shoots of the environment reconstruc-
tion, taken during the mobile robot navigation. Fig. 13(a) shows the
mobile robot navigation up to the first corner of the environment.
As it can be seen (Thrun et al., 2005) the robot does not re-see the
features detected at its initial position. Fig. 13(d) shows this open
loop situation. It represents the covariance matrix of the EIF-SLAM
system state associated with the estimation process. We show the
covariance matrix instead of the information matrix due to the sit-
uation shown in Eq. (10) – the elements of the matrix information
tend to infinity whereas the covariance matrix entries tend to zero.
As it can be seen in Fig. 13(d), the last detected stems have the
weakest correlation with the features detected during the initial
pose of the robot – see the upper right of Fig. 13(d).
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Fig. 13(b) shows the second snap-shoot of the olive grove map
reconstruction. As it can be seen, again the loop is not closed and
the features from the upper right corner of Fig. 13(b) are the ones
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Fig. 14. Full reconstruction of the olive grove. (a) Shows the map built by the SLAM algori
robot’s final pose; the blue triangles represent the stems of the environment – acquired
performed by the SLAM algorithm. The solid black line is the path travelled by the vehic
measured by the differential GPS. (b) Shows a graphical representation of the final covaria
this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Maps comparison. (a) Shows the map obtained by the EIF-SLAM with features selection criterion and (b) shows the map build by the EIF-SLAM with no features
restrictions. As it can be seen, (a) shows a more coherent map and the estimated features – red crosses – are consistent with the previously mapped ones (by means of
differential GPS measurements) – blue triangles –. The solid red triangle is the estimated robot’s pose whereas the solid black triangle is the GPS-based robot’s pose. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and at the end of its covariance matrix. Thus, the upper right of
Fig. 13(e) shows the weakest correlation with respect to the rest
of the features mapped so far.

Fig. 13(c) shows the third snap-shoot of the experiment. As it
can be seen, the loop is being closed by the mobile robot naviga-
tion. This situation also reflects that the middle of the olive grove
has not been mapped by the EIF-SLAM. Therefore, the features near
the un-mapped area have the weakest correlation with respect to
the rest of the detected features – see Fig. 13(f).

Fig. 13(g) shows the fourth snap-shoot. The navigation loop is
finally closed and the first features seen at the initial pose of the
vehicle are detected again. As it can be noticed, the middle part
of the olive grove remains without mapping, therefore the correla-
tion of the features near that area is weak with respect to the rest
of the map. Also, the variance values of the detected features de-
crease once the loop is closed by the mobile robot – see Fig. 13(h).

Finally, Fig. 14 is included to show how the entire olive grove is
constructed by the SLAM algorithm. In Fig. 14, the mobile robot
navigates between furrows mapping in this way the features that
remained without being observed during the experimentation
shown in Fig. 13. Fig. 14(a) shows the map constructed by the
EIF-SLAM and Fig. 14(b) shows the graphical representation of
the covariance matrix of the SLAM system state. As it can be seen,
the covariance matrix of the SLAM process tends to be fully corre-
lated. Therefore, all stems were detected during the navigation and
the entire map was built successfully – see Fig. 14(a).

8.2. SLAM consistency

Fig. 15 shows that the unmanned mobile robot localization er-
rors remain bounded by two times their standard deviation. The
number of iterations refers the number of times that the SLAM algo-
rithm is executed. The consistency test shown in Fig. 15 corre-
sponds to the experiment shown in Fig. 13 above, where the
estimated robot’s position was extracted from the SLAM system
state and the true position was the differential GPS measurements
(robotGPS). On the other hand, Fig. 15(c) shows the evolution of the
covariance associated with certain features within the environ-
ment when executing the SLAM algorithm of the experiment of
Fig. 13. As it can be seen, the variance of the features decreases
as the SLAM algorithm is executed.

Fig. 15 also shows a comparison between the SLAM localization
procedure and the differential GPS measurements (robot paths in
solid black and magenta respectively in Fig. 13). As it can be seen,
the error in coordinates x or y of the robot’s position does not ex-
ceeds 0.5 m in both cases.

In order to see the advantages of EIF-SLAM with features selec-
tion criterion, Fig. 16(b) shows the map reconstruction of the envi-
ronment when no features selection procedure is taken into
account. In order to do so, both SLAM algorithms – with features
selection and with no features selection – were executed in paral-
lel. The path travelled by the mobile robot and recorded by the full-
features SLAM shows an error higher than the one with features
selection criterion when compared with the differential GPS-based
path. This is due to the fact that as the processing time increases –
because of no features selection criterion – and the mobile robot
does not stop its motion, the SLAM algorithm misses features from
the environment and the loop might not be closed. Also, the map of
the SLAM with no features selection criterion is less consistent
than the map obtained by the SLAM with features selection restric-
tion incorporated on it, both with respect to the differential GPS
trees measurements. Fig. 13 is repeated in Fig. 16(a) for visualiza-
tion purposes.

As stated above, the sampling time of the EIF-SLAM algorithm
with features selection approach was of 1 s, whereas for the full-
features case, the maximum time of a single SLAM execution was
of 12.2 s (therefore, according to the maximum velocity values pre-
sented before, the robot has possibly navigated 2.44 m without
extracting features from the environment).

9. Conclusion

In this work, an optimized EIF-SLAM applied to olive groves’
environment was presented. The optimization criterion was based
on the selection of the most significant features from the agricul-
tural environment according to the information matrix divergence
associated with the estimation process. The features extracted
from the environment correspond to stems of the olive grove.
The stems were extracted by both: a SVM method implemented
on a monocular vision-based system and a range laser sensor. Both
methods contribute with the range and orientation parameters
associated with the stems with respect to the vehicle’s position.
The agricultural mobile robot used in the experiments is an un-
manned car-like vehicle.

The experimental results were carried out at the National Insti-
tute of Technological Agriculture, INTA, Argentina. The features
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extraction procedure has shown to be successful. The range laser
sensor and the monocular vision based stems extraction proce-
dures have been implemented in real time, showing that the fusion
of both methods produces a robust stem detection. For example, if
the monocular vision based system detects a false stem at the mid-
dle of a furrow, the laser rejects such detection. Also, if the laser de-
tects a person on the furrow – whose shape morphology can be
associated with a stem – it is rejected by the monocular vision
system.

In addition, the map reconstruction process based on the most
significant features selection criterion of the EIF-SLAM has shown
to be consistent with the real environment. As it can be seen in
the experimental results section herein, the olive grove reconstruc-
tion by the SLAM algorithm, the robot localization and the stems
detection have shown a successful performance within the agricul-
tural environment. Also, the consistence of the estimation process
was also shown within the graphics of the covariance matrices
associated with the EIF-SLAM system state. The covariance matri-
ces were shown instead of the information matrix due to the fact
the information matrices – as stated in Eq. (10) – tends to diverge.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.compag.2011.07.007.
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