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a  b  s  t  r  a  c  t

This  paper  deals  with  the  regulation  of  the  biomass  specific  growth  rate, which  is  an  important  goal
in many  fed-batch  fermentation  processes.  The  proposed  control  system  is  based  on the  minimal  model
paradigm,  requiring  only biomass  and  volume  measurement  along  with  some  bounds  on  the  reaction  rate.
The controller  has the  structure  of a partial  state  feed-back  with  adjustable  gain.  An integral-proportional
control  algorithm  is  designed  to  adjust  this  gain.  It is  inspired  in  concepts  of  invariant  control  and  system
immersion.  First,  a nonlinear  integral  action  that  makes  invariant  a  goal  manifold  defined  by a  refer-
ence  model  dynamics  is developed.  Then,  a proportional  output  error  feed-back  is incorporated  to the
control law  with  the  aim  of  fastening  convergence.  Stability  is  investigated  in detail  using Lyapunov  func-
nvariant control
artial stability
onlinear observers

tions. To  implement  the control  law,  an estimation  of the  growth  rate  is  required  like  any  other  PI-like
controller.  Because  of  its  strong  convergence  properties,  a sliding  observer  that  requires  the  same  pro-
cess  information  as  the  controller  is used  for this  task,  although  conventional  continuous  observers  can
alternatively  be  used  provided  they  are  fast enough  to preserve  stability.  Simulation  results  showing  the
transient  response  and  robustness  features  of the  controller  under  nominal  and  perturbed  scenarios  are

presented.

. Introduction

Fed-batch processes are extensively used in the expanding
iotechnological industry, which is demanding for more efficient,
eliable and safe processes to optimize production and improve
ower quality. For this reason, fed-batch processes are receiving
reat attention from the control research community. Fed-batch
ermentation offers a large number of obstacles to control engi-
eers. In fact, the control designer must deal with complex dynamic
ehavior of microorganisms, strong modeling approximations,
xternal disturbances, nonlinear and even inherently unstable
ynamics, scarce on-line measurements of most representative
ariables, etc. All these obstacles prevent control practitioners from
sing classic industrial controllers and force them to implement
ontrol algorithms specifically developed for bioprocesses. The sur-
ey papers [1–4] describe the history and state of the art in the field
f fermentation fed-batch process control.

From a biological standpoint, the ideal control of a biotechno-
ogical process would achieve microorganisms to reach a (possibly
ime-varying) metabolic state at which their physiological behav-

or is appropriate for the desired goals: e.g. production of a given

etabolite. To that end, control of fermentation processes makes
se of available measured or estimated variables that somehow can
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implicit or explicitly be related to the cell metabolic state as a func-
tion of nutrients supply. In this respect, cell growth underlies many
key cellular and developmental processes [5].  Thus, the desired
microorganism metabolic states are usually strongly related to
growth rate [6–12]. Consequently, in many cases control of growth
rate, as key representative of the underlying metabolic processes, is
the underlying main problem. For instance, control of growth rate
is at the core of biomass and product model-based optimization
during the singular phase [13,14],  at that of some methods to avoid
overflow metabolism [15], and can also be related to heterologous
protein production and ATP consumption rate.

On the other hand, growth rate is related to substrate con-
sumption rate. And this, in turn, can also be related to oxygen
consumption rate. Thus, many control strategies exist aimed at
tuning the feed rate so as to achieve either constant dissolved
oxygen, constant substrate concentration in the broth or constant
metabolite rate [16–21].  Probing strategies use dissolved oxygen
measurement to control substrate feed rate taking into account the
constraints of aerobic conditions and overfeeding [22]. In many of
these cases the hidden goal is growth rate control [23] or can be
related to it. Indeed, in industrial fermentation processes practi-
cal limits in available measurements and actuators will made some
control strategies more feasible than others.
Growth rate control in fed-batch bioreactors implies the need of
following an exponential feeding flow profile. Many papers found
in the literature basically implement this control strategy in open-
loop [24,25].  Of course, these conceptually simple controllers are

dx.doi.org/10.1016/j.jprocont.2012.02.011
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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Fig. 1. Block diagram of process control systems using estimated output feed-back,
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here �, �̂ and �r are the real, estimated and reference specific growth rates, respec-
ively, F is the feeding flow, x is the biomass concentration and v  the liquid volume
n  the reactor.

owever extremely sensitive to parameter uncertainties and exter-
al disturbances. Mismatches in biomass growth can be partially
educed by feeding the reactor in proportion to biomass popula-
ion [14,26]. However, since the process is still open-loop in the
ense that there is no error feed-back, the control is very sensitive
o parameter uncertainties.

Yet, current availability of on-line reliable biomass and volume
easurement devices allow direct control of specific growth rate.

his is especially true for small and medium scale bioreactors used
o produce enzymes and/or high-added values specialty metabo-
ites. This has enabled a research line dedicated to develop generic
nd robust controllers based on the minimal model concept. This
ine exploits the integral relationship between the controlled vari-
ble and biomass population. In [27], a sliding mode controller
pplicable to the regulation of growth-linked fed-batch processes
s presented. Because of the robustness properties of sliding modes,
ontroller implementation requires minimum knowledge of the
rocess. In fact, just on-line measurement of biomass concentra-
ion and volume, as well as an upper-bound on the growth rate
re needed. On the pre-specified sliding surface, the sliding con-
rol effectively behaves as a nonlinear integral action without the
eed of estimating the unmeasurable controlled variable. The cost
f robustness and implementation simplicity is the limited con-
roller bandwidth. Other authors have incorporated an estimation
f the controlled variable to the control algorithms, obtained from
n-line measurement of biomass concentration [4,8,13,28]. Pio-
eering work in the field of growth rate observers was performed

n [29]. With their variants, the estimated output feed-back con-
rollers respond to the block diagram shown in Fig. 1. In this context,
oncepts of feed-back linearization have been applied with the aim
f canceling the process nonlinearities and assigning linear dynam-
cs by means of a proportional feed-back law [13]. In the same way,

 globally stabilizing controller has been proposed inspired in passi-
ation concepts [30]. This latter control law essentially differs from
he previous one in the sense that the output error feed-back dom-
nates the process dynamics instead of canceling it. This approach
mproves robustness and provides conditions for global stability
ven when kinetics show multiplicity. These control algorithms
xhibit some implementation challenges associated to the output
stimation feed-back. One of them is that the estimate is affected by
easurement noise that propagates to the control action. Besides,

ontinuous growth rate observers introduce a lag in the loop. The
bserver dynamics may  interact with the controller, thus leading
o undesirable behavior and even to instability. For these reasons,
he gain of these proportional control laws cannot be chosen arbi-
rarily high to increase significantly the controller bandwidth and
isturbance rejection.

The mentioned limitation of proportional control can be over-
ome by means of adding integral action to the control law [8].
reviously designed PI control algorithms follow a design strat-

gy that could be defined as a natural extension of a linear PI,
here a feed-forward term is added to cope with the continuous

hange of variables (biomass and volume) introduced by fed-
atch operation (i.e. there is no equilibrium point), resulting in a
ss Control 22 (2012) 789– 797

two-degree-of-freedom control algorithm. Tuning of these algo-
rithms tends to be a tough task, requiring good knowledge of the
process parameters to set the feed-forward term, and elaborated
tuning strategies to get a set of parameters for the PI-term good
enough in the whole fed-batch range of operation. In this paper,
we propose a different approach to design non-linear PI controllers
which relies on geometric properties of the process and specifica-
tion structures. Ideas and concepts of invariant control and passiv-
ity are combined to achieve PI controllers that outperform previous
developments where some of these ideas were exploited sepa-
rately [27,30]. The proposed approach exhibits three main features.
First, it provides easy-to-tune controllers thus overcoming the main
shortcomings of previous PI design methods. Second, global asymp-
totic stability, even for processes with non-monotonic kinetics, can
be proved using insightful Lyapunov analysis. Finally, stability and
performance are very robust to parameter uncertainties.

The paper is organized as follows. In Section 2 the problem is
formulated and the control strategy is posed in terms of a goal
manifold. The proposed control law and its analysis are consid-
ered in Section 3. Some examples highlighting the performance of
the devised controllers are shown in Section 4. Finally, Section 5
outlines the conclusions of the work.

2. Problem statement

Many biotechnological processes are characterized by pure
cultures with one limiting substrate and with the metabolite of
interest being formed in parallel to the microbial growth. These
growth-linked reactions may  be inhibited when a substrate is in
excess. In fed-batch mode, this sort of process accepts the following
description in state-space [31,32]:

� =

⎧⎪⎨
⎪⎩
ẋ = �(s)x − F

v
x

ṡ = −ys�(s)x − mx + F

v
(si − s)

v̇ = F

(1)

where x ∈ X ⊂ R+ and s ∈ S = (0,  si) are the biomass and substrate
concentrations respectively; si > 0 is the influent substrate concen-
tration; v ∈ R+ is the liquid volume; F ∈ R+ is the feeding flow;
ys > 0 is a yield coefficient; m > 0 is the maintenance constant.
Finally, � is the specific growth rate which is an either monotonic or
non-monotonic function of substrate concentration taking values
in the set � ∈ (0, �m).

The control objective is the regulation of this specific growth rate
at a given value �r < �m using F as control input. Control design is
subject to the following constraints:

- The only on-line measurable variables are volume and biomass
concentration.

- An estimation of �, obtained from the on-line measurement of x
and v, is available for feed-back.

- The control signal is nonnegative (F ≥ 0).
- The yield coefficient ys, the maintenance constant m,  and the

influent substrate concentration si are uncertain parameters that,
moreover, may  vary during the process.

2.1. Invariant control approach

Differing from continuous processes, the control specification
in fed-batch bioreactors does not imply stabilization around an

operating point. On the contrary, the state follows an unbounded
trajectory. In fact, only substrate concentration stabilizes around
a value sr satisfying �(sr) = �r, whereas biomass concentration fol-
lows a bounded trajectory and volume goes to infinity. Let us define
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Fig. 2. Family of goal manifolds on the X − v plane.

 reference model for � in accordance with the control objective,
hat is the (exponential) growth of biomass at the desired rate �r:

r
�=

{
Ẋ = �rX, X(t0) = Xr,0
ṡ = 0, s(t0) = sr
v̇ = �X, v(t0) = vr,0

(2)

here X(t) = x(t)v(t) is the total biomass population in the biore-
ctor. The first equation in (2) represents the desired growth of
iomass, which can be achieved by properly feeding the bioreac-
or in proportion to biomass population as established in the third
quation.

This exosystem generates a goal manifold Zr for �:

r = Zx ∩ Zs (3)

x =
{

(X, s, v)|zx = X − Xr,0 − �r
�

(v − vr,0) = 0
}

(4)

s = {(X, s, v)|zs = s − sr = 0} (5)

here Xr,0 and vr,0 are the initial total biomass and volume of the
eference model, respectively. The manifold Zx is obtained elimi-
ating the time variable in (2) whereas Zs results from �(sr) = �r.
ctually, there is a family of goal manifolds Zr since the initial values
Xr,0, vr,0) of the reference model do not matter. Fig. 2 shows the
rojection of Zr onto the X − v plane for several initial conditions of
he reference model. Note that the control objective of maintaining

 constant growth rate �r is accomplished on any of these mani-
olds. The difference among all these manifolds lies on the amount
f biomass obtained at the end of the process. Notice that in many
ases it is the specific growth rate and not the amount of biomass
hat matters from the point of view of metabolic state [10].

The value of � that makes any of these manifolds Zr invariant is
btained from the second equation of (1).  Thus,

F(x, v) = �xv

� = �r
�=ys�r + m

si − sr

(6)

s an invariant control for � with respect to the reference man-
fold Zr generated by �r. In other words, once the system � is
n Zr, it remains there. Further, it can be shown that the control
aw (6) provides convergence from any process initial condition
x(t0), s(t0), v(t0)) to a given Zr with unknown initial conditions
Xr,0, vr,0). Convergence rate is however rather poor because there
s no feed-back of the off-the-manifold coordinates zx and zs.

dditionally, the invariant gain �r depends on barely known and
ossibly time-varying parameters.

Observation: Feed-back laws similar to (6) have been previously
nvestigated (see for instance [33,34]). However, this derivation
ss Control 22 (2012) 789– 797 791

based on invariance concepts is the key to the design of the adaptive
control algorithm developed in the next section [35].

3. Proposed control algorithm

The issue faced here is to design a control algorithm with
improved robustness and convergence features compared to (6)
using minimal knowledge of reaction parameters. Let us con-
sider the process � with a biomass-proportional feeding profile
F = �f(t)xv:

�f :

{
ẋ = �(s)x − �f x

2

ṡ = −ys�(s)x − mx + �f x(si − s)
v̇ = �f xv.

(7)

First, we will design an adaptation law for the invariant gain
� in (6) so that the process �f with �f = � is effectively immersed
into the reference dynamics �r despite parameter uncertainties.
Then, a proportional feed-back action will be included in �f to fas-
ten convergence to the manifold Zs while preserving the invariance
property. At this stage of the control design it is assumed that an
estimation of the growth rate is available for feed-back. We  will
justify this assumption in Section 3.4.

3.1. Adaptive integral control law

Recall that it does not matter to move along a given goal man-
ifold but along any of them. All these manifolds are characterized
by a given slope which is inversely proportional to the uncertain
�r. The idea behind the control law design is to adapt this slope, i.e.
�, so that the state trajectory is always tangent to the manifold Zx.
This means that the following equality must hold:

∂zx
∂x
ẋ  + ∂zx

∂v
v̇ + ∂zx

∂�
�̇ = 0. (8)

Using (4) and (7),  the following adaptation law for � results:

�̇ = −�2 (v)x
� − �r
�r

�(t0) = �̂r
  = v

v − vr,0

(9)

For technical reasons, the initial volume vr,0 of the reference
model must be lower than the process one: vr,0 < v(t0). So,  (v) is a
positive and decreasing function of v. Hence  (v) is non-increasing
in time. This means that the adaptation gain decreases with time as
long as volume grows. This can be understood by observing in Fig. 2
that the manifold Zx rotates around (Xr,0, vr,0) as � changes. Then,
less variations of � are necessary to keep the state trajectory on the
manifold as the state moves away from the fixed point (Xr,0, vr,0).
So, � converges rapidly to the unknown �r at the beginning of the
process, but its capability to adapt to time-varying process param-
eters decreases with time. Anyway, note that the function  (v) can
be replaced by a constant gain. This is equivalent to moving the
fixed point of the manifold in proportion to v as the state evolves
rightwards in Fig. 2. Alternatively, other non-increasing functions
of v can be also used as will be made clear later.

It is interesting to note that this adaptation based on invariance
concepts is in practice equivalent to an (nonlinear) integral control
of �. The initial value �̂r is obtained from (6) using estimated values
of the parameters.

In [27], the invariant control (6) is searched using a sliding mode
algorithm on a prescribed manifold Zx. The main feature of the

approach used there is its robustness, since the sliding motion per-
forms the adaptation (9) without using any estimation of �. The cost
paid is that the initial condition of the reference dynamics (Xr,0, vr,0)
must be specified beforehand. Since we are assuming here that an
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stimation of � is available for feed-back, it has little sense to steer
he state to a prescribed manifold rather than allowing it to evolve
n any parallel manifold.

.2. Proportional + integral feed-back

To improve convergence to the goal manifold Zr, we propose
ncluding feed-back of the off-the-manifold coordinate zs to the
ontrol action, always maintaining the biomass-proportional feed-
ng profile. Since, we do not measure substrate concentration, we
se instead �(s) that can be estimated based on biomass and
olume measurement. Thus, the proposed adaptive + proportional
eed-back control law is

�f = �(1 − f (� − �r))

�̇ = −�2�(v)x
� − �r
�

�(t0) = �̂r
(10)

here �(·) and f(·) are defined as follows.

efinition. Let � : V�=[v0, ∞)  	→ [�0, �∞] ⊂ R+ be a differen-
iable, positive and decreasing function satisfying

lim
→∞
�(v) = �∞ (11)

efinition. Let f : R  	→ [−f , 1] be a globally Lipschitz increasing
unction with Lipschitz constant k/�r satisfying f(0) = 0, with f ∈
+.

Note that f(·) is an S-like bounded function. Its lower-bound
ssures that �f is bounded whenever � is bounded whereas the
pper-bound is compatible with the restriction on the feeding flow

 ≥ 0. The condition f(0) = 0 guarantees that the control is effectively
nvariant on the goal manifold Zr.

Finally, note that, compared to(9),  we have replaced �r with �
n the denominator of (10). This slight variation in the adaptation
aw allows to show global stability in a more elegant and simple
ashion. Anyway, stability can also be demonstrated if � is adapted
ike in (9) by considering that substrate may  temporarily saturate
t zero.

.3. Stability analysis

This section is devoted to demonstrate that the process state
onverges to the goal dynamics generated by (2).  This conver-
ence is global for monotonic growth kinetics. In the case of
on-monotonic kinetics, wash out may  occur, particularly when the

nitial substrate concentration is very high. In this case, the domain
f attraction can be estimated. We  will show also that even in this
ase, global convergence can be achieved by suitably saturating the
eed-back gain.

Replacing �f in (7) with (10), the following closed-loop process
ynamics:

cl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = �(s)x − �(1 − f (��(s)))x2

ṡ = [−ys�(s) − m + �(1 − f (��(s)))(si − s)]x

�̇ = −�2�(v)x
��(s)
�(s)

v̇ = �(1 − f (��(s)))vx

(12)

here we have used

�(s) = �(s) − �r (13)

or the sake of brevity.

Recall that biomass concentration follows a bounded trajectory

n R+ imposed by the surface Zx, and volume grows unbound-
dly. For this reason, we use concepts of partial stability in order
o show convergence towards the goal manifold Zr. Precisely, we
ss Control 22 (2012) 789– 797

show that substrate converges to the desired value sr (i.e. the state
converges to Zs) whereas � converges to the value �r at which the
goal manifold Zr is effectively invariant.

Definition. Let us call � the partial state � = col(s, �) and �r = col(sr,
�r). Let M = S × R+.

Consider now the continuously differentiable Lyapunov candi-
date function [36]

V(�, �) = �

∫ s

sr

��(ς)
�(ς)(si − ς)

dς +
(

ln
�

�r
+ (�r − �)

�

)
(14)

Clearly, this function satisfies V(�r, �) = 0. Further, since � > 0 and
�(s) is increasing (at least locally around sr), the first term of the
right hand side of (14) is positive in the neighborhood of sr. On the
other hand, it is easy to check that the second term of the right hand
side of (14) is positive for all � ∈ R+ − {�r}. Thus, V(�, �) exhibits a
minimum at �r, V(�r, �) = 0 ∀�. This minimum is global for mono-
tonic kinetic functions �(s) and may  be local for non-monotonic
kinetics.

At least locally around �r (globally for monotonic kinetic func-
tions), V(�, �) is upper- and lower-bounded by the positive definite

functions V(�)
�=V(�, �0) and V(�)

�=V(�, �∞):

V(�) ≤ V(�, �) ≤ V(�). (15)

The time derivative of the Lyapunov function (14) is given by

V̇(�, �, x) = − �x

�(s)(si − s)
·
[
h(�)�f (��(s))

∫ s

sr

��(ς)
�(s)(si − s)
�(ς)(si − ς)

dς + ys(��(s))2

+ �r(s − sr)��(s) + �(si − s)��(s)f (��(s))

]
(16)

where h(�) > 0. For clarity of exposition, the sequence of operations
to find (16) is given in Appendix A.

Since x follows a lower-bounded trajectory (x(t) > x ∈ R+),
V̇(�, �, x) is bounded by

V̇(�, �, x) ≤ −Q (�) (17)

where

Q (�)
�= − V̇(�, �∞, x) (18)

is nonnegative definite.
Then, �cl is Lyapunov stable with respect to � uniformly in v, and

there exists D  ⊆ M (D  � �r) such that for all (�, v) ∈ D  × V, �(t) →
E(D)

�={� ∈ D  : Q (�) = 0} as t→ ∞ [36].
Note that Q(�) is not (locally) positive definite because Q(sr, �) = 0

independently of �. Then, locally around �r, i.e. for D  small enough,
E(D) = {� ∈ D|s = sr}. Since E(D) is larger than �r, we  need to apply
some invariance principle to prove asymptotic stability. Although it
is not generally true for partially stable systems, an invariance prin-
ciple can be derived for asymptotically autonomous partial systems
[36,37] (Chapter 8). Fortunately, this is our case. In fact, � → �∞ and
x → �r/�f as v diverges. So, the partial system defined by the sec-
ond and third equations of (12) asymptotically converges to the
autonomous system⎧ ( )

�∞
cl =

⎪⎨
⎪⎩
ṡ = − ys�(s) + m

�(1 − f (��(s)))
+ �r(si − s) �r

�̇ = −��∞
�r
�(s)

��(s)
1 − f (��(s))

(19)
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�f = �̂r (23)

ˆ

H. De Battista et al. / Journal of

ince s = sr in E(D), any invariant set in E(D) satisfies also ṡ = 0, i.e.
 = �r. Therefore, �r is the largest invariant set for (19) in E(D). Con-
equently, �cl is asymptotically stable with respect to � uniformly
n v.

emark. The integral adaptive control (with f ≡ 0) also stabilizes
he process around the goal trajectory Zr. That is, the proportional
eed-back term is not necessary for stability. However, its inclusion
n �f improves convergence to the goal manifold. This is corrob-
rated in (16) where the last term in the bracketed expression is
lways positive and proportional to f(��(s)).

.3.1. Monotonic kinetic functions
For monotonic kinetic functions,

V(�, �) verifies (15) for all � ∈ M, and V(�) is radially unbounded
in M.
V̇(�, �) verifies (17) for all � ∈ M, and �r is the largest invariant
set for (19) in E(M).

 All biomass concentration trajectories are lower-bounded since
neither s can go to zero nor � can go to infinity.

Consequently, �cl is globally asymptotically stable with respect
o �r uniformly in v [36]. In other words, system �cl globally asymp-
otically converges to the goal manifold Zr defined by the reference

odel �r.
This global stability result is valid also for weak non-monotonic

inetics for which the function (�(s) − �r) has only one root in S.

.3.2. Non-monotonic kinetic functions
If the kinetic function exhibits multiplicity, i.e. there are

wo substrate concentrations satisfying �(s) − �r = 0, the previous
esults about stability are only local. In fact, the reactor may  be
ashed out, particularly when the fed-batch process begins with

 large initial substrate concentration. Wash-out occurs when the
eeding flow increases in an attempt to rise the growth rate that
volves in the opposite direction because of inhibition. Thus, a way
f avoiding it is limiting the dilution rate.

Consider a non-monotonic kinetic function having its maximum
t sm, and satisfying �(sr) = �(s∗r ) = �r for sr < sm, and sm < s∗r < si.
ocally around sr, the kinetic function is increasing. Then, �cl locally
symptotically stabilizes (partially) around �r uniformly in v and
. Furthermore, if the kinetic function �(s) is known, a domain of
ttraction could be derived from (16) using invariance set theorems
38].

On the other hand, if s exceeds s∗r , stability is not guaranteed
see (14) and (16)). However, it is easy to see in the second equa-
ion of (12) that if �f is suitably bounded, substrate concentration
annot exceed s∗r or, at least, cannot remain above it. Then, one can
nclude in the adaptation law (9) a saturation term to prevent �
rom exceeding a bound � satisfying

� > �r

�(1 + f ) < min
s≥s∗r

(
�(s)ys + m

si − s

)
(20)

Just a model for the reaction kinetics and a lower-bound for the
ield coefficient ys are needed to compute this bound. This can be
one off-line before running the process.

Suppose that the initial substrate is s(0) > s∗r . Then, � increases
ccording to (9) until it saturates at (20). Then, substrate concen-
ration drops because consumption exceeds the feed rate. Note
hat the Lyapunov function (14) decreases while � is saturated.

mmediately after substrate falls below s∗r , � leaves saturation and
he Lyapunov function decreases further. From then on, the state
volves to the goal manifold without any possibility of wash-out.
his situation is illustrated in Section 4.3.
ss Control 22 (2012) 789– 797 793

3.4. Effects of the growth rate observer

It is well known in linear system theory that stability of an
output feed-back control system can be assessed by analyzing sep-
arately stability of the controller and that of the observer. It is well
known also that the application of this separation principle cannot
be directly extended to nonlinear systems. So, in general, checking
stability of the whole nonlinear control system is usually a very
involved problem.

An estimate of the growth rate is needed to implement the
controller developed in this paper (as well as any other specific
growth rate controller found in the literature). There are a variety
of continuous biomass-based growth rate observers useful for this
task. However, these observers do not exhibit uniform exponen-
tial convergence to time varying signals. For instance, the observer
proposed in [29] introduces a second-order dynamics into the loop.
Stability analysis of the controller plus observer can still be real-
ized, although it will be by far much more complicated than the one
presented here. Additionally, the results will be valid only for a par-
ticular observer. Although there are not guarantees, it is expected
that the controller stability is not affected by the observer provided
it is fast enough.1

Alternatively, a new family of growth rate observers has been
introduced in [39]. There, a super-twisting sliding observer having
the form

O :

{
˙̂x = ( �̂ − �f (t)x + 2ˇ(|(x − x̂)|)1/2sign(x − x̂))x
˙̂� = (˛sign(x − x̂))x (21)

has been presented where, like in continuous observers, an upper-
bound for | �̇| is used for tuning the gains  ̨ and  ̌ (see the
details in [39]). It is proved there that this observer converges
in finite time to the time-varying real growth rate. After con-
vergence, the estimate perfectly tracks the real growth rate up
to a noise signal. The main consequence of this property is that
the separation principle can be applied in a straightforward way
because the observer does not add dynamics to the loop. In other
words, the observer does not alter the stability property of the
controller. So, the stability analysis made above keeps valid for
the whole controller plus observer system. The only precaution to
take is that the observer should converge before the process state
leaves the domain of attraction (if it is not global). Anyway, in the
practical industrial operation, there is always a batch open-loop
phase previous to switching the fed-batch phase on. The observer
will converge (in the strong sense mentioned above) during this
phase.

4. Numerical results

Simulation results for fed-batch processes with non-monotonic
kinetics are presented to illustrate the performance of the control
strategy under different scenarios. The model of the process built
in simulations is (7),  where �(s) is the Haldane function

�(s) = �m
1 + 2

√
ks/ki

(ks/s)  + 1 + (s/ki)
(22)

Responses obtained using three different control actions are
evaluated
�f = �r(1 − f ( �̂ − �r)) (24)

1 This is typically assumed in the literature to avoid a complete stability analysis.
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Fig. 3. (Example 1) Responses from a low initial substrate concentration under nominal
control; dotted, open-loop control.

Table 1
Parameters and test conditions.

�m [1/h] 0.22 x(t0) [g/L] 1
ks [g/L] 0.14 s(t0) [g/L] [0.05,0.05,6]
ki [g/L] 6 V(t0) [L] 1
ys 1.43a �r [1/h] 0.15
m  [1/h] 0.05 k 3
si [g/L] 20 � 30

a

�

�

w

f

T
s
o

d
v
o
t
t

l
a
H
t
s
g
t

that, in the presence of the uncertain and time varying parame-
ter, the constant-gain control law (23) leads to a 37% error in the
controlled variable that even grows linearly after t = 30 h. The pro-
portional control (24) reduces the tracking error by a factor of four.
Vf [L] 30 �̂r [1, 0.7, 1]·�r

a Parameter ys in Example 2 grows at 2% per hour since t = 30 h.

nd

f = �(1 − f ( �̂ − �r)) (25)

˙ = −��2x
( �̂ − �r)
�̂

, �(t0) = �̂r

ith

 = tanh
(
k

�r
( �̂ − �r)

)
(26)

his tanh(·) function provides unit gain around the origin, and
mooth saturation that guarantees positiveness and boundedness
f �f. Anyway, any other function with these properties can be used.

Biomass concentration was measured using the sensor
escribed in [40]. Sampling was carried out each 12 s, and a filtered
alue over a window of 2 min  was provided. The estimation �̂ was
btained using the super-twisting observer (21), tuned following
he guidelines in [39]. Noise sensitivity and tracking properties of
his observer have been assessed experimentally in that paper.

The process and controller parameters used in simulations are
isted in Table 1. As mentioned above, the proportional control
ction improves stability and speeds up the response of the process.
owever, the proportional channel is a direct path for noise from
he sensors to the feeding flow. Then, there is a trade-off among
peed of response and noise in the selection of the proportional
ain k. On the other hand, the gain � determines the speed of adap-
ation of � and, consequently, how fast model uncertainties and
 conditions, i.e. invariant gain �r is known. Solid, PI control; dashed, proportional

perturbations are compensated for. A too high value of � may  cause
undesirable overshoots during the transient response. Therefore,
� is selected as a trade-off between robustness and transient
response.2

The control strategies (23)–(25) are hereinafter referred to as
open-loop, proportional and PI control, respectively.

4.1. Example 1

This example is aimed at showing the performance of the con-
troller from a low initial substrate concentration under nominal
conditions. That is, the invariant gain �r is supposed to be known.

The results are presented in Fig. 3. It is observed that the control
(23) converges to �r more slowly than the feed-back controllers.
There is little difference between the tracking responses of the
proportional (24) and the proportional-integral (25) control laws.
This is because � is practically not adjusted by the integral control
during the transient. The trajectories followed by biomass concen-
tration and volume almost coincide for all three control actions.
The bottom-right plot shows how the process state evolves on the
goal manifold.

4.2. Example 2

In this second example we  evaluate the robustness of the pro-
posed control with respect to parameter uncertainty. The invariant
gain �r in (23)–(25) is underestimated in a 30%. Further, after
t = 30 h, the yield coefficient ys is increased at the rate of 2% per
hour. The evolution of the process variables is shown in Fig. 4. See
2 Note that, if a decreasing function   as defined in (9) was used, its capability to
reject disturbances would reduce with time.
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ig. 4. (Example 2) Responses from a low initial substrate concentration under unce

n the contrary, the integral action of the adaptive controller (25)
ancels the tracking error while ys is constant. Further, tracking
rror is negligible even when ys begins to grow linearly. It can be
bserved how � is smoothly adapted during the first 12 h and after
s drift begins at t = 30 h. Biomass concentration and volume fol-

ow now substantially different trajectories. The bottom plot clearly
hows that the process state traces different curves on the plane

 − v. In particular, it is interesting to see how the integral con-
rol blends the manifold as ys (and thus �r) rises. The process with

Fig. 5. (Example 3) Tracking response from a very high initi
onditions. Solid, PI control; dashed, proportional control; dotted, open-loop control.

control (23) is interrupted at t = 48 h before the reactor is filled
out.

4.3. Example 3
The third example is aimed at showing the convergence prop-
erty of the proposed controller from a large initial substrate
concentration. The initial condition is selected beyond the high-
substrate root s∗r of the Haldane function. This is an inherently

al substrate concentration under nominal conditions.
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Fig. 6. (Example 4) Response of the PI control for the same set

nstable region. In fact, the control has the opposite effect to what is
xpected, thus producing a positive feed-back. To avoid wash-out,
f and � are bounded, so that the substrate concentration inevitably

alls below s∗r . Once in this region, the controller stabilizes the pro-
ess around the goal trajectory. It is observed in Fig. 5 how the
ontrol action saturates during the initial phase of the process.

hen substrate concentration falls below s∗r , the saturation region
s left and substrate rapidly converges to sr.

.4. Example 4

Simulation results for the same setting as in Example 2 but
onsidering noise and offsets of the biomass sensor are presented
n Fig. 6. Noise level corrupting the biomass measure x̂ is compat-
ble with the sensor used (see [27,39,40]).  Also, an offset x̃ = +10%
n the measurement of biomass concentration is considered to
ssess robustness against sensor uncertainty. For clarity of presen-
ation, only the results obtained with the proposed nonlinear PI
ontroller are presented. The results for the PI control in Example

 are repeated with dashed line.
It is observed that the controller achieves good regulation

espite noise and sensor offset. See that � is much smoother than �f,
howing that noise is mainly amplified by the proportional term of
he control action. Note also how the integral control compensates
or the offset in the biomass sensor.

. Conclusions

In this work a nonlinear proportional-integral control of the
pecific growth rate for fed-batch processes is proposed. A biomass-
roportional feeding profile is followed, being the feeding gain
ontinuously adapted by the controller. The integral action makes

 goal manifold invariant despite parameter uncertainties, so that
teady-state errors are cancelled. On the other hand, the propor-
ional control action speeds the transient response up. Therefore, by
ombining invariant with proportional control laws, the achieve-
ents of previous developments [27,30] are outperformed. The
esign approach followed in this paper, based on geometric prop-
rties of the process dynamics, leads to easy-to-tune PI controllers
n contrast with previous PI algorithms characterized by tuning dif-
culties and parameter sensitivity. Another key advantage of our
 in Example 2. Measurement noise and offsets are considered.

proposal is that global asymptotic stability is guaranteed without
restrictions for monotonic growth kinetics, whereas the feeding
flow should be suitable bounded for non-monotonic kinetics. The
implementation of the control law only requires on-line measure-
ment of biomass concentration and volume, being the controlled
variable estimated using an observer. Robustness to model uncer-
tainties and disturbances is one of the main attractive features of
the controller.
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Appendix A.

In this section the expression of the time derivative (16) of the
Lyapunov function (14), repeated below for the sake of clarity, is
derived.

Differentiating

V(�, �) = �

∫ s

sr

��(ς)
�(ς)(si − ς)

dς +
(

ln
�

�r
+ (�r − �)

�

)
(27)

with respect to time yields

V̇(�, �) = �̇
∫ s

sr

��(ς)
�(ς)(si − ς)

dς + �
��(s)

�(s)(si − s)
ṡ+ (� − �r)

�2
�̇ (28)

Let us now define

h(�)
�= − v

�

∂�
∂v

∣∣∣∣
v=�−1

(29)
with �−1 the inverse function of �.
Recall that � is a decreasing function of v. Then, h(�) > 0 and

�̇ = −h(�)��f x ≤ 0 ∀t (30)
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ow, replacing �̇, ṡ and �̇ in (28) with (30) and (12) yields

˙ (�, �, x) = − �x

�(si − s)
·
[
h(�)�f

∫ s

sr

��(ς)
�(s)(si − s)
�(ς)(si − ς)

dς

+ ��(ys� + m) + ��(−�f + � − �r)(si − s)

]
(31)

he term ���r(si − sr) − ��(ys�r + m), which equals 0 from (6),
an be added to the right-hand side of (31). Taking into consid-
ration that, from (24), � − �f = � · f(��) and regrouping terms it
ollows that

˙ (�, �, x) = − �x

�(s)(si − s)
·
[
h(�)�f (��(s))

∫ s

sr

��(ς)
�(s)(si − s)
�(ς)(si − ς)

dς + ys(��(s))2

+ �r(s − sr)��(s) + �(si − s)��(s)f (��(s))

]
(32)
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