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Abstract. The main goal of this paper is to provide a characterization of
the weak-type boundedness of the Hardy-Littlewood maximal operator, M , on
weighted Lorentz spaces Λp

u(w), whenever p > 1. This solves a problem left
open in [5]. Moreover, with this result, we complete the program of unifying
the study of the boundedness of M on weighted Lebesgue spaces and classical
Lorentz spaces, which was initiated in the aforementioned monograph.

1. Introduction

The classical Hardy-Littlewood maximal operator M , is defined by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axes and containing x ∈ Rd. This operator is related with several problems in
analysis, and in some sense it controls the boundedness of many other operators.
For these reasons, it has been widely studied in different settings.

In 1972, Muckenhoupt [9] gave the complete characterization of the bounded-
ness of M on weighted Lebesgue spaces Lp(u), defined by the set of all Lebesgue
measurable functions f such that

||f ||Lp(u) :=

(∫
Rd

|f(x)|pu(x)dx

)1/p

<∞,

where u is a positive and locally integrable function on Rd (we call it weight).
For 1 < p <∞, the characterization was given in terms of the so called Ap class
of weights [9]; that is

sup
Q

(
1

|Q|

∫
Q

u(x)dx

)(
1

|Q|

∫
Q

u−1/(p−1)(x)dx

)p−1

<∞,
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2 Weak-type boundedness of the Hardy-Littlewood maximal operator on weighted Lorentz spaces

where the supremum is considered over all cubes Q of Rd. It was also proved in
[9] that, if 1 < p <∞, then

M : Lp(u)→ Lp(u) ⇐⇒ M : Lp(u)→ Lp,∞(u) ⇐⇒ u ∈ Ap,

where the weak-type space Lp,∞(u) is defined through the quasi norm

||f ||Lp,∞(u) := sup
t>0

t u({x ∈ Rd : |f(x)| > t})
1
p <∞,

and u(E) =

∫
E

u(x)dx, for any measurable set E ⊂ Rd. If p = 1 the only case

that makes sense is the weak-type boundedness

M : L1(u)→ L1,∞(u),

characterized by the A1 class of weights defined by

Mu(x) ≤ Cu(x), a.e. x ∈ Rd.

If p < 1 there are no weights so that M : Lp(u)→ Lp,∞(u) is bounded [5].

Later on, the development of the interpolation theory motivated the study of
the boundedness of M on the so called Lorentz spaces. The (classical) Lorentz
space Λp(w) is defined as the class of all functions f satisfying

||f ||Λp(w) :=

(∫ ∞
0

p tp−1W (|{x ∈ Rd : |f(x)| > t}|)dt
)1/p

<∞,

where w is a weight in R+, W (t) =

∫ t

0

w(s)ds and |E| denotes the Lebesgue

measure of E. The weak-type Lorentz space Λp,∞(w) is defined by the following
quasi norm

||f ||Λp,∞(w) := sup
t>0

tW (|{x ∈ Rd : |f(x)| > t}|)
1
p <∞.

Ariño and Muckenhoupt characterized in [2] the boundedness of M on Λp(w).
The key idea to study the boundedness of M on these spaces is based on the
existence of c, C > 0 such that

(1.1) cPf ∗(t) ≤ (Mf)∗(t) ≤ CPf ∗(t).

This is the so-called Riesz-Wiener-Herz inequality (see Theorem 3.8, pg. 122, [3]).
In these inequalities f ∗ is the decreasing rearrangement of f , which is defined in
[0,+∞) by

f ∗(t) = inf
{
s > 0 : |{x ∈ Rd : |f(x)| > s}| ≤ t

}
,

and P is the Hardy operator defined by

(1.2) Pf(t) =
1

t

∫ t

0

f(s)ds, t > 0,
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(see [3] for more details). Consequently, the boundedness of M on Λp(w) is
equivalent to the boundedness of P on the cone of decreasing functions of Lp(w).
Given p > 0, the class of weights satisfying

M : Λp(w)→ Λp(w)

is known as Bp, and it can be proved [2] that w ∈ Bp if and only if

rp
∫ ∞
r

w(t)

tp
dt ≤ C

∫ r

0

w(s)ds, for every r > 0.

Moreover, for every p > 0, the condition Bp,∞ characterizes the boundedness

M : Λp(w) −→ Λp,∞(w),

where for p > 1, Bp,∞ = Bp, and for p ≤ 1 a weight w ∈ Bp,∞ if and only if

W (t)

tp
≤ C

W (r)

rp
, for every 0 < r < t <∞.

These classes of weights have been well studied in [2, 5, 10].

Some analogues between the boundedness properties of M in Lp(u) and in
Λp(w) suggested that there might be a unifying theory behind. A natural frame-
work for this unification is provided by the weighted Lorentz spaces defined by
Lorentz in [7, 8]. Given u, a weight in Rd and given a weight w in R+,

Λp
u(w) =

{
f ∈M : ||f ||p

Λp
u(w)

:=

∫ ∞
0

ptp−1W (u({x ∈ Rd : |f(x)| > t}))dt <∞
}
,

whereM = M(Rd) is the set of Lebesgue measurable functions on Rd, and the
weak-type Lorentz space is defined as follows

Λp,∞
u (w) =

{
f ∈M : ||f ||p

Λp,∞
u (w)

:= sup
t>0

tW 1/p(u({x ∈ Rd : |f(x)| > t})) <∞
}
.

Note that these spaces include the weighted Lebesgue spaces Lp(u), Lp,∞(u)

(when w = 1) and the Lorentz spaces Λp(w), Λp,∞(w) (when u = 1).

The study of the strong-type boundedness

(1.3) M : Λp
u(w)→ Λp

u(w)

started, as we have already mentioned, with the papers [9] in the case w = 1, and
[2] in the case u = 1. With the aim of unifying these results in [5] the following
characterization was obtained.

Theorem 1.1 ([5], Theorem 3.3.5). For every 0 < p <∞,

M : Λp
u(w) −→ Λp

u(w)
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is bounded if and only if there exists q ∈ (0, p) such that, for every finite family
of cubes (Qj)

J
j=1, and every family of measurable sets (Sj)

J
j=1, with Sj ⊂ Qj, for

every j, we have that

(1.4)
W
(
u
(⋃J

j=1Qj

))
W
(
u
(⋃J

j=1 Sj

)) ≤ C max
1≤j≤J

(
|Qj|
|Sj|

)q
.

for some universal positive constant C depending only on p and the dimension.

It is easy to see that condition (1.4) recovers u ∈ Ap if w = 1, and w ∈ Bp if
u = 1. Later on, Lerner and Pérez found in [6] other equivalent conditions to
the strong boundedness of M in Λp

u(w) in terms of the so called local maximal
operator.

In [5], the weak-type boundedness of M was also characterized for p ≤ 1. In
this case, the solution is given by condition (1.4), but with the exponent p instead
of q. However, the weak-type boundedness

(1.5) M : Λp
u(w)→ Λp,∞

u (w)

remained open for 1 < p < ∞. The main result in this paper is the following
theorem that completely solves this problem.

Theorem 1.2. If 1 < p <∞, then

M : Λp
u(w) −→ Λp,∞

u (w)

is bounded if and only if (1.4) holds. In particular,

M : Λp
u(w)→ Λp,∞

u (w) is bounded ⇐⇒ M : Λp
u(w)→ Λp

u(w) is bounded.

Finally, we have to mention that, if d = 1, Theorem 1.2 was proved in [1],
and the proof uses the explicit construction of a function, which together with
the weak-type boundedness, leads to the geometric condition (1.4). Even though
this paper is inspired on [1], we have to use a different approach, since the same
method cannot be extended to the multi-dimensional case.

Notation. As usual, we shall use the symbol A . B to indicate that there
exists a universal constant C, independent of all important parameters, such that
A ≤ CB. Also A ≈ B will indicate that A . B and B . A. It is known that the
space Λp

u(w) is a quasi-normed space if and only if w ∈ ∆2 (see Corollary 2.2 in
[4]); that is,

W (2r) . W (r).

This condition will be assumed all over the paper.
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2. Proof of the main result

This section is devoted to the proof of Theorem 1.2. In some sense, the strategy
of the proof combines ideas of [10] and [1]. We begin with the following two
lemmas.

Lemma 2.1. Let us assume that

(2.1) M : Λp
u(w)→ Λp,∞

u (w)

is bounded. Then, for every 0 < λ < 1 and every Borel set E ⊂ Rd,

(2.2) ‖χ{MχE>λ} MχE ‖pΛp
u(w)
.
(

1 + log
1

λ

)
‖χE‖pΛp

u(w)
.

Proof. Fix 0 < λ < 1. Then

‖χ{MχE>λ} MχE ‖pΛp
u(w)

=

∫ λ

0

ptp−1W (u({x : χ{MχE>λ}(x) MχE(x) > t}))dt

+

∫ 1

λ

ptp−1W (u({x : χ{MχE>λ}(x) MχE(x) > t}))dt

= I + II.

On the one hand, note that for t ≤ λ we have that

{x : χ{MχE>λ}(x) MχE(x) > t} = {x : MχE(x) > λ}.

Hence, by (2.1),

I =

∫ λ

0

ptp−1W
(
u({MχE > λ})

)
dt = λpW (u({MχE > λ}))

≤ ||MχE||pΛp,∞
u (w)

. ||χE||pΛp
u(w)

.

On the other hand,

II ≤
∫ 1

λ

ptp−1W
(
u({MχE > t})

)
dt = p

∫ 1

λ

tpW
(
u({MχE > t})

)dt
t

.
∫ 1

λ

||χE||pΛp
u(w)

dt

t
= log

1

λ
||χE||pΛp

u(w)
,

and the result follows. �

The proof of the following lemma is motived by a result in [6]. It provides the
extra decay that we shall need to go from the weak-type to the strong-type
boundedness.

Lemma 2.2. For any 0 < λ < 1 and any Borel subset E ⊂ Rd, it holds that

(2.3) χ{MχE>λ}(x) .
1

λ(1− log λ)
M
(
χ{MχE>λ}MχE

)
(x) (x ∈ Rd).
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Proof. Fix a Borel set E ⊂ Rd, λ ∈ (0, 1) and x ∈ Rd such that MχE(x) > λ.
Then there exists a cube Q so that x ∈ Q and

λ <
|E ∩Q|
|Q|

.

Since the function φ(x) = x
(
1 + log 1

x

)
is increasing in (0, 1), we have that

λ
(

1 + log
1

λ

)
= φ(λ) ≤ φ

(
|E ∩Q|
|Q|

)
=

1

|Q|

∫ |Q|
0

min(t, |E ∩Q|)
t

dt

=
1

|Q|

∫ |Q|
0

P (χE∩Q)∗(t)dt,

where P denotes the Hardy operator defined by (1.2). Hence, by (1.1), we obtain

λ
(

1 + log
1

λ

)
≈ 1

|Q|

∫ |Q|
0

(MχE∩Q)∗(t)dt

≤ 1

|Q|

∫ |Q|
0

(
χ3QMχE∩Q

)∗
(t)dt+

1

|Q|

∫ |Q|
0

(
χ(3Q)cMχE∩Q

)∗
(t)dt

≤ 1

|Q|

∫
3Q

MχE∩Q(y)dy +
1

|Q|

∫ |Q|
0

(
χ(3Q)cMχE∩Q

)∗
(t)dt.

Now, the standard estimate

χ(3Q)c(z)MχE∩Q(z) . inf
y∈Q

MχE∩Q(y) ≤ inf
y∈Q

MχE(y), z ∈ Rd,

implies that

λ
(

1 + log
1

λ

)
.

1

|Q|

∫
3Q

MχE(y)dy +
1

|Q|

∫
Q

MχE(y)dy

.M(MχE)(x) ≤M(χ{MχE>λ}MχE)(x) +M(χ{MχE≤λ}MχE)(x)

≤M(χ{MχE>λ}MχE)(x) + λ.

Finally, since {MχE > λ} is an open set, we obviously have that

λ ≤M(χ{MχE>λ}MχE)(x)

and hence the result follows. �

Equivalently, we can write the inequality (2.3) as an inclusion of level sets in the
following way.

Corollary 2.3. There exists c > 0 such that, for every Borel subset E ⊂ Rd and
every 0 < λ < 1,

{MχE > λ} ⊆ {M(χ{MχE>λ} MχE ) > cλ(1− log λ)}.

Now, in order to proceed to the proof of our main theorem, we need to recall the
following result proved in [5] (see Theorems 3.3.3 and 3.3.5).



Elona Agora, Jorge Antezana, and María J. Carro 7

Proposition 2.4. If there exists 0 < r <∞ such that∫ 1

0

λr−1W r/p
(
u({MχE > λ})

)
dλ . ||χE||rΛp

u(w),

then (1.4) holds.

Proof of Theorem 1.2. Let 0 < λ < 1 and f = χ{MχE>λ} MχE. By Corollary 2.3,
we have that

W
(
u({MχE > λ})

)
≤ W

(
u({Mf > cλ(1− log λ)})

)
,

and using the weak-type boundedness of M , it holds that

W
(
u({Mf > cλ(1− log λ)})

)
.

1

λp(1− log λ)p
‖f‖p

Λp
u(w)

.

By (2.2) we obtain that

W
(
u({MχE > λ})

)
.

1

λp(1− log λ)p−1
‖χE‖pΛp

u(w)
,

and hence, if we take r > 0 such that p/(p− 1) < r <∞, we have that∫ 1

0

λr−1W r/p
(
u({MχE > λ})

)
dλ . ||χE||rΛp

u(w)

and the result follows by Proposition 2.4. �
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