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1. Introduction

Let us assume that the random vectors (X;, ;)" € R?,j = 1,2, follow the homoscedastic nonparametric regression
models given by

Y; = mX) + & = m(X) + ojU;, (1)

where m; : R — R is a nonparametric smooth function and the error ¢; is independent of the covariate X;. Throughout
this paper, we will not require any moment conditions on the error distributions. As is usual in a robust framework, let us
assume that the errors ¢; are such that g; = o Uj;, where U; has a symmetric distribution G;(-) with scale 1, so that we are
able to identify the error’s scale, o;. When second moments exist, as the case of the classical approach is, these conditions
imply that E(gj) = 0and VAR(gj) = ajz, which means that m; represents the conditional mean, while <7j2 equals the residuals

variance, i.e., 012 = VAR(Y; — m;(X;)). The nonparametric nature of model (1) offers more flexibility than the standard linear
model when modelling a complicated relationship between the response variable and the covariate. In many situations, it is
of interest to compare the regression functions m; and m, to decide if the same functional form appears in both populations.
In particular, in this paper we focus on testing the null hypothesis of equality of the regression curves versus a one-sided
alternative. Let R be the common support of the covariates X; and X, where the comparison will be performed. The null
hypothesis to be considered is

Hp : my(x) = my(x) forallx € R,
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while the alternative hypothesis is of the following one-sided type

H; : my(x) < my(x) forallx € R and m{(x) < my(x) forx € A,
where A C R is such that P(X; € 4) > 0, forj=1, 2. (2)

When second moments exist, the problem of testing equality of two regression curves versus one-sided alternatives has
been considered by several authors such as Hall et al. (1997), Koul and Schick (1997, 2003) and Neumeyer and Dette (2005),
who extended the test proposed in Speckman et al. (2003) to allow for heteroscedasticity. On the other hand, Neumeyer
and Pardo-Fernandez (2009) introduced a simple root-n test statistic based on the comparison of the sample averages of the
estimated residuals, which were computed with respect to a linear convex combination of the kernel regression estimators
obtained from each sample.

As is well known, linear kernel regression estimators are sensitive to atypical observations, since they are based on
averaging the responses. When estimating the regression function at a value x, the effect of an outlier in the responses will be
larger as the distance between the related covariate and the point x is smaller. In this sense, atypical data in the responses in
nonparametric regression may lead to a complete distorted estimation which will clearly influence the test statistic and the
conclusions of the testing procedure. In this sense, robust estimates are needed in order to provide more reliable estimations
and inferences. Beyond the importance of developing robust estimators, the problem of obtaining robust hypothesis testing
procedures also deserves attention. In linear regression, recent developments were given, among others, by Salibian-Barrera
etal.(2016), where also references to previous robust proposals can be found. However, in the nonparametric setting, robust
testing procedures are very scarce. Recently, Dette and Marchlewski (2010) considered a robust test for homoscedasticity in
nonparametric regression. On the other hand, under a partly linear regression model, Bianco et al. (2006) proposed a test to
study if the nonparametric component equals a fixed given function, while Boente et al. (2013) considered the hypothesis
that the nonparametric function is a linear function under a generalized partially linear model. For the problem of testing
superiority between two regression curves, Koul and Schick (1997) defined a family of covariate-matched statistics and
derived its asymptotic behaviour under the null hypothesis and under root-n local alternatives. This family includes, in
particular, a covariate-matched Wilcoxon-Mann-Whitney test based on the sign of all response differences which does not
require the existence of second moments. Besides, these authors provide an asymptotic optimality theory allowing to obtain
locally asymptotically minimax tests against nonparametric root-n alternatives. To derive these properties, Koul and Schick
(1997) assume equal error distributions and equal design densities. In order to avoid these assumptions, Koul and Schick
(2003) developed a modified version of one of the covariate-matched statistics based on the response differences of Koul and
Schick (1997), but this statistic is not robust when atypical data arise in the responses, as it assumes the existence of second
moments. When considering the problem of comparing two or more regression functions, Feng et al. (2015) considered a test
for Hy versus the general alternative m; # m, using a generalized likelihood ratio test incorporating a Wilcoxon likelihood
function and kernel smoothers, which allows to detect alternatives with rate ~/nh, where h is the bandwidth parameter;
however, these authors assume the existence of second moment of the regression errors, so the applicability of their method
in a robust context is quite limited.

The aim of this paper is to propose a class of robust tests for Hy versus H; in (2) which allows for possibly different
covariate densities and error densities in the two populations. Our proposal combines the ideas of robust smoothing with
those given in Neumeyer and Pardo-Fernandez (2009) to obtain a procedure detecting root-n alternatives. In Section 2, we
recall the definition of the robust estimators. The test statistics is introduced in Section 3, where its asymptotic behaviour
under the null hypothesis and root-n local alternatives is also studied. We present the results of a Monte Carlo study in
Section 4 and an illustration to a real data set in Section 5. The Appendix A contains some auxiliary results about the robust
nonparametric estimator presented in Section 2 and the proof of our main result.

2. Basic definitions and notation

Throughout this paper, we consider independent and identically distributed observations (X, Y;)", 1 < i < nj, with
the same distribution as (X;, ¥;)",j = 1, 2. When E|Y;| < oo, the regression functions m; in (1), which in this case equals
E(Y;|X;), can be estimated by using the Nadaraya-Watson estimator (see, for example Hdrdle, 1990). To be more precise,
let K be a kernel function (usually a symmetric density) and h = h, a sequence of strictly positive real numbers. Denote
Kn(u) = h™'K(u/h). Then, the classical regression estimators of m; are defined as

-1 le

My e (X) = {Z K (x — Xq)} ZKh (x — X;) Y. (3)
=1 i=1

As mentioned in the introduction, the estimators defined in (3) are sensitive to atypical observations, since they are based
on averaging the responses. Robust estimates in a non-parametric setting need to be employed to provide estimators
insensitive to a single wild spike outlier. Several proposals have been considered and studied in the literature. We can
mention, among others, Hardle and Tsybakov (1988) and Boente and Fraiman (1989), who considered robust equivariant
estimators under a general heteroscedastic regression model. It is well known that, under a homoscedastic regression model,
root-n scale estimators can be obtained. In particular, for fixed designs, scale estimators based on differences are widely
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used, see, for instance, Rice (1984) and Hall et al. (1990). A robust version of the difference-based estimators was studied in
Ghement et al. (2008) and can easily be extended to the situation where X; are random. Effectively, as in Dette and Munk
(1998), let X(1); < -+ < Xmy).j be the ordered statistics of the explanatory variables of the jth population and denote as
Xaygs Yo i)' -+ Ky s YDHJ_J,J-)T the sample of observations ordered according to the values of the explanatory variables,

that is, X j = Xpy j.j- Then, the estimators defined in Ghement et al. (2008) can be generalized to the present situation by
taking the differences Yp, ,, ; j — Yp, ;. Thus, for instance, a robust consistent root-n estimator of o; can be obtained as

1
= ——— median |Y, i—Yp, .
V20-1(3/4) 1=t=n-1 o159 = Youss

Q)

; (4)

where the coefficient v/2&~1(3 /4) ensures Fisher-consistency for normal errors (@ ~! denotes the quantile function of the
standard normal).
Let ¥ : R — R, j = 1, 2, be bounded and continuous functions and define the function

Yi—a
M(x,a,a):E[%( p >|Xj:x]. (5)

Note that if (1) holds, ¥; is an odd function and the errors have a symmetric distribution, then A;(x, m;, o) = 0 for any
o > 0. Hence, to obtain robust estimators of m;(x), as in Boente and Fraiman (1989), we plug into (5) an estimator of the
conditional distribution of Yj|X; = x and a robust estimator of the error’s scale 5;, such as the one defined in (4). The robust
nonparametric estimator of m;(x) is given by

the solution ;(x) of A;(x, M;(x),3}) = 0, (6)
where
X(xao)—ik (x x)w(y”'_a> 7
i(X,a,0) = h (X — &) ¥ .
] L 1) J o

Note that different score functions ¥; can be used in the two samples, in this way, we provide a more flexible setting. In the
Appendix A, we give general asymptotic results related to the estimator ﬁj (x) that will be used in the study of the asymptotic
behaviour of the test statistic considered below.

3. The test statistic

As mentioned in the introduction, we wish to develop a class of robust tests for Hy versus Hy in (2) which allows to
detect root-n local alternatives. As in Neumeyer and Pardo-Fernandez (2009), let m be any function such that m;(x) <
m(x) < my(x), for all x € R, and define the random variables, forj = 1, 2,

gjo = Y; — m(X)).

Let ¥ be an increasing function such that E[¥ (¢;/0)] exists for any 0 > 0 and j = 1, 2, which will be the case if ¥ is a
bounded function. Moreover, let w; : R — R be a non-negative weight function with compact support §; C R such that
A N 8 # . Since ¥ is increasing, we obtain

oo () wow] = o (I ]

o
X1) —m(X
—F |:w1(X1)IE {q/ (81 + my(X;) — m( 1)) |X1”
o
&1 &1
=Elwmene{v (2) 1x}] =¥ (2)] Bl (®)
where the last equality follows since ¢; and X; are independent. Analogously, we can show that, for any o > 0,
E[v () o)) z2[v (2)] Ewate)) (9)

Under the null hypothesis Hy, the inequalities in (8) and (9) are actually equalities. However, under the alternative
hypothesis, either (8), (9) or both inequalities must be strict when ¥ is strictly increasing and P(X; € 4 N §;) > 0. More
generally, if E[¥ ((¢j —a)/o)] < E[¥ (¢j/0)] forany a > 0and E[Y¥ ((¢j —a)/o)] > E[¥ (¢j/0)] forany a < 0, then we also
have strict inequalities under H;. This holds, for instance, whenever ¥ is a nondecreasing function, strictly increasing in a
neighbourhood of 0 and the errors assign positive mass to that neighbourhood. Besides, if E[¥ (U;)] = E[¥ (¢;/0;)] = 0, for
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j = 1, 2, which happens, for instance, when ¥ is an odd function and the errors have a symmetric distribution, as is usual
when considering score functions in regression models, we get the following chain of equalities and inequalities

E(|— |JwiX) | <E|¥|— )| EwiXD]=0=E|¥|— )| Ew,X)] <E[{¥|— |Jw(Xz)]|,
oz} o1 [op) 02

where under the null hypothesis all are equalities, but under the alternative one or both inequalities are strict. Therefore, to
distinguish H; from Hy it seems reasonable to compare E[¥ (g19/071) w1(X1)] and E[¥ (g20/02) w2 (X2)].

It is clear that to perform the test, consistent estimators of m and oj, as those described in Section 2, are needed. Given
independent observations {(X;, Y;)",i = 1,...,n;},j = 1, 2, such that (Xj, Y3)" ~ (X;, Y;)", denote n = n; + ny and let
ﬁj(x) be the robust estimator of m;(x) given in (6). For a given x € R, the estimator of the common regression function
under the null hypothesis is defined as

m(x) = p1(x)my(x) + p2(x)My(x),

where 0 < p;(x) < 1is a given function and p,(x) = 1 — p;(x). The test statistic to be considered is

nny 172~ - niny 1/2 <
T=(22)" Eo-Fo) = (—0)  Fo, (10)
n n
where
nj o~
~ 1Y Y — m(X;)
Ejp = — 14 (% wj(Xij)o
n = Jj

Note that if 5 LS oj and m; is uniformly consistent over 4§, for £ = 1, 2, then Eo & Eo, where

(o)) o1

Hence, the test will be consistent if E[¥ (U;)] = 0 and if, for instance, ¥ is nondecreasing and strictly increasing in a
neighbourhood 'V of 0 (as is the case of the Huber’s score function) and the errors assign positive mass to V. Besides the
Huber’s score function ¥ (t) = min(k, max(—Kk, t)), other possible choices for ¥ are ¥ (t) = t/\/1+ t?/k?* which is a
smooth approximation of the Huber function and ¥ (t) = k arctan(t/k).

The null hypothesis will be rejected for large positive values of the test statistic T. To perform the test for a given
significance level, critical values obtained from the (asymptotic) null distribution of T are needed. For that reason, in the
sequel, we will analyse the asymptotic distribution of the test statistic. The following assumptions are needed:

Al ¥ : R — Risabounded and nondecreasing function. Furthermore, ¥ is twice continuously differentiable with bounded
derivatives. Its first and second derivatives, ¥' and ¥"”, are such that v; = E[¥'(U;)] > 0,forj = 1, 2,and {1 (u) = u¥’(u)
and &, (1) = u¥” (u) are bounded.

A2 Forj = 1,2,% : R — R are bounded and twice continuously differentiable functions, with bounded derivatives.
Besides, the first and second derivatives, sl/j/ and llfj”, are such that v;; = IE[lI/j’(Uj)] # 0,and {j(u) = ullfj/(u) and
¢2,j(w) = u¥"(u) are bounded.

A3 Forj = 1,2, w; : R — R are bounded non-negative continuous weight functions with compact support §; C R such
that A N §; # @. The function p4(x) is continuous in a neighbourhood of 4;.

A4 E[¥,(aUy)] = E[¥,(aUy)] = E[¥(aUj)] =0foranya > O0andj =1, 2.

A5 Forj = 1, 2, the regression function m; is twice continuously differentiable in a neighbourhood of the support, R, of the
density of X;.

A6 Forj = 1, 2, the random variable X; has a density f; twice continuously differentiable in a neighbourhood of the support
8, of wy, for £ = 1, 2, and such that i(f;) = infxggjj}(x) > 0and inftegjf3_j(t) > 0.

A7 The kernel K : R — R is an even, bounded and Lipschitz continuous function with bounded support, say [—1, 1] and
such that [ K(u)du = 1.

A8 The sample sizes are such that nj/n — «; with0 < k; < Tasn =n; +n, — oo.

A9 The bandwidth sequence is such that h, — 0, nh,/logn — oo, /nh?/logn — oo, nh* - 0asn — oo.

Assumptions A3 and A5 to A9 are standard conditions in the nonparametric literature, especially when dealing with
testing problems. On the other hand, A1 and A2 are usual requirements in a robust setting. In particular, the condition
v; > 0in assumption A1 ensures that we get order n'/2 for the test statistic. Assumption A4 is a standard assumption to
avoid requiring a root-n order of convergence to scale estimators. It holds, for instance, when ¥}, j = 1, 2, and ¥ are odd
functions and the errors U; have a distribution G; symmetric around 0. Further comments regarding this assumption are
included in the following remark.
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Remark 1. In the classical setting, the target is to make inferences on the conditional mean E(Y;|X; = x) and this quantity
is obtained by choosing ¥;(t) = t in (5). Hence, A4 reduces to the usual requirement that the errors have zero mean. To
avoid moment conditions, the practitioner may choose, for instance, ¥;(t) = sgn(t). In this case, inferences are made on
the conditional median and A4 means that the error medians are 0. For general score functions ¥, the target is to decide
whether the solutions rj(x) of A(x, a, 0;) = 0 satisfy Hy or H;. When ¥; is a strictly increasing function, rj(x) is the so-called
robust conditional location functional as introduced in Boente and Fraiman (1989), who noted that this functional provides
a natural extension of the conditional expectation.

Assumption A4 implies that forj = 1, 2
E[¥;(Upl =0 and E[¥(Uj]=0. (11)

The first equation in (11) means that we have centred the errors with respect to the M —location functional related to ¥;
as defined in Maronna et al. (2006) and ensures that r; = m;. This property is usually known as Fisher-consistency and
guarantees that the target functionals to be compared are the quantities of interest, in our case, the regression functions m;
in model (1). On the other hand, the condition E[¥ (U;)] = 0 means that the M —location functional related to ¥ also equals
0 and entails that the test based on the statistic T defined in (10) leads to a consistent test for Hy : my = m,.

To see when (11) holds, we distinguish two situations depending on the symmetry of the error distributions:

e Symmetric error distributions. Assume that (Yj, X;) satisfies the nonparametric functional regression model (1) and the
distribution G; of U; is symmetric around 0. As mentioned above, (11) holds for any choice of odd functions ¥; and ¥
implying that all robust location conditional estimators are estimating the same quantity, i.e., r; = m;.

e Asymmetric error distributions. When the errors have asymmetric distributions, the situation is somewhat different. As
an illustration, assume that W; has a log-Gamma distribution, that is, V; = exp(W;) ~ I'(B;, B;), where we have used
the mean parametrization, i.e, E(V;) = B; and VAR(V}) = ;. Then, E(W)) = pu; = —log(8)) + I''(8))/ I (B;), while the
median of W is 1t; = — log(B;j) + log(a;), with g; the median of a I"(8;, 1) distribution. In this asymmetric situation, the
classical estimators implicitly consider the model Y; = m;(X;) + o;U;, where U; = W; — ;. On the other hand, if the sign
function is chosen as score function, the robust locatlon functlonal rjis glven by rj(x) = m;(x) +¢; with¢; = a](u, i),
so the above model may be written as Y; = rj(X;) + OJUJ where now U] W; — [i; to ensure that the errors Uj satisfy
(11). Note that the same score functions ¥; = ¥, = ¥, the same shape parameters and the same scale oy = o, need to
be considered to guarantee that c; = ¢, so that comparisons between populations are made on the functions of interest.
The same arguments apply to other distributions. If no assumption on symmetry is made, an additional assumption of
identical errors distribution need to be made to ensure that the difference functions r; — m; and r, — m, are equal and
constant, when ¥; = ¥, Besides if in addition ¥; = ¥, as mentioned above, the model also assumes through (11) that
the errors are centred with respect to the M —location functional related to ¥, so that r; = m; and the test statistic defined
in (10) will still lead to a consistent test for Hg : m; = my.

For the sake of simplicity, we are assuming that the same bandwidth is used when estimating m; and m,. Similar results
can be obtained when different bandwidths are considered as far as both satisfy A9.

The next theorem gives the asymptotic distribution of the test statistic under the null hypothesis and under local
alternatives.

Theorem 1. Assume that (1) and A1 to A9 hold. Let G; be a consistent estimator of oy, j = 1, 2. Then,

(a) Under Hy : my = my, we have that T 2 N(O, (TT) where oT = /qrz + qu with

Xj) | ojvs_j Vi 2
7 =E (w uy) ¢ { — _~(x~)f_~(x~)—fw~(x~)f~(x~)}+l1/ Uj w‘(X')) : (12)
j |: ()f](X) 63]“311311 U”JJJJ (])]]
(b) Under H{, T L .

(c)Let A : R — R besuch that A > 0 forallx € R.Then, under Hy, : my(x) = my(x) + n~"/? A(x), we have that

T2 N(c, of) where

c= (m:«z)”;—zm [AC)w (X)p1 (%)] + w«z)”z;—im [AG) ws (X)p2 (X))

Remark 2. Theorem 1 entails that the asymptotic null distribution of the test statistic is a Normal random variable whose
variance depends on unknown quantities. In order to apply the test in practice, a consistent estimator of JTZ, say 8}2, is
required. Once the estimator is available, a test with asymptotic significance level « can be obtained by rejecting the null
hypothesis when the observed value of the test statistic T given in (10) exceeds the critical value z;_, 07, where z;_,, is the
(1 — «@)-quantile of a standard Normal.
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A consistent estimator of o7 can easily be constructed as

~2

~D ~D
oy =K1T] + K275,
where, forj = 1, 2,%; = nj/n and

-~

= 1 & ~ piXyp) [ Vs ~ Vj ~ ~ 2
Tt = ” ; [ij,-j o) {aﬁj,j w3 (X)fs—i (Xy) — ﬁ“w,-(x,-,-)f,(x,-j)} + wuu-)w,-(xij)] :

with

Yy — mi(X;) 1L 1L 1
U, — i — ) 5 U 5o U Fix) = — _ X,
Uj = 5 , V= " ;:] vi(Uy), Vjj = " i; Y (Uy) and fi(x) = n ;:] Kn(x — Xjj).

Remark 3. LetE(x) = (ajv3_j)(og_jvj)*lpj(x)wg_j(x)f3_j(x) + p3—j(®)w;(x)fj(x). In the particular case ¥; = ¥, = ¥, we
have that v;; = v; and therefore the terms rjz, j =1, 2, that appear in the variance of the asymptotic distribution of the test
statistic reduce to 7> = E [W2(U)] E [ f2(X) /f*(X)].

Remark 4. Statement (c) in Theorem 1 gives the asymptotic distribution of the test statistic under local alternatives and
shows that the test detects local alternatives converging to the null hypothesis at the parametric rate n~'/? whenever
E[AX2) w2 (X2)p1(X2)] > 0 or E[AX)w1(Xq)p2(X1)] > 0.

Remark 5. I/t\is worth noticing that the procedure introduced in this paper may be extended to deal with heteroscedasticity,
by defining Ejo as n;~! Z:L ¥ ((Yyj — m(Xy))/0;(X;j)) wj(Xy), where Gj(x) stands for a robust estimator of the conditional
scale function oj(x). However, to derive the asymptotic behaviour of the corresponding test statistic, which allows to define
the critical values, additional assumptions including a uniform Bahadur expansion for &;(x), as that given for ﬁj in (A.7), will
be needed. We leave this important and challenging problem for future research.

4. Monte Carlo study

In this section, we present the results of a simulation study devoted to illustrate the finite-sample performance of the
testing procedure described in Section 3 and to compare its behaviour with that of the test defined in Neumeyer and
Pardo-Fernandez (2009) and the covariate-matched Wilcoxon-Mann-Whitney statistic given in Koul and Schick (1997).
More specifically, for the robust procedure, we use the approximation of the critical values given in Remark 2. In order to
make the comparison fair, in the case of the method by Neumeyer and Pardo-Fernandez (2009) we restrict ourselves to the
homoscedastic case, so we estimate the asymptotic variance of their test statistic under the assumption of constant variance
(see their Theorem 1). Tables and figures report the observed frequency of rejections among 1000 simulated data sets with
significance level 0.05. We set m;(x) = x as the regression function in the first population and consider two possibilities for
the second population, m,(x) = m;(x) + A, and my(x) = my(x) + Ap(sin(2wx) + 1). We choose w; = w, = I 1y and
p1(x) = 0.5. From now on, T, stands for the test proposed in Neumeyer and Pardo-Fernandez (2009), while W* denotes the
covariate-matched Wilcoxon-Mann-Whitney statistic defined in Koul and Schick (1997), where we will also use W)y when
indicating the bandwidth h used in its computation.

As mentioned above, the conducted numerical studies aim to compare the performance of the testing procedure de-
scribed in Section 3 with the testing procedures based on T, and W};. Several scenarios are considered. In Section 4.1, a
common design distribution is considered and the aim is to analyse the performance under different contaminations to eval-
uate the robustness of the procedure in terms of level and power. In this case, the central model, i.e., the uncontaminated
observations correspond to errors having a normal distribution. Section 4.2 summarizes the results of a simulation study
conducted to evaluate the performance of the testing procedure described in Section 3, when the errors have an asymmet-
ric distribution. As mentioned in Remark 1, to ensure that all tests are making inferences on the same objects, we will take
¥, = ¥, = ¥ and errors ¢; with the same distribution. No outliers are introduced in this case, since the aim is to evaluate the
validity of our proposal when the usual assumption in robustness of symmetric errors is violated. Finally, Section 4.3 consid-
ers a situation where different distributions for the design points and the errors are considered between populations. Again,
no contamination is considered in this case, since the aim is to study the stability of the procedures under this setting. Recall
that the test based on T, and that described in Section 3 do not make assumptions of a common design density or acommon

e . . . . e d d
error distribution, while the covariate-matched Wilcoxon-Mann-Whitney statistic Wy assumes that X; =X, and &1 = ¢;.

4.1. Design points with common density

In this study, the covariates X; are generated with uniform distribution on R = (0, 1). We choose w; = w;, = (o 1) and
p1(x) = 0.5. The following scenarios were considered to simulate the regression errors:
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o The first scenario, denoted as Cy, corresponds to the situation where &; ~ N(0, af), with o7 = 0.5 and o5 = 0.75. In this
case no outliers will appear in the data.
o Next, we consider a situation, labelled as 77, in which ¢; ~ €(0, 25<7j2), where € (u, o%) stands for the Cauchy distribution

with location u and dispersion o2. In this case the errors have no moments.
e We also consider a situation with contaminated gross-errors, labelled as C; x, ,, in which & ~ (1 — 7;) N(0, ojz) +

7 N(O, 25<7jz). We choose 71 = 0,0.1 and 7, = 0,0.1 and select different combinations of the contaminating
probabilities, so one or both samples contain outliers.

The robust procedure involves selecting score functions both in the estimation step and when computing the test statistic,
as well as choosing smoothing parameters to perform the nonparametric estimation of the regression functions. To analyse
the influence of the score functions and the bandwidth choice on the level and power of the test, a preliminary study was
carried on. From now on, the results corresponding to our proposal are labelled as Tg y u, Tr 1,1 Tr,an and Tg o 1, Where the
second index indicates the ¥ —function used, H being the Huber’s function with tuning constant k; = 1.345 and A the
function v, = karctan(t/k), with k = 0.9, and the third index denotes the score function used in the estimation process,
that is, H corresponds to Y 4, with k = ky = 1.345 while T to the bisquare Tukey’s function with constant k; = 4.685.
The results corresponding to Cp, to errors with Cauchy distribution and to contaminations C; , », are reported in Tables
S.1to S.3 included in the supplementary material file (see Appendix B). These tables reveal that the results obtained for the
test statistics based on the selected bounded score functions are almost equal for all models, independently of the selected
score function. Therefore, in the sequel, when considering the robust proposal introduced in this paper, we will restrict our
discussion to the results based on Ty ; 4.

On the other hand, Tables S.1 to S.3 also show that the choice of the smoothing parameters required to construct the
nonparametric estimators does not have a significant impact on the tests either, as the results obtained with different
bandwidths are almost equal. Nevertheless, in practice, a data-driven mechanism to choose the required smoothing
parameters is desirable. In the numerical studies to be described below, we perform the tests with data-driven bandwidths
chosen by least-squares cross-validation for T, and by robust cross-validation for Ty 4 4, as follows. Taking into account that
the classical cross-validation criterion (see, for example Hardle, 1990) tries to measure both bias and variance, Bianco and
Boente (2007) and Boente and Rodriguez (2010) considered, for partly linear autoregression and partly regression models,

a new measure that establishes a trade-off between robust measures of bias and variance. Let m]H) (x) be the smoothers

computed with bandwidth h using all the data except (Yj;, X;) and denote;;(h) = Y;; —m}fi) (Xij). Let w, and o, denote robust
estimators of location and scale, respectively. For each sample, the robust cross-validation criterion consists of choosing h
as the minimizer of

N = u; EM) + o EM).
As location estimator, (,, we choose the median, whereas o, is taken as a T —scale estimator.

In order to check the consistency of the test under local alternatives converging to the null hypothesis at a parametric
rate, we consider alternatives with A, = n="/2A, where A = 0 (null hypothesis)and A = 0.5, 2, 4, 6, 8 (local alternatives)
and sample sizes ny, n, = 50, 100. Tables S.4 to S.7 available in the supplementary material and Figs. 1 and S.1 of the
supplementary file illustrate the behaviour of the tests based on T, and T 4 y in terms of level approximation and power
(see Appendix B). All figures depict the results under the central model C; in order to have a common reference to study the
effect of introducing distributions with no moments or contaminated data. To analyse the level sensitivity of the procedure,
we considered an additional contamination model denoted C, . in which just one observation is modified as follows. We
first simulate data as in scenario Cy and we order the covariates of the first population as Xy ; < - -+ < X(s,),1. Denote as
Xay,1, Yo, 0% - X1 YDn .1)" the sample of observations ordered according to the values of the explanatory variable.
Then, we modlfy the observation corresponding to the median of the covariates as X = =Xp,, .1 =0.5andYp M= =c.

Under model Cy, both the classical test and the robust test perform almost equally, with a correct approx1mat10n of the
level and power increasing as the deviation from the null hypothesis gets larger. Since root-n local alternatives are taken,
the power is similar for all choices of sample sizes and shows the tests ability to detect these kinds of local alternatives.
When the errors have a Cauchy distribution (model 77), the robust test empirical size is close to the nominal level, while the
test T., provides an underestimated level. Moreover, T, presents almost no power, while, although some loss is observed
with respect to Cp, the power behaviour of Ty ,  is correct since it is able to detect the considered alternatives. Under the
scenarios with contaminated data C; , »,, both statistics approximate correctly the level when the sample sizes are equal,
but only the robust one gives a correct level approximation when the samples are unbalanced. Moreover, the robust test is
more powerful. Finally, scenarios C; . produce a bad approximation of the level for T, yielding to a very liberal test when
¢ < 0 and a very conservative test when ¢ > 0 as shown in Fig. 2. On the other hand, Ty y 4 also presents some deviations
from the nominal level, specially when the samples are unbalanced and ¢ > 0, but these deviations are less serious than
those of T,. In this scenario, the power behaviour of Ty y , is almost the same as that obtained with normal errors.

With respect to the behaviour of the test based on the covariate-matched Wilcoxon-Mann-Whitney statistic W*, since
there is no automatic way to choose the bandwidth, we report the results obtained when h = 0.1, 0.15 and 0.2. Tables
S.4 to S.7 show that under Cy and 77, the tests based on Ty y » and W* perform very similarly, as both produce a good level
approximation and similar power (in terms of power, Ty y 4 slightly outperforms W* under Cy, and the contrary happens
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Fig. 1. Frequencies of rejection of T, (black/grey lines) and Ty y , (blue/light blue lines) using the data-driven bandwidths when n; = n, = 50 (left) and
n; = ny = 100 (right) and the local alternatives m,(x) = m;(x) + An~"/2, with n = n; + n,. In all cases, solid black and blue lines represent the power
under Co. Top: Black and blue lines with filled circles give the power under 7;. Centre: Grey and light blue lines give the under C; , r,, where the triangles
stand for (71, m2) = (0, 0.1), the inverted triangles for (71, 72) = (0.1, 0) and the filled ones for (71, 73) = (0.1, 0.1). Bottom: Grey and light blue lines
give the power under G, ., where the triangles stand for c = —4, the inverted triangles for c = 4. The solid horizontal line indicates the 5%-level. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

under 77). Under scenarios Cy x, r,, Tr.u,n approximates the level well, whereas W* underestimates the level when the
samples are unbalanced (n; = 50, n, = 100); the power of Ty is higher than that of W*. Similar conclusions can be
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Fig. 2. Empirical size of T, (filled circles) and Ty , 4 (blue triangles) using the data-driven bandwidths when ny = n, = 100, when the data are
generated under C; .. The horizontal solid lines are the nominal level « = 0.05 and the dotted and dashed lines represent the acceptance region for
testing if the empirical size is significantly different from the nominal level, at level 0.05 and 0.01, respectively. The empirical size of the covariate-matched
Wilcoxon-Mann-Whitney statistic W)y is plotted in maroon for different values of h (squares for h = 0.1, stars for h = 0.15 and inverted triangles for
h=0.2).

raised for scenario C, _4. Finally, under G, 4, both test statistics tend to underestimate the level, especially with unbalanced
samples. To better understand this behaviour, in Fig. 2 we show the proportion of rejections under C, . for several values
of c when A = 0 and n; = n, = 100. It seems that the size distortion is less serious for the robust test, as its empirical
size remains stable around the nominal level. We hence conclude that the proposed test behaves better than the covariate-
matched Wilcoxon-Mann-Whitney test when outliers appear in the sample. Another advantage of our proposal is that it
does not require a common density for the design points as does the covariate-matched statistic.

4.2. Asymmetric errors

The goal of this section is to study the performance of the test defined in this paper, when the errors have an asymmetric
distribution. In the considered framework, the test statistic T defined in (10) still provides a consistent test to test Hy : m; =
my, since ¥; = ¥, = ¥ and (11) holds for the centred errors, as explained in Remark 1. Recall that the proof of Theorem 1
requires the stronger assumption A4 which may not hold for the centred log-Gamma errors, so we cannot ensure that the
testing procedure described in Remark 2 achieves the nominal level for the Huber’s score function. For that reason, this
numerical study was conducted to analyse the level and power sensitivity of the test based on Ty y 4 under asymmetric
errors.

We generate covariates X; according to a uniform distribution on R = (0, 1), while the errors ¢; = o; U; follow a log-
Gamma distribution, that is, V; = exp(U;) ~ I'(B;, B;), where for any 8 > 0 and u > 0, we denote by I"(8, ) the
parametrization of the Gamma distribution given by the density f (v, 8, u) = B# vA~1 exp(—=Bv/wW){u? I'(B)} Uyso.
Note that, if V ~ I'(8, i), we have that E(V) = u and VAR(V) = 1?/B, where g is a shape parameter.

We choose f; = B, = 8 = 3aswellaso; = 0 = o0 = 1. As mentioned in Remark 1, the main reason for
taking equal values for f; and oj is to guarantee that we are still testing m; = m, against m; < m,. The fact that the
errors have an asymmetric distribution introduces a shift in the functions solution of (5). For instance, in the classical
situation, E(Y;|X; = x) = m;(x) + o E(U)), hence the functions to be compared are rj(x) = m;(x) + ocE(U;), where
E(U;) = —log(t) + d(r) with d(z) = I'’(z)/I"(z) being the digamma function. For t = 3, d(r) =~ 0.923 meaning that
1j(x) 2~ m;(x) — 0.176 0. On the other hand, the M —location functional related to the Huber’s score function with tuning
constant ky; = 1.345is uy > —0.143, so the centred errors satisfying (11) are U; — j,4 or equivalently the robust conditional
location functional solution of (5) is given by rj(x) >~ m;(x) — 0.143o.

We only report the results when my(x) = m;(x) + An~'/?, since similar ones are obtained using the local alternatives
my(x) = m;(x)+An~"2(sin(2rx)+1). The sample sizes considered are n; = n, = 50andn; = n, = 100. We also compare
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Table 1
Frequencies of rejection under the null hypothesis and local alternatives of T, Ty y.x and W* when the errors have a log-Gamma distribution and
my(x) = my(x) + An~ /2,

h ny =ny =50 ny =ny = 100
A 0 0.5 2 4 6 8 0 0.5 2 4 6 8
0.1 T 0.062 0.123 0.485 0.934 0.999 1.000 0.055 0.101 0.465 0.937 1.000 1.000
Tr,uu 0.080 0.145 0.506 0.933 1.000 1.000 0.058 0.113 0.498 0.944 0.999 1.000
w* 0.047 0.093 0.415 0.898 0.996 1.000 0.050 0.090 0.425 0.932 0.999 1.000
0.15 T 0.052 0.113 0.495 0.941 0.999 1.000 0.056 0.102 0.467 0.939 1.000 1.000
Tr,u,n 0.070 0.132 0.501 0.939 1.000 1.000 0.060 0.108 0.490 0.946 0.999 1.000
w* 0.047 0.099 0.446 0.909 0.999 1.000 0.053 0.098 0.448 0.937 0.999 1.000
0.2 Te 0.055 0.110 0.500 0.943 0.999 1.000 0.057 0.101 0.474 0.939 1.000 1.000
Teun 0.063 0.130 0.501 0.939 1.000 1.000 0.060 0.108 0.488 0.944 0.999 1.000
w* 0.046 0.104 0.462 0.923 0.998 1.000 0.054 0.099 0.455 0.940 1.000 1.000
0.25 T 0.054 0.106 0.505 0.944 0.999 1.000 0.056 0.101 0.475 0.939 1.000 1.000
Tr,u,n 0.067 0.126 0.497 0.937 0.999 1.000 0.061 0.107 0.485 0.944 1.000 1.000
w* 0.047 0.105 0.460 0.926 0.998 1.000 0.056 0.102 0.463 0.938 0.999 1.000
0.3 T 0.055 0.107 0.507 0.946 0.999 1.000 0.057 0.103 0.477 0.940 1.000 1.000
Te,u,n 0.055 0.125 0.488 0.935 0.999 1.000 0.059 0.106 0.478 0.947 1.000 1.000
w* 0.048 0.110 0.469 0.928 0.998 1.000 0.057 0.098 0.466 0.938 0.999 1.000
0.35 Ta 0.054 0.109 0.506 0.946 0.999 1.000 0.055 0.105 0.477 0.942 1.000 1.000
Tr,uu 0.053 0.123 0.486 0.936 0.998 1.000 0.059 0.106 0.475 0.946 1.000 1.000
w* 0.046 0.112 0.472 0.927 0.998 1.000 0.056 0.100 0.464 0.938 0.999 1.000
0.4 T 0.056 0.112 0.506 0.944 0.999 1.000 0.056 0.104 0.474 0.942 1.000 1.000
Te,u,n 0.051 0.125 0.486 0.936 0.998 1.000 0.059 0.106 0.474 0.944 1.000 1.000
w* 0.044 0.115 0.476 0.929 0.998 1.000 0.055 0.098 0.458 0.937 0.999 1.000
0.5 Ta 0.057 0.114 0.498 0.941 0.999 1.000 0.055 0.104 0.467 0.942 1.000 1.000
Teun 0.051 0.131 0.479 0.936 0.997 1.000 0.056 0.108 0.473 0.939 1.000 1.000
w* 0.043 0.118 0.479 0.932 0.998 1.000 0.056 0.099 0.463 0.936 0.999 1.000
hey T 0.052 0.113 0.503 0.934 0.999 1.000 0.053 0.104 0.467 0.940 1.000 1.000

Ty, 0.061 0.130 0.498 0.935 0.998 1.000 0.058 0.107 0.478 0.944 1.000 1.000

our procedure with the covariate-matched Wilcoxon-Mann-Whitney statistic W* defined in Koul and Schick (1997). We
choose different smoothing parameters varying from 0.1 to 0.5 to compute Wy For fair comparisons, we report the observed
frequencies of rejection of T., and Ty , y using the same bandwidth parameters and also the results obtained using least-
squares cross-validation bandwidth for T, and the robust cross-validation smoothing parameter for Ty  y, denoted by he,.
Table 1reports the obtained frequencies of rejection. All procedures lead to a similar power behaviour. It is worth noting that
in most situations the covariate-matched Wilcoxon-Mann-Whitney statistic leads to an empirical size closer to the nominal
one, although the differences obtained with T, and Ti y » are well within the Monte Carlo margin of error. In particular,
for W* and T, the smallest bandwidth 0.1 leads to the best empirical size, while for the robust procedure Tg y 4 a larger
bandwidth seems preferable. On the other hand, the cross-validation choice seems to affect more the level performance
of Tg u.u than that of T, which suggests that in this situation a robust cross-validation procedure based on a robustified
deviance may be a better choice.

4.3. Design points and errors with different distribution

As mentioned above, the aim of this section is to compare the performance of the tests based on T, and Ty y 4 When
different distributions for the design points and the errors are considered between populations. In this study, the covariates
X; are generated from Beta distributions on R = (0, 1), X; ~ Be(Bj1, Bj2),j = 1, 2 (in particular, we also consider the
uniform distribution, which is obtained when 811 = 12 = 1). The following scenarios were considered to simulate the
regression errors:

o The first scenario, denoted 4, corresponds to the situation where ¢; ~ N (0, sz), with oy = 03 = 0.5.

e In the second scenario, denoted 4,, the errors also have different distributions, that is, we choose ¢; = o;U; where
U; ~ N(0,1) and U, ~ D&, where D& stands for the double exponential distribution with density exp(—|x|)/2 and
01 =0 = 0.5.

As in Section 4.2, we only report here the results obtained when m,(x) = m;(x) + An~"2, since similar results are

obtained with m,(x) = m;(x) + An~/2(sin(2x) + 1). Table 2 reports the results for n; = n, = 50 and n; = n, = 100
and different values of ;. The bandwidths were selected by using cross-validation as in Section 4.1 when estimating the
regression function. The test statistics produce very similar results, both in terms of level approximation and in power. The
case X; ~ Be(0.5, 0.5) and X, ~ Be(2, 2) gives a slight overestimation of the size.
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Table 2
Frequencies of rejection under the null hypothesis and local alternatives of T, and Ty under §; and §,.

ny =ny; =50 ny =ny = 100

A: 0 0.5 2 4 6 8 0 0.5 2 4 6 8
scenario 4; with X; ~ U(0, 1) and X, ~ Be(0.5, 0.5)

Te 0.042 0.108 0.651 0.984 1.000 1.000 0.054 0.112 0.623 0.989 1.000 1.000

Troun 0.045 0.114 0.656 0.984 1.000 1.000 0.050 0.130 0.629 0.986 1.000 1.000
scenario 4; with X; ~ U(0, 1) and X, ~ Be(2, 2)

T 0.044 0.122 0.625 0.984 1.000 1.000 0.048 0.115 0.606 0.992 1.000 1.000

Touu 0.050 0.126 0.616 0.981 1.000 1.000 0.054 0.120 0.609 0.994 1.000 1.000
scenario 4; with X; ~ Be(0.5, 0.5) and X, ~ Be(2, 2)

TeL 0.065 0.137 0.606 0.971 0.999 1.000 0.057 0.130 0.577 0.966 1.000 1.000

Tru,n 0.066 0.149 0.622 0.971 1.000 1.000 0.068 0.128 0.584 0.969 1.000 1.000
scenario 4§, with X; ~ U(0, 1) and X, ~ Be(0.5, 0.5)

Tey 0.052 0.108 0.452 0.921 0.998 1.000 0.048 0.108 0.484 0.930 0.999 1.000

Teun 0.048 0.116 0.507 0.944 1.000 1.000 0.051 0.125 0.534 0.957 1.000 1.000
scenario 4, with X; ~ U(0, 1) and X, ~ Be(2, 2)

T 0.059 0.111 0.465 0.916 0.998 1.000 0.056 0.117 0.510 0916 0.997 1.000

Txou,n 0.062 0.124 0.541 0.955 0.998 1.000 0.063 0.137 0.574 0.969 1.000 1.000
scenario 4§, with X; ~ Be(0.5, 0.5) and X, ~ Be(2, 2)

T 0.067 0.130 0.489 0.911 0.997 1.000 0.066 0.115 0.461 0.906 0.996 1.000

Troun 0.069 0.143 0.551 0.944 0.999 1.000 0.065 0.115 0.521 0.941 0.999 1.000

5. Areal data analysis

Neumeyer and Pardo-Fernandez (2009) used a data set from the Data Archive of the Journal of Applied Econometrics
to illustrate their testing procedure. The data are related to total expenditures of several Dutch households. Particularly,
they tested for the equality of the regression curves that explain the relationship between the covariate ‘log of the total
expenditure’ and the response ‘log of the expenditure on food’ according to the number of household members. The
nature of the considered variables justifies the use of a one-sided type test, since it is expected that the food expenditure
increases (or, at least, does not decrease) as the size of the household increases. When comparing the households of 3
members (45 observations) and 4 members (73 observations), Neumeyer and Pardo-Fernandez (2009) reported a p-value
0.092.

To evaluate if the one-sided test described in Section 3 can be applied for this data set, we first performed the test
described in Dette and Marchlewski (2010) to check homoscedasticity in both populations, using the identity function
and the Huber’s function, which leads to a more resistant procedure, to compute both the regression estimators and
the test statistic. In both cases the obtained p-values were larger than 0.5 for the households of 3 and 4 members. We
then applied the test procedure described in Section 3 with the Huber’s score function, with tuning constant k; =
1.345, both to estimate and to compute the test statistic, Ty u 4, as well as the test statistic described in Neumeyer and
Pardo-Fernandez (2009) assuming homoscedasticity, T,. The obtained p-values are 0.125 and 0.102 for T, and Ty i,
respectively.

Our purpose here is to illustrate the effect of including an outlier in the data set, in a similar manner as we did under
scenario C; ¢ in our simulation study. We artificially add an observation of the form (10.74, c) to the first sample and then
perform the tests with bandwidths chosen by cross-validation as described in Section 4. The value 10.47 corresponds to the
sample median of the first population covariate. The obtained p-values of the tests based on T, and T y 4 are reported in
Fig. 3 for values of c ranging between 6 and 10. We can observe that the p-values of the classical test present a great variation
depending on the value of the contamination c, even leading to a rejection of the null hypothesis when ¢ € [6, 7]. On the
other hand, the robust test produces more stable p-values, all of them above 0.05. Figs. S.2 and S.3 in the supplementary
material lead to the same conclusions when fixed bandwidths are considered (see Appendix B). Moreover, these figures show
that, except for c = 9.5, which is a very extreme contamination, the p-values of the robust test are very stable independently
of the bandwidth choice, with values always between 0.05 and 0.10.

Finally, we have also considered the situation in which both populations are contaminated in a similar way as described
above. Fig. 4 illustrates the p-values behaviour when adding a contaminating observation at the sample median covariate
with response taking the value c; in the first population and ¢, in the second one. The contaminating values ¢; vary on a grid
of points between 6 and 11 with a step of 0.25, since the response should be smaller or equal to the covariate, ‘log of the total
expenditure’, whose maximum is 11.5. The bandwidths were selected using cross-validation. Under this contamination, the
p-values of the classical test vary in the range [0.033, 0.659] showing its sensitivity and leading to different conclusions
depending on the contamination value. Indeed, in a subset of the region R = {(cy, ¢;) suchthat6 < c¢; < 7.75and 8.5 <
c; < 11}, the p-values of the test based on T, leads to rejection at 5% level, so the conclusion with respect to the clean data
set is reversed. On the other hand, the test based on Ty , 4 is more stable and does not reject the null hypothesis for the
considered level.



162 G. Boente, ].C. Pardo-Ferndndez / Computational Statistics and Data Analysis 97 (2016) 151-168

0.30
I

0.25
1
\

p-value
0.15
!
AN

-~

i — et — e — e — s — e — s 8 —
./._.
—_—
.__._._—-o'—'=

0.05
|

0.00
|

Fig. 3. Illustration on a real data set. p-values of the tests T, (grey) and T u 4 (blue) for different values of the contamination c. The solid horizontal line
indicates the 5%-level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Illustration on a real data set. Surface plot of the p-values of the tests T, (left) and Ty 4 (right) as a function of the contamination values ¢; and c,,
when both populations are contaminated and cross-validation bandwidths are considered.

6. Conclusion

In this paper we have studied a new robust method to test for the equality of two regression curves versus a one-sided
alternative in a nonparametric setup. The new procedure adapts the ideas in Neumeyer and Pardo-Fernandez (2009) to
the situation where no moments are assumed for the regression errors. The analysis of the asymptotic distribution of the
test statistic reveals that the testing procedure is consistent against local alternatives converging to the null hypothesis
at the parametric rate n~'/2. Simulations have shown a good practical behaviour of the new test when the critical values
are obtained from an approximation of the asymptotic null distribution of the test statistic. If no outliers are present in
the sample, the behaviour of the new test is almost equal to that of the classical method, but when outliers appear in the
samples, the robust test clearly outperforms the classical procedure. The robust procedure introduced does not assume
that the design points have the same density. Besides, when the errors of both populations have a symmetric distribution, it
does not require a common distribution for the errors. Finally, the procedure still leads to a consistent test under asymmetric

errors if ¥4 = ¥, = ¥ and the errors ¢; have the same distribution.



G. Boente, J.C. Pardo-Ferndndez / Computational Statistics and Data Analysis 97 (2016) 151-168 163

Acknowledgements

The authors wish to thank the Associate Editor and two anonymous referees for valuable comments which led to an
improved version of the original paper. This research was partially supported by Grants pip 112-201101-00339 from CONICET,
PICT 2014-0351 from ANPcYT and 200201301002798BA from the Universidad de Buenos Aires at Buenos Aires, Argentina
(G. Boente) and Grant MTM2014-55966-P of the Spanish Ministry of Economy and Competitiveness, Spain (J. C. Pardo-
Fernandez). The research was begun while Juan Carlos Pardo-Fernandez was visiting the Universidad de Buenos Aires funded
by a scholarship from Santander Universidades (Programa Becas Iberoamérica Jovenes Profesores e Investigadores Espaiia
2014).

Appendix A. Auxiliary results and proof of Theorem 1

A.1. Some results for the robust estimator of the regression function

In this section we give several general results for the robust estimator of the regression function given in (6) that will
be used later in the proof of Theorem 1. Strong order of convergence for local M-estimators was studied, among others,
by Boente and Fraiman (1991). Recently, Boente and Vahnovan (2015) extended these results to the functional setting,
achieving better order the convergence than in the Euclidean setting. For that reason, we will use their results.

From Boente and Vahnovan (2015) we have that, under conditions A2, A4, A5, A7 and A9,

SU)]? |mj(X) - mj(x)l = Oa.co. (hz + enj) ) (A.])
XE.

where 6, = \/logn;/(n;h) for any compact set X C R, where R stands for the interior of the set R.
Assume that ¥; is twice continuously differentiable, with first and second derivatives lI/j’ and lI/j”, respectively. Then, from
(7) and denoting w;;(x) = K, (x — Xu) we have the following expansion

1Y Yy — mj(x)
0= 5 L mw (2)

nj o ) )
_1 3wy, (Y,] Amj(x)) N m](x)A m’(x)A( &),
L e j Oj
where
Aix,G) = Zw,,( 0w/ ( mf(x)) _ % ) —mE) 1 3> w0 (M) ,
L aj n 4 o

with &;;(x) an intermediate point between 0 and m;(x) — ﬁj (x). Hence, we obtain the following representation

o~ -~ P A Yl
() — my(x) = A(x, 57) ! Z wi (0 < y ;” ® ) . (A2)
43

The expansion (A.2) will be helpful when deriving the asymptotic behaviour of the test statistic. Note that since the density,
fi, of X;, is twice continuously differentiable and ¥/" is bounded from (A.1) we get that

(x)
sup A *x,0) — — Zwy(x)lll (Grjnjx)

3

= OaAco. (h2 + enj) .

Hence, standard arguments and the consistency of 6; allow to show that
sup [A;(x, 5) — fi(®)vj| = Oaco. (B +6n)) .
XeX
where v;; = E[¥/ (U))], s0
sup [B;(x. )| = Ouco. (h + 6;) . (A3)
xeX

with Bi(x, ) = A ' (x. 3) — (f(x)v, j)”'. Thus, if we denote

Lg) = — Zwu(x)av( m’(")>,

i3

Aj(x,u, o) =E{g/j (Yf_mf(x)) | X; = u} =IE{lpj (UjUj—i-mj(u) —m,-(x))}’
o

(o2
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we have that

A

Mj(x, G5) = fj(x) — mj(x) — Li(x. 5) = Bi(x. 6)Li(x. 5))

f( ) ]]
Bix o m](X) ~
= Bj(x.5))3; — ZKh(x Xi) 4 — A X5, 5
] i=1 ]
]
+Bj(x, )5, — ZKh(x Xip) Aj(%, Xii, 5})
L
= Bi(x. 5))5M;1(x.5)) + By(x. 5))5M; 2(x. 5)). (A4)

As in Ferraty et al. (2010), we easily obtain that

= — m;(x)
sup  sup [Mj(x,0)| = sup sup|— Zl(h(x— l]){ ( . ) — Aj(x, Xjj, 0)”
oe[ .20 *F sl 207K | i
= Oq.co. (an) s (A.5)

where Gn = ,/logn;/(n;h). On the other hand, using that E[¥, ((TJU /a)] = 0 forany o > 0, a Taylor’s expansion of order
two leads to

A, o) = m; (u) ; mX) . [wj’ <OJTUJ>] 4 LW - mj(X))Z]E [w” <0jUj + &ij(u, x) (m;(u) — mj(")))] ,

2 o? J o

which, together with the fact that ¥/ and ¥/ are bounded, implies that

1
— ZKh(X — X,‘j)Aj(X, X,‘j, O')

sup sup|1/\/\lj,2(x,o)|= sup sup
L

XeX xeX

seld .20
= Oq.co. (hz + enj) (AG)
Therefore, (A.3), (A.5), (A.6) and the consistency of 7; yield to

o
oel4 291

sup [M;(x, )| = sup | (x) — m;(x) - Li(x,)| = Ouco (hz + 93].) : (A7)
XEXK XEXK

fj()u

It is worth noting that, analogous arguments to those considered in Theorem 4.4 in Boente and Vahnovan (2015)
together with the previous computations allow to show that (A.1) and (A.7) still hold when m,(x) = m;(x) + n~% A(x),
i.e., under the considered root-n local alternatives in which (Xj,, Y;»)", 1 < i < n,, correspond to a triangular array with

Yo =YY = mi(Xp) + n7"2 A(Xp) + 0xUp.

A.2. Proof of Theorem 1

We first state some technical results collected in a Lemma whose proof can be found in the supplementary material
available online (see Appendix B).

Lemma A.1. Assume that (1) and A1 to A9 hold. Let &; be a consistent estimator of oj. For any fixed j = 1,2, denote
Ri(o) = (1/nj2) Zlﬁiﬂfnj Zi(o) and Ry(o,5) = 1/(nj n3_;) Z Zn3 < Wy (o, &) where
o Us oiUsi \ pi(Xi)w;(X;)
Zi(o) =w' | 22w/ [ 2 ) K (X — Xep) (my (X)) — mi(X
ie(0) < pu i pu f}(xy) h( ij Z])( ]( (J) 1( 1]))

_ o: Usi 03-iUps—i \ P3—iXi)w;(X;)
Wi(o,5) =v' [ 22 ) ;. AT ) B Ki (X — Xe.3-5) (M3 (Xe.3—j) — m3—j(Xy)) .
o 1 foi fai(Xi)
3—j\Ajj

Then,

(a) sup,ey, |E [E(a)“ = op(n~"2) and SUPyey; sets s |E rﬁz(o, )| = op(n~V?), where 4; = [o0,/2,204], for s = ],
3]
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(b) There exists a constant C > 0 not depending on n such that for alln > nq

2
sup P (v/nRi(0) — ERy(0)| > €) < C (% n hz)
j

o€l

—~ —~ h?
sup  P(/n|Ry(c,5) —ERy(0,5)| >¢€) <C (— + h“)
n

(761j,5613,j j
(©) sup, ey [Ri(0) —E [E (0)]] = 0p(n™"?) and sup,, 5y, , [Ra(0,5) —E[Ry(0,3)]| = 0p(n~1/?).
(d) Ri(6) 2> 0and Ry(G;, 63—)) = 0

Proof of Theorem 1. We begin by obtaining an expansion forEo that will allow us to derive the asymptotic distribution of
T. Using that ¥ is twice continuously differentiable, a Taylor’s expansion of order two leads to

~ 1Y Yy — mX;)
Ep = — Z v (U,\ilj) w; (Xij)

3 0j

nj o~
_1vy (%‘Uij +mXy) — m(X,j)> w (%)
N 3 0j
1Y 0; U 1 o .
= WZW( 5 ) wiXy) + = ]Zw ( ’J”)(mj(xlp 10X wi (Xp)
1= i=1

llnj,,Eij Y B N2 (Y
too o 21 '4 <§> (m; (Xy) — m(Xy))"w; (X))

2(7.2 n; j
= T;1 (o) + sz + Tjs,

where & = o;U;j + 6;(m;(X;) — m(X;)) and 6; is an intermediate point in [0, 1]. Using that o; E oj and that ¢ is
bounded, standard empirical process arguments allow to show that Tj;(d;) has the same asymptotic behaviour as Tj; (o}),
i.e., «/n{T;1(}) — Tj1(0))} = op(1). On the other hand, using that ¥” is bounded, from A9 and (A.1), we get Tj3 = op(n~/?).
Hence we have that

Eo=— Zw Uy) wiXy) + = nz+on»<n 1), (A8)
53

The term T}, needs to be further analysed. Note that m;(x) = p;(x)m;(x) + p2(x)m;(x), so m;(x) — m(x) = p1(x){m;(x) —
M%)} + p2(¥){m;(x) — M2 (x)} = Y_2_, ps(x){m;(x) — Ms(x)} which leads to

2 2
my(x) — M) = Y psIm;(0) — ms)} + Y ps(x){m(x) — Ms()).

s=1 s=1

Hence,

1 g /[ 9j -~ e ~ - ~
Tp=—Y W 3 (m;(Xy) — mXy)w;(Xy) = Tpz,1(05) — Ti2,2(07),

n = g
where
Tpi(0) = Z Zw ( )ps<xu><mj<xy> mg (X)) w; (Xy).
=1 N =1

Tpa(o) = Z ZW( )ps(x,p(ms(x,j) mg (X)) w;(Xy).

=1 'Y o

We have the following expression for ’T\jz,l(a)

To1(0) = (=1~ ZW("’ >(m2(xu) (X)) (X33 (X;), (A.9)
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Note that under the null hypothesis ﬁm ((’fj) = 0. So, using (A.8), we obtain that

nj
Bo= 13 v (u )w(X)—|—1T @) — 27226 + 0017 (A10)
-jO n; ij) WjlAij 72,1\9j %12,2 f] P : }
i=1

To study the term ?jz,z (67), we will use the representation for ms(x) — ms(x) given in (A.7) with X = 4;, which also holds
under n'/? local alternatives, so

)ps(xy)(ms(xu) ms(xij))wj(xij)

A

v’ ((’ >p5<xu>w,<xu) ; (xu> - L.(X;. 55)

w30 o () petp s By
.1(0) + Ri2(0), A

where M (x, 0) is given in (A.4). Hence, (A.7) and the fact that \/nh2/logn — oo and nh* - 0 1mply that, fors = 1, 2,
max; |MS(XU, 5:)| = op(n~'/?) so using that 0 < ps < 1and that ¥’ and wj are bounded, we get that RJ 2(3)) = op(n~1/?).
Therefore, we only have to study the behaviour of R],l (6)). Note that

2, 5 1§:W<Gjug> ps(xwwj(xu)f(xh .
o £ (Xip)

251 (X w;(Xy) 1 Yos — mg(X;
ZZG*Z‘V( - )p(j)w]( j) ZKh(XlJ Xis)‘I/(l m(j))

Vs,s 1) fs(Xz]) N Os
i=1 =1

Usmg that Ygs = osUss + ms(Xis) and applying a second order Taylor's expansion, we obtain that Rj 1(0) = R] 11(0) +
Rj12(0) + RJ 1.3(0) where

2 o~ nj
~ 1 o; U X; Xii) 1 U
Rj,l,](U) — Os - 2 :l,[// < ) ps( U)w]( U) 2 :Kh(xy _Xis)ws (ULZS ) i

Vs.s nj i=1 o fs(Xij) ng =1 O

s=1

~ 211 Ui\ ps G wi(Xy) 1 Ups
Rj,1,z(o)=Z——ZW<”’ ’)p( D) g5 X! (“ ‘ )(ms(xes)—mxxy-)),

s=1 Vss T o o f&yp - ns 3

R113(<7) = Z 1 Z.p/(UJUU> Ps (Xip) w; (Xy)

m

8svs s 1 i1 o fs(le)
1 0.

x — ZKh(Xij — X)W ( Vs 4 61, (my(Xes) — ms(xg))) (M (Xes) — me(X))”
S =1

where 0 < 6 < 1. Using that K has bounded support and m; is Lipschitz, we get that |[m;(Xy) — ms(Xy)| < Ch
where Ki(Xj — X¢s) # 0. Thus, the boundness of ¥', ¥/, w; and the fact that w; has support on 4; and infyes; f](x) >0
together with the con51ster1cy of &; and the assumption nh* — 0 entail that R] 13(0) = op(n~1/2). Note that R, 12(03) =

— 1 1 2 _ n
v 'R @) +vi s RA (G5, 53-), whereR ), (o) = n; 221<,#<n z9 andR? ,(0.5) = n; '3, 0, Y Wi with

(5 o (V) P00
2 =v (%) u (%) fox =X (mK) = mXp).

) 0 Ujj 03-jUp3-5 '\ P3—j(Xip w;(X;y)
W, = v, = Kn(Xij — X¢.3—j) (M3-j(X¢.3—j) — m3_i(X;)) -
it < o ) 3 j< z ) f3—j Xij) h( ij £,3 ])( 3 ]( £,3 ]) 3 ]( l]))

Lemma A.1 and the fact that & is consistent lead us to R; 1 2(G;) = 0p(n~"/2).
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To deal with ﬁj.m(o), we rearrange the sum to obtain thatﬁj,m(o) = Zf_l v;]’\](sl) 1(o, 0,), where

.
1Y Ui\ ps (K wy () 1 U

RY (0.5 =5— np/(af ”) P (Xy)uy Xy) ZKh(xU Xus) ¥ (05 “)
o

Rt nj & o fXip) ns ¢
1 ng N o.U 1 1y o; Us; X w: (X
=Y 5y, (%‘“) fop/< ! ”) Ps(Xy)w; (Xy) Kn(Xj — Xes).-
s 43 o L e o JsXij)

167

Using that E[Ws(osUgs/0)] = 0 for any o > 0, that g; is a consistent estimator of oj and that ¢ j(u) = ulI/j/(u) is bounded,

we easily get that

Ps(Xes) wj (Xes )f} (Xes)

Y
FiXe) op(m ).

/\1(51) 1((7]a Gs) = USV] Z Wy (Ugs )
Ns =

From (A.10), (A.11), the fact that Tp2(0) = 2, (1/vs)RY] (0, G;) + 0p(n~"/) and (A.12) we obtain that

E]’O — Z l[/ UU wj(xlj) + = -1}2 1(0_]) _ Z Z v, (Uls ps(Xls)IUj(Xls)fj(Xls) + op(n’]/z).

111 js]‘)sssll fs(xls)

Thus, we have that

-~ 1a 1 & v 1 & P2 (Xe2) w2 (Xe2)f2 (Xe2)
Ex = 6T2T22,1((72) + — Z ¥ (Upp) wa(Xe2) — Eniz ; ¥ (Up2) %)
oy Z‘I’l Us; )pl(xu)wz(xu)fz(xu) +op(n 1),

0o2V1,1 n1 — fl(XZl)
_ 1~ Xon)wi Xen)f (X
Ey = §T12,1(01) +— Z Y (Up) wiXer)) — — — Z Y1 (Uer) ik “)ﬁl()((lf;)fl( z)

vioy 1 i ¥, (Up, )pZ(XZZ)wl(XZZ)fl (X/zz) op(n-2).

o = fXe2)

so that
N 1T P1(Xe1)
Eyo — E190 = — v (U X — ¥ (U, X
20~ Ewo = - ; 1( “)f(Xu) { wi(Xe)f1 } (Uer) wi(Xer)
X
-— Z » (Ue2) PaXe2) {fwz(xzz)fz(xzz) - iwl(xez)ﬁ (Xzz)} — ¥ (Upz) wa(Xe2)
n = f(Xe2) 01122
1~ ~ 1~ ~ -1/2
+ = Tp,1(02) — < Tiz,1(07) +op(n” /%)
(o)) 01
1~ ~ 1~ ~ -1/2
= Son, — Sty + =T22,1(02) — = T12,1(01) + 0p(n™77),
(op) (e5]
where
X

Som = ; , Usz) ?ZEXZ)) {0”11222 wi (Xe2)fy (Xe2) — ‘sz(xzz)fz(xzz)] + ¥ (Up) wa(Xe2)

1 X,
St = o ; W (Up ) ?11((x2)) {:;:11 wa (Xen)fo (Xe1) — v‘j:wmxmfl(xu)] W (Ue) wi (Xen).

Therefore, the test statistic can be written as
N2 4, ny\1/2 nl/?
r= (?) ny2S2.0, — (?) VSt + Angny + 0 (0712,

where

-~ nyny 1/2 1~ e 1~ ~
Apyny = (77) n'/? §T22,1(02) - §T12,1(01) .
1

nn 2

(A12)

(A.13)
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. 1/2 . . . . . . .
Forj = 1, 2, the term nj/ Sj.n; 1s asymptotically normally distributed with mean 0 and variance sz givenin (12).

(a) Under Ho,/T\zm(&\z) = 0and ?12,1(31) = 0, thus an,nz — 0. Therefore, T - N(0, k172 + k272) under Hy, concluding
the proof of (a).

(b) To analyse the asymptotic behaviour of the test statistic under Hy recall the representation given in (A.9).Let £, = {x €
R, p3—¢(x) > 0}. Denote ¢ = {j € {1, 2} such that ; N §; N A # P}. Taking into account that p,(x) = 1 — p1(x), we
have that card(g) > 1. Let

Tp,1(0) = E[Tjp,1(0)] = (-1YE |:‘1’/ (?)] E [(m2 (X)) — m1 (X)) w;(X))ps—;j(X)] -

Since o; is a consistent estimator of oj, under H; we have that «/ﬁ{’T;z,l(ff}) — T2,1(07)} has the same asymptotic
distribution as \/ﬁ{’T;m(aj) — Tj,1(07)}, which is asymptotically normally distributed with asymptotic variance
Kfl ]E[(lI/’(U,-))Z]IE[(mz(Xj)—ml(Xj))zwjz(xj)pg_j(x,-j)] # 0forj € g.Hence,if ¢ = {1, 2}, using thatv; = E[¥’(Uj)] > 0,
we have that, under Hy, \/ﬁ(—l)ijzJ(oj) — 400 forj € . This implies that \/ﬁ(—nﬁjz,]@) — 400, forj € g, so
that an,nz — +o0. Otherwise, card(4) = 1 and denote j, its unique element. Then, p;,(x) = 0in 83_;; N A so
VTj2.1(0j) = 0 while \/n(—1)>7°T5_; 5 1(0j) — +00, which concludes the proof of (b).

Finally, we now consider the behaviour under H; .. In this case, m,(x) = m;(x) + n~ 2 A(x), so

—~
g
~—

= 1 o: Us:
o) = (=1 — 3 v (%) Ay wj Xp)p3—j (Xi).-
1 i=1

Using standard empirical process arguments, it is easy to see that the consistency of &;, implies that n'/ Z’T;Z,I(Er‘j) RN
(—1YyE [ AX) wj(X;)ps—;i(X;) ] Thus, we have that

1~ 1~
n'/? (7722,1(02) - rT12,1(01)> L EH‘E[A(Xz)wz(xz)l91(Xz)] + E]E[A(X1)1111(Xl)Pz(X1)] =d.
oy o1 (o)) o1

Taking into account that nj/n — «;j, we get that an,nz LY (k142)?d under Hi . Therefore, under Hy,, the test statistic
T converges in distribution to N ((k1x2)"/2d, k177 + k277 ), concluding the proof. O

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2015.12.002.
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