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a b s t r a c t

The problem of testing the null hypothesis that the regression functions of two populations
are equal versus one-sided alternatives under a general nonparametric homoscedastic
regressionmodel is considered. To protect against atypical observations, the test statistic is
based on the residuals obtainedbyusing a robust estimate for the regression functionunder
the null hypothesis. The asymptotic distribution of the test statistic is studied under the
null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to
compare the finite sample behaviour of the proposed tests with the classical one obtained
using local averages. A sensitivity analysis is carried on a real data set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let us assume that the random vectors (Xj, Yj)
t

∈ R2, j = 1, 2, follow the homoscedastic nonparametric regression
models given by

Yj = mj(Xj)+ εj = mj(Xj)+ σjUj, (1)

where mj : R → R is a nonparametric smooth function and the error εj is independent of the covariate Xj. Throughout
this paper, we will not require any moment conditions on the error distributions. As is usual in a robust framework, let us
assume that the errors εj are such that εj = σj Uj, where Uj has a symmetric distribution Gj(·) with scale 1, so that we are
able to identify the error’s scale, σj. When second moments exist, as the case of the classical approach is, these conditions
imply thatE(εj) = 0 and Var(εj) = σ 2

j , whichmeans thatmj represents the conditionalmean, while σ 2
j equals the residuals

variance, i.e., σ 2
j = Var(Yj −mj(Xj)). The nonparametric nature of model (1) offers more flexibility than the standard linear

model whenmodelling a complicated relationship between the response variable and the covariate. In many situations, it is
of interest to compare the regression functionsm1 andm2 to decide if the same functional form appears in both populations.
In particular, in this paper we focus on testing the null hypothesis of equality of the regression curves versus a one-sided
alternative. Let R be the common support of the covariates X1 and X2 where the comparison will be performed. The null
hypothesis to be considered is

H0 : m1(x) = m2(x) for all x ∈ R,
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while the alternative hypothesis is of the following one-sided type

H1 : m1(x) ≤ m2(x) for all x ∈ R and m1(x) < m2(x) for x ∈ A,

where A ⊂ R is such that P(Xj ∈ A) > 0, for j = 1, 2. (2)

When second moments exist, the problem of testing equality of two regression curves versus one-sided alternatives has
been considered by several authors such as Hall et al. (1997), Koul and Schick (1997, 2003) and Neumeyer and Dette (2005),
who extended the test proposed in Speckman et al. (2003) to allow for heteroscedasticity. On the other hand, Neumeyer
and Pardo-Fernández (2009) introduced a simple root-n test statistic based on the comparison of the sample averages of the
estimated residuals, which were computed with respect to a linear convex combination of the kernel regression estimators
obtained from each sample.

As is well known, linear kernel regression estimators are sensitive to atypical observations, since they are based on
averaging the responses.When estimating the regression function at a value x, the effect of an outlier in the responseswill be
larger as the distance between the related covariate and the point x is smaller. In this sense, atypical data in the responses in
nonparametric regression may lead to a complete distorted estimation which will clearly influence the test statistic and the
conclusions of the testing procedure. In this sense, robust estimates are needed in order to providemore reliable estimations
and inferences. Beyond the importance of developing robust estimators, the problem of obtaining robust hypothesis testing
procedures also deserves attention. In linear regression, recent developmentswere given, among others, by Salibian-Barrera
et al. (2016), where also references to previous robust proposals can be found. However, in the nonparametric setting, robust
testing procedures are very scarce. Recently, Dette andMarchlewski (2010) considered a robust test for homoscedasticity in
nonparametric regression. On the other hand, under a partly linear regression model, Bianco et al. (2006) proposed a test to
study if the nonparametric component equals a fixed given function, while Boente et al. (2013) considered the hypothesis
that the nonparametric function is a linear function under a generalized partially linear model. For the problem of testing
superiority between two regression curves, Koul and Schick (1997) defined a family of covariate-matched statistics and
derived its asymptotic behaviour under the null hypothesis and under root-n local alternatives. This family includes, in
particular, a covariate-matchedWilcoxon–Mann–Whitney test based on the sign of all response differences which does not
require the existence of secondmoments. Besides, these authors provide an asymptotic optimality theory allowing to obtain
locally asymptotically minimax tests against nonparametric root-n alternatives. To derive these properties, Koul and Schick
(1997) assume equal error distributions and equal design densities. In order to avoid these assumptions, Koul and Schick
(2003) developed amodified version of one of the covariate-matched statistics based on the response differences of Koul and
Schick (1997), but this statistic is not robust when atypical data arise in the responses, as it assumes the existence of second
moments.When considering the problemof comparing two ormore regression functions, Feng et al. (2015) considered a test
for H0 versus the general alternativem1 ≠ m2 using a generalized likelihood ratio test incorporating a Wilcoxon likelihood
function and kernel smoothers, which allows to detect alternatives with rate

√
nh, where h is the bandwidth parameter;

however, these authors assume the existence of secondmoment of the regression errors, so the applicability of theirmethod
in a robust context is quite limited.

The aim of this paper is to propose a class of robust tests for H0 versus H1 in (2) which allows for possibly different
covariate densities and error densities in the two populations. Our proposal combines the ideas of robust smoothing with
those given in Neumeyer and Pardo-Fernández (2009) to obtain a procedure detecting root-n alternatives. In Section 2, we
recall the definition of the robust estimators. The test statistics is introduced in Section 3, where its asymptotic behaviour
under the null hypothesis and root-n local alternatives is also studied. We present the results of a Monte Carlo study in
Section 4 and an illustration to a real data set in Section 5. The Appendix A contains some auxiliary results about the robust
nonparametric estimator presented in Section 2 and the proof of our main result.

2. Basic definitions and notation

Throughout this paper, we consider independent and identically distributed observations (Xij, Yij)
t, 1 ≤ i ≤ nj, with

the same distribution as (Xj, Yj)
t, j = 1, 2. When E|Yj| < ∞, the regression functions mj in (1), which in this case equals

E(Yj|Xj), can be estimated by using the Nadaraya–Watson estimator (see, for example Härdle, 1990). To be more precise,
let K be a kernel function (usually a symmetric density) and h = hn a sequence of strictly positive real numbers. Denote
Kh(u) = h−1K(u/h). Then, the classical regression estimators ofmj are defined as

mj,cl(x) =

 nj
ℓ=1

Kh

x − Xℓj

−1 nj
i=1

Kh

x − Xij


Yij. (3)

As mentioned in the introduction, the estimators defined in (3) are sensitive to atypical observations, since they are based
on averaging the responses. Robust estimates in a non-parametric setting need to be employed to provide estimators
insensitive to a single wild spike outlier. Several proposals have been considered and studied in the literature. We can
mention, among others, Härdle and Tsybakov (1988) and Boente and Fraiman (1989), who considered robust equivariant
estimators under a general heteroscedastic regressionmodel. It iswell known that, under a homoscedastic regressionmodel,
root-n scale estimators can be obtained. In particular, for fixed designs, scale estimators based on differences are widely
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used, see, for instance, Rice (1984) and Hall et al. (1990). A robust version of the difference-based estimators was studied in
Ghement et al. (2008) and can easily be extended to the situation where Xj are random. Effectively, as in Dette and Munk
(1998), let X(1),j ≤ · · · ≤ X(nj),j be the ordered statistics of the explanatory variables of the jth population and denote as
(X(1),j, YD1,j,j)

t, . . . , (X(nj),j, YDnj,j,j
)t the sample of observations ordered according to the values of the explanatory variables,

that is, X(ℓ),j = XDℓ,j,j. Then, the estimators defined in Ghement et al. (2008) can be generalized to the present situation by
taking the differences YDℓ+1,j,j − YDℓ,j,j. Thus, for instance, a robust consistent root-n estimator of σj can be obtained as

σj =
1

√
2Φ−1(3/4)

median
1≤ℓ≤nj−1

YDℓ+1,j,j − YDℓ,j,j
 , (4)

where the coefficient
√
2Φ−1(3/4) ensures Fisher-consistency for normal errors (Φ−1 denotes the quantile function of the

standard normal).
Let Ψj : R → R, j = 1, 2, be bounded and continuous functions and define the function

λj(x, a, σ ) = E

Ψj


Yj − a
σ


|Xj = x


. (5)

Note that if (1) holds, Ψj is an odd function and the errors have a symmetric distribution, then λj(x,mj, σ ) = 0 for any
σ > 0. Hence, to obtain robust estimators of mj(x), as in Boente and Fraiman (1989), we plug into (5) an estimator of the
conditional distribution of Yj|Xj = x and a robust estimator of the error’s scaleσj, such as the one defined in (4). The robust
nonparametric estimator ofmj(x) is given by

the solution mj(x) of λj(x,mj(x),σj) = 0, (6)

where

λj(x, a, σ ) =

nj
i=1

Kh

x − Xij


Ψj


Yij − a
σ


. (7)

Note that different score functions Ψj can be used in the two samples, in this way, we provide a more flexible setting. In the
Appendix A,we give general asymptotic results related to the estimatormj(x) thatwill be used in the study of the asymptotic
behaviour of the test statistic considered below.

3. The test statistic

As mentioned in the introduction, we wish to develop a class of robust tests for H0 versus H1 in (2) which allows to
detect root-n local alternatives. As in Neumeyer and Pardo-Fernández (2009), let m be any function such that m1(x) ≤

m(x) ≤ m2(x), for all x ∈ R, and define the random variables, for j = 1, 2,

εj0 = Yj − m(Xj).

Let Ψ be an increasing function such that E[Ψ (εj/σ)] exists for any σ > 0 and j = 1, 2, which will be the case if Ψ is a
bounded function. Moreover, let wj : R → R be a non-negative weight function with compact support Sj ⊂ R̊ such that
A ∩ Sj ≠ ∅. Since Ψ is increasing, we obtain

E

Ψ

ε10
σ


w1(X1)


= E


Ψ


ε1 + m1(X1)− m(X1)

σ


w1(X1)


= E


w1(X1)E


Ψ


ε1 + m1(X1)− m(X1)

σ


| X1


≤ E


w1(X1)E


Ψ

ε1
σ


| X1


= E


Ψ

ε1
σ


E[w1(X1)], (8)

where the last equality follows since εj and Xj are independent. Analogously, we can show that, for any σ > 0,

E

Ψ

ε20
σ


w2(X2)


≥ E


Ψ

ε2
σ


E[w2(X2)]. (9)

Under the null hypothesis H0, the inequalities in (8) and (9) are actually equalities. However, under the alternative
hypothesis, either (8), (9) or both inequalities must be strict when Ψ is strictly increasing and P(Xj ∈ A ∩ Sj) > 0. More
generally, if E[Ψ ((εj −a)/σ )] < E[Ψ (εj/σ)] for any a > 0 and E[Ψ ((εj −a)/σ )] > E[Ψ (εj/σ)] for any a < 0, then we also
have strict inequalities under H1. This holds, for instance, whenever Ψ is a nondecreasing function, strictly increasing in a
neighbourhood of 0 and the errors assign positive mass to that neighbourhood. Besides, if E[Ψ (Uj)] = E[Ψ (εj/σj)] = 0, for
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j = 1, 2, which happens, for instance, when Ψ is an odd function and the errors have a symmetric distribution, as is usual
when considering score functions in regression models, we get the following chain of equalities and inequalities

E

Ψ


ε10

σ1


w1(X1)


≤ E


Ψ


ε1

σ1


E[w1(X1)] = 0 = E


Ψ


ε2

σ2


E[w2(X2)] ≤ E


Ψ


ε20

σ2


w2(X2)


,

where under the null hypothesis all are equalities, but under the alternative one or both inequalities are strict. Therefore, to
distinguish H1 from H0 it seems reasonable to compare E[Ψ (ε10/σ1) w1(X1)] and E[Ψ (ε20/σ2) w2(X2)].

It is clear that to perform the test, consistent estimators of m and σj, as those described in Section 2, are needed. Given
independent observations {(Xij, Yij)

t, i = 1, . . . , nj}, j = 1, 2, such that (Xij, Yij)
t

∼ (Xj, Yj)
t, denote n = n1 + n2 and letmj(x) be the robust estimator of mj(x) given in (6). For a given x ∈ R, the estimator of the common regression function

under the null hypothesis is defined asm(x) = p1(x)m1(x)+ p2(x)m2(x),

where 0 ≤ p1(x) ≤ 1 is a given function and p2(x) = 1 − p1(x). The test statistic to be considered is

T =

n1n2

n

1/2
(E20 −E10) =

n1n2

n

1/2E0, (10)

where

Ej0 =
1
nj

nj
i=1

Ψ


Yij − m(Xij)σj


wj(Xij).

Note that ifσj p
−→ σj and mj is uniformly consistent over Sℓ, for ℓ = 1, 2, thenE0 p

−→ E0, where

E0 = E

Ψ


ε20

σ2


w2(X2)


− E


Ψ


ε10

σ1


w1(X1)


.

Hence, the test will be consistent if E[Ψ (Uj)] = 0 and if, for instance, Ψ is nondecreasing and strictly increasing in a
neighbourhood V of 0 (as is the case of the Huber’s score function) and the errors assign positive mass to V . Besides the
Huber’s score function Ψ (t) = min(k,max(−k, t)), other possible choices for Ψ are Ψ (t) = t/


1 + t2/k2 which is a

smooth approximation of the Huber function and Ψ (t) = k arctan(t/k).
The null hypothesis will be rejected for large positive values of the test statistic T . To perform the test for a given

significance level, critical values obtained from the (asymptotic) null distribution of T are needed. For that reason, in the
sequel, we will analyse the asymptotic distribution of the test statistic. The following assumptions are needed:

A1 Ψ : R → R is a bounded and nondecreasing function. Furthermore,Ψ is twice continuously differentiablewith bounded
derivatives. Its first and secondderivatives,Ψ ′ andΨ ′′, are such that νj = E[Ψ ′(Uj)] > 0, for j = 1, 2, and ζ1(u) = uΨ ′(u)
and ζ2(u) = uΨ ′′(u) are bounded.

A2 For j = 1, 2,Ψj : R → R are bounded and twice continuously differentiable functions, with bounded derivatives.
Besides, the first and second derivatives, Ψ ′

j and Ψ ′′

j , are such that νj,j = E[Ψ ′

j (Uj)] ≠ 0, and ζ1,j(u) = uΨ ′

j (u) and
ζ2,j(u) = uΨ ′′

j (u) are bounded.
A3 For j = 1, 2, wj : R → R are bounded non-negative continuous weight functions with compact support Sj ⊂ R̊ such

that A ∩ Sj ≠ ∅. The function p1(x) is continuous in a neighbourhood of Sj.
A4 E[Ψ1(aU1)] = E[Ψ2(aU2)] = E[Ψ (aUj)] = 0 for any a > 0 and j = 1, 2.
A5 For j = 1, 2, the regression functionmj is twice continuously differentiable in a neighbourhood of the support, R, of the

density of Xj.
A6 For j = 1, 2, the random variable Xj has a density fj twice continuously differentiable in a neighbourhood of the support

Sℓ ofwℓ, for ℓ = 1, 2, and such that i(fj) = infx∈Sj fj(x) > 0 and inft∈Sj f3−j(t) > 0.
A7 The kernel K : R → R is an even, bounded and Lipschitz continuous function with bounded support, say [−1, 1] and

such that

K(u)du = 1.

A8 The sample sizes are such that nj/n → κj with 0 < κj < 1 as n = n1 + n2 → ∞.
A9 The bandwidth sequence is such that hn → 0, nhn/ log n → ∞,


nh2

n/ log n → ∞, nh4
→ 0 as n → ∞.

Assumptions A3 and A5 to A9 are standard conditions in the nonparametric literature, especially when dealing with
testing problems. On the other hand, A1 and A2 are usual requirements in a robust setting. In particular, the condition
νj > 0 in assumption A1 ensures that we get order n1/2 for the test statistic. Assumption A4 is a standard assumption to
avoid requiring a root-n order of convergence to scale estimators. It holds, for instance, when Ψj, j = 1, 2, and Ψ are odd
functions and the errors Uj have a distribution Gj symmetric around 0. Further comments regarding this assumption are
included in the following remark.
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Remark 1. In the classical setting, the target is to make inferences on the conditional mean E(Yj|Xj = x) and this quantity
is obtained by choosing Ψj(t) = t in (5). Hence, A4 reduces to the usual requirement that the errors have zero mean. To
avoid moment conditions, the practitioner may choose, for instance, Ψj(t) = sgn(t). In this case, inferences are made on
the conditional median and A4 means that the error medians are 0. For general score functions Ψj, the target is to decide
whether the solutions rj(x) of λj(x, a, σj) = 0 satisfy H0 or H1. When Ψj is a strictly increasing function, rj(x) is the so-called
robust conditional location functional as introduced in Boente and Fraiman (1989), who noted that this functional provides
a natural extension of the conditional expectation.

Assumption A4 implies that for j = 1, 2

E[Ψj(Uj)] = 0 and E[Ψ (Uj)] = 0. (11)

The first equation in (11) means that we have centred the errors with respect to the M−location functional related to Ψj
as defined in Maronna et al. (2006) and ensures that rj = mj. This property is usually known as Fisher-consistency and
guarantees that the target functionals to be compared are the quantities of interest, in our case, the regression functionsmj
in model (1). On the other hand, the condition E[Ψ (Uj)] = 0means that theM−location functional related toΨ also equals
0 and entails that the test based on the statistic T defined in (10) leads to a consistent test for H0 : m1 = m2.

To see when (11) holds, we distinguish two situations depending on the symmetry of the error distributions:

• Symmetric error distributions. Assume that (Yj, Xj) satisfies the nonparametric functional regression model (1) and the
distribution Gj of Uj is symmetric around 0. As mentioned above, (11) holds for any choice of odd functions Ψj and Ψ
implying that all robust location conditional estimators are estimating the same quantity, i.e., rj = mj.

• Asymmetric error distributions. When the errors have asymmetric distributions, the situation is somewhat different. As
an illustration, assume that Wj has a log-Gamma distribution, that is, Vj = exp(Wj) ∼ Γ (βj, βj), where we have used
the mean parametrization, i.e., E(Vj) = βj and Var(Vj) = βj. Then, E(Wj) = µj = − log(βj) + Γ ′(βj)/Γ (βj), while the
median ofWj isµj = − log(βj)+ log(aj), with aj the median of a Γ (βj, 1) distribution. In this asymmetric situation, the
classical estimators implicitly consider the model Yj = mj(Xj)+ σjUj, where Uj = Wj −µj. On the other hand, if the sign
function is chosen as score function, the robust location functional rj is given by rj(x) = mj(x)+ cj with cj = σj(µj −µj),
so the above model may be written as Yj = rj(Xj) + σjUj where now Uj = Wj − µj to ensure that the errors Uj satisfy
(11). Note that the same score functions Ψ1 = Ψ2 = Ψ , the same shape parameters and the same scale σ1 = σ2 need to
be considered to guarantee that c1 = c2, so that comparisons between populations are made on the functions of interest.
The same arguments apply to other distributions. If no assumption on symmetry is made, an additional assumption of
identical errors distribution need to be made to ensure that the difference functions r1 − m1 and r2 − m2 are equal and
constant, when Ψ1 = Ψ2. Besides if in addition Ψj = Ψ , as mentioned above, the model also assumes through (11) that
the errors are centredwith respect to theM−location functional related toΨ , so that rj = mj and the test statistic defined
in (10) will still lead to a consistent test for H0 : m1 = m2.

For the sake of simplicity, we are assuming that the same bandwidth is used when estimatingm1 andm2. Similar results
can be obtained when different bandwidths are considered as far as both satisfy A9.

The next theorem gives the asymptotic distribution of the test statistic under the null hypothesis and under local
alternatives.

Theorem 1. Assume that (1) and A1 to A9 hold. Let σj be a consistent estimator of σj, j = 1, 2. Then,

(a) Under H0 : m1 = m2, we have that T
D
−→ N(0, σ 2

T ) where σ 2
T = κ1τ

2
2 + κ2τ

2
1 with

τ 2j = E


Ψj


Uj

 pj(Xj)

fj(Xj)


σjν3−j

σ3−jνj,j
w3−j(Xj)f3−j(Xj)−

νj

νj,j
wj(Xj)fj(Xj)


+ Ψ


Uj


wj(Xj)

2

. (12)

(b) Under H1, T
p
−→ ∞.

(c) Let ∆ : R → R be such that ∆ ≥ 0 for all x ∈ R. Then, under H1n : m2(x) = m1(x) + n−1/2∆(x), we have that
T

D
−→ N(c, σ 2

T ) where

c = (κ1κ2)
1/2 ν2

σ2
E [∆(X2)w2(X2)p1(X2)] + (κ1κ2)

1/2 ν1

σ1
E [∆(X1)w1(X1)p2(X1)] .

Remark 2. Theorem 1 entails that the asymptotic null distribution of the test statistic is a Normal random variable whose
variance depends on unknown quantities. In order to apply the test in practice, a consistent estimator of σ 2

T , say σ 2
T , is

required. Once the estimator is available, a test with asymptotic significance level α can be obtained by rejecting the null
hypothesis when the observed value of the test statistic T given in (10) exceeds the critical value z1−ασT , where z1−α is the
(1 − α)-quantile of a standard Normal.
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A consistent estimator of σ 2
T can easily be constructed asσ 2

T = κ1τ 21 +κ2τ 22 ,
where, for j = 1, 2,κj = nj/n and

τ 2j =
1
nj

nj
i=1


Ψj(Uij)

pj(Xij)fj(Xij)

 σjν3−jσ3−jνj,jw3−j(Xij)f3−j(Xij)−
νjνj,jwj(Xij)fj(Xij)


+ Ψ (Uij)wj(Xij)

2

,

with

Uij =
Yij − mj(Xij)σj , νj =

1
nj

nj
i=1

Ψ ′(Uij), νj,j =
1
nj

nj
i=1

Ψ ′

j (
Uij) and fj(x) =

1
nj

nj
i=1

Kh(x − Xij).

Remark 3. Letfj(x) = (σjν3−j)(σ3−jνj)
−1pj(x)w3−j(x)f3−j(x) + p3−j(x)wj(x)fj(x). In the particular case Ψ1 = Ψ2 = Ψ , we

have that νj,j = νj and therefore the terms τ 2j , j = 1, 2, that appear in the variance of the asymptotic distribution of the test
statistic reduce to τ 2j = E


Ψ 2(Uj)


E

f 2j (Xj)/f 2j (Xj)

.

Remark 4. Statement (c) in Theorem 1 gives the asymptotic distribution of the test statistic under local alternatives and
shows that the test detects local alternatives converging to the null hypothesis at the parametric rate n−1/2 whenever
E [∆(X2)w2(X2)p1(X2)] > 0 or E [∆(X1)w1(X1)p2(X1)] > 0.

Remark 5. It is worth noticing that the procedure introduced in this papermay be extended to deal with heteroscedasticity,
by definingEj0 as nj

−1 nj
i=1 Ψ


(Yij − m(Xij))/σj(Xij)


wj(Xij), where σj(x) stands for a robust estimator of the conditional

scale function σj(x). However, to derive the asymptotic behaviour of the corresponding test statistic, which allows to define
the critical values, additional assumptions including a uniform Bahadur expansion forσj(x), as that given formj in (A.7), will
be needed. We leave this important and challenging problem for future research.

4. Monte Carlo study

In this section, we present the results of a simulation study devoted to illustrate the finite-sample performance of the
testing procedure described in Section 3 and to compare its behaviour with that of the test defined in Neumeyer and
Pardo-Fernández (2009) and the covariate-matched Wilcoxon–Mann–Whitney statistic given in Koul and Schick (1997).
More specifically, for the robust procedure, we use the approximation of the critical values given in Remark 2. In order to
make the comparison fair, in the case of the method by Neumeyer and Pardo-Fernández (2009) we restrict ourselves to the
homoscedastic case, so we estimate the asymptotic variance of their test statistic under the assumption of constant variance
(see their Theorem 1). Tables and figures report the observed frequency of rejections among 1000 simulated data sets with
significance level 0.05. We setm1(x) = x as the regression function in the first population and consider two possibilities for
the second population, m2(x) = m1(x) + ∆n and m2(x) = m1(x) + ∆n(sin(2πx) + 1). We choose w1 = w2 = I(0,1) and
p1(x) = 0.5. From now on, Tcl stands for the test proposed in Neumeyer and Pardo-Fernández (2009), whileW ⋆ denotes the
covariate-matched Wilcoxon–Mann–Whitney statistic defined in Koul and Schick (1997), where we will also useW ⋆

h when
indicating the bandwidth h used in its computation.

As mentioned above, the conducted numerical studies aim to compare the performance of the testing procedure de-
scribed in Section 3 with the testing procedures based on Tcl and W ⋆

h . Several scenarios are considered. In Section 4.1, a
common design distribution is considered and the aim is to analyse the performance under different contaminations to eval-
uate the robustness of the procedure in terms of level and power. In this case, the central model, i.e., the uncontaminated
observations correspond to errors having a normal distribution. Section 4.2 summarizes the results of a simulation study
conducted to evaluate the performance of the testing procedure described in Section 3, when the errors have an asymmet-
ric distribution. As mentioned in Remark 1, to ensure that all tests are making inferences on the same objects, we will take
Ψ1 = Ψ2 = Ψ and errors εj with the same distribution. No outliers are introduced in this case, since the aim is to evaluate the
validity of our proposal when the usual assumption in robustness of symmetric errors is violated. Finally, Section 4.3 consid-
ers a situation where different distributions for the design points and the errors are considered between populations. Again,
no contamination is considered in this case, since the aim is to study the stability of the procedures under this setting. Recall
that the test based on Tcl and that described in Section 3 do notmake assumptions of a common design density or a common
error distribution, while the covariate-matched Wilcoxon–Mann–Whitney statisticW ⋆

h assumes that X1
d
= X2 and ε1

d
= ε2.

4.1. Design points with common density

In this study, the covariates Xj are generated with uniform distribution on R = (0, 1). We choosew1 = w2 = I(0,1) and
p1(x) = 0.5. The following scenarios were considered to simulate the regression errors:
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• The first scenario, denoted as C0, corresponds to the situation where εj ∼ N(0, σ 2
j ), with σ1 = 0.5 and σ2 = 0.75. In this

case no outliers will appear in the data.
• Next,we consider a situation, labelled asT1, inwhich εj ∼ C(0, 25σ 2

j ), whereC(µ, σ 2) stands for the Cauchy distribution
with location µ and dispersion σ 2. In this case the errors have no moments.

• We also consider a situation with contaminated gross-errors, labelled as C1,π1,π2 , in which εj ∼ (1 − πj)N(0, σ 2
j ) +

πj N(0, 25σ 2
j ). We choose π1 = 0, 0.1 and π2 = 0, 0.1 and select different combinations of the contaminating

probabilities, so one or both samples contain outliers.

The robust procedure involves selecting score functions both in the estimation step andwhen computing the test statistic,
as well as choosing smoothing parameters to perform the nonparametric estimation of the regression functions. To analyse
the influence of the score functions and the bandwidth choice on the level and power of the test, a preliminary study was
carried on. From now on, the results corresponding to our proposal are labelled as Tr,h,h, Tr,h,t, Tr,a,h and Tr,a,t, where the
second index indicates the Ψ−function used, h being the Huber’s function with tuning constant kh = 1.345 and a the
function ψk = k arctan(t/k), with k = 0.9, and the third index denotes the score function used in the estimation process,
that is, h corresponds to ψk,h with k = kh = 1.345 while t to the bisquare Tukey’s function with constant kt = 4.685.
The results corresponding to C0, to errors with Cauchy distribution and to contaminations C1,π1,π2 are reported in Tables
S.1 to S.3 included in the supplementary material file (see Appendix B). These tables reveal that the results obtained for the
test statistics based on the selected bounded score functions are almost equal for all models, independently of the selected
score function. Therefore, in the sequel, when considering the robust proposal introduced in this paper, we will restrict our
discussion to the results based on Tr,h,h.

On the other hand, Tables S.1 to S.3 also show that the choice of the smoothing parameters required to construct the
nonparametric estimators does not have a significant impact on the tests either, as the results obtained with different
bandwidths are almost equal. Nevertheless, in practice, a data-driven mechanism to choose the required smoothing
parameters is desirable. In the numerical studies to be described below, we perform the tests with data-driven bandwidths
chosen by least-squares cross-validation for Tcl and by robust cross-validation for Tr,h,h, as follows. Taking into account that
the classical cross-validation criterion (see, for example Härdle, 1990) tries to measure both bias and variance, Bianco and
Boente (2007) and Boente and Rodríguez (2010) considered, for partly linear autoregression and partly regression models,
a new measure that establishes a trade-off between robust measures of bias and variance. Let m(−i)

j (x) be the smoothers
computedwith bandwidth husing all the data except (Yij, Xij) anddenoteεij(h) = Yij−m(−i)

j (Xij). Letµn andσn denote robust
estimators of location and scale, respectively. For each sample, the robust cross-validation criterion consists of choosing h
as the minimizer of

Υj(h) = µ2
n

εij(h) + σ 2
n

εij(h) .
As location estimator, µn, we choose the median, whereas σn is taken as a τ−scale estimator.

In order to check the consistency of the test under local alternatives converging to the null hypothesis at a parametric
rate, we consider alternatives with∆n = n−1/2∆, where∆ = 0 (null hypothesis) and∆ = 0.5, 2, 4, 6, 8 (local alternatives)
and sample sizes n1, n2 = 50, 100. Tables S.4 to S.7 available in the supplementary material and Figs. 1 and S.1 of the
supplementary file illustrate the behaviour of the tests based on Tcl and Tr,h,h in terms of level approximation and power
(see Appendix B). All figures depict the results under the central model C0 in order to have a common reference to study the
effect of introducing distributions with no moments or contaminated data. To analyse the level sensitivity of the procedure,
we considered an additional contamination model denoted C2,c in which just one observation is modified as follows. We
first simulate data as in scenario C0 and we order the covariates of the first population as X(1),1 ≤ · · · ≤ X(n1),1. Denote as
(X(1),1, YD1,1)

t, . . . , (X(n1),1, YDn1 ,1
)t the sample of observations ordered according to the values of the explanatory variable.

Then, we modify the observation corresponding to the median of the covariates as X
(
n1
2 ),1

= XD n1
2
,1 = 0.5 and YD n1

2
,1 = c .

Under model C0, both the classical test and the robust test perform almost equally, with a correct approximation of the
level and power increasing as the deviation from the null hypothesis gets larger. Since root-n local alternatives are taken,
the power is similar for all choices of sample sizes and shows the tests ability to detect these kinds of local alternatives.
When the errors have a Cauchy distribution (model T1), the robust test empirical size is close to the nominal level, while the
test Tcl provides an underestimated level. Moreover, Tcl presents almost no power, while, although some loss is observed
with respect to C0, the power behaviour of Tr,h,h is correct since it is able to detect the considered alternatives. Under the
scenarios with contaminated data C1,π1,π2 , both statistics approximate correctly the level when the sample sizes are equal,
but only the robust one gives a correct level approximation when the samples are unbalanced. Moreover, the robust test is
more powerful. Finally, scenarios C2,c produce a bad approximation of the level for Tcl, yielding to a very liberal test when
c < 0 and a very conservative test when c > 0 as shown in Fig. 2. On the other hand, Tr,h,h also presents some deviations
from the nominal level, specially when the samples are unbalanced and c > 0, but these deviations are less serious than
those of Tcl. In this scenario, the power behaviour of Tr,h,h is almost the same as that obtained with normal errors.

With respect to the behaviour of the test based on the covariate-matched Wilcoxon–Mann–Whitney statistic W ⋆, since
there is no automatic way to choose the bandwidth, we report the results obtained when h = 0.1, 0.15 and 0.2. Tables
S.4 to S.7 show that under C0 and T1, the tests based on Tr,h,h and W ⋆ perform very similarly, as both produce a good level
approximation and similar power (in terms of power, Tr,h,h slightly outperforms W ⋆ under C0, and the contrary happens
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Fig. 1. Frequencies of rejection of Tcl (black/grey lines) and Tr,h,h (blue/light blue lines) using the data-driven bandwidths when n1 = n2 = 50 (left) and
n1 = n2 = 100 (right) and the local alternatives m2(x) = m1(x) + ∆n−1/2 , with n = n1 + n2 . In all cases, solid black and blue lines represent the power
under C0 . Top: Black and blue lines with filled circles give the power under T1 . Centre: Grey and light blue lines give the under C1,π1,π2 , where the triangles
stand for (π1, π2) = (0, 0.1), the inverted triangles for (π1, π2) = (0.1, 0) and the filled ones for (π1, π2) = (0.1, 0.1). Bottom: Grey and light blue lines
give the power under C2,c , where the triangles stand for c = −4, the inverted triangles for c = 4. The solid horizontal line indicates the 5%-level. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

under T1). Under scenarios C1,π1,π2 , Tr,h,h approximates the level well, whereas W ⋆ underestimates the level when the
samples are unbalanced (n1 = 50, n2 = 100); the power of Tr,h,h is higher than that of W ⋆. Similar conclusions can be
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Fig. 2. Empirical size of Tcl (filled circles) and Tr,h,h (blue triangles) using the data-driven bandwidths when n1 = n2 = 100, when the data are
generated under C2,c . The horizontal solid lines are the nominal level α = 0.05 and the dotted and dashed lines represent the acceptance region for
testing if the empirical size is significantly different from the nominal level, at level 0.05 and 0.01, respectively. The empirical size of the covariate-matched
Wilcoxon–Mann–Whitney statistic W ⋆

h is plotted in maroon for different values of h (squares for h = 0.1, stars for h = 0.15 and inverted triangles for
h = 0.2).

raised for scenario C2,−4. Finally, under C2,4, both test statistics tend to underestimate the level, especially with unbalanced
samples. To better understand this behaviour, in Fig. 2 we show the proportion of rejections under C2,c for several values
of c when ∆ = 0 and n1 = n2 = 100. It seems that the size distortion is less serious for the robust test, as its empirical
size remains stable around the nominal level. We hence conclude that the proposed test behaves better than the covariate-
matched Wilcoxon–Mann–Whitney test when outliers appear in the sample. Another advantage of our proposal is that it
does not require a common density for the design points as does the covariate-matched statistic.

4.2. Asymmetric errors

The goal of this section is to study the performance of the test defined in this paper, when the errors have an asymmetric
distribution. In the considered framework, the test statistic T defined in (10) still provides a consistent test to test H0 : m1 =

m2, since Ψ1 = Ψ2 = Ψ and (11) holds for the centred errors, as explained in Remark 1. Recall that the proof of Theorem 1
requires the stronger assumption A4 which may not hold for the centred log-Gamma errors, so we cannot ensure that the
testing procedure described in Remark 2 achieves the nominal level for the Huber’s score function. For that reason, this
numerical study was conducted to analyse the level and power sensitivity of the test based on Tr,h,h under asymmetric
errors.

We generate covariates Xj according to a uniform distribution on R = (0, 1), while the errors εj = σj Uj follow a log-
Gamma distribution, that is, Vj = exp(Uj) ∼ Γ (βj, βj), where for any β > 0 and µ > 0, we denote by Γ (β, µ) the
parametrization of the Gamma distribution given by the density f (v, β, µ) = ββ vβ−1 exp(−β v/µ){µβ Γ (β)}−1Iv≥0.
Note that, if V ∼ Γ (β, µ), we have that E(V ) = µ and Var(V ) = µ2/β , where β is a shape parameter.

We choose β1 = β2 = β = 3 as well as σ1 = σ2 = σ = 1. As mentioned in Remark 1, the main reason for
taking equal values for βj and σj is to guarantee that we are still testing m1 = m2 against m1 ≤ m2. The fact that the
errors have an asymmetric distribution introduces a shift in the functions solution of (5). For instance, in the classical
situation, E(Yj|Xj = x) = mj(x) + σ E(Uj), hence the functions to be compared are rj(x) = mj(x) + σE(Uj), where
E(Uj) = − log(τ ) + d(τ ) with d(z) = Γ ′(z)/Γ (z) being the digamma function. For τ = 3, d(τ ) ≃ 0.923 meaning that
rj(x) ≃ mj(x) − 0.176 σ . On the other hand, the M−location functional related to the Huber’s score function with tuning
constant kh = 1.345 isµh ≃ −0.143, so the centred errors satisfying (11) are Uj −µh or equivalently the robust conditional
location functional solution of (5) is given by rj(x) ≃ mj(x)− 0.143 σ .

We only report the results when m2(x) = m1(x) + ∆n−1/2, since similar ones are obtained using the local alternatives
m2(x) = m1(x)+∆n−1/2(sin(2πx)+1). The sample sizes considered are n1 = n2 = 50 and n1 = n2 = 100.We also compare
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Table 1
Frequencies of rejection under the null hypothesis and local alternatives of Tcl, Tr,h,h and W ⋆ when the errors have a log-Gamma distribution and
m2(x) = m1(x)+∆n−1/2 .

h n1 = n2 = 50 n1 = n2 = 100
∆: 0 0.5 2 4 6 8 0 0.5 2 4 6 8

0.1 Tcl 0.062 0.123 0.485 0.934 0.999 1.000 0.055 0.101 0.465 0.937 1.000 1.000
Tr,h,h 0.080 0.145 0.506 0.933 1.000 1.000 0.058 0.113 0.498 0.944 0.999 1.000
W ⋆ 0.047 0.093 0.415 0.898 0.996 1.000 0.050 0.090 0.425 0.932 0.999 1.000

0.15 Tcl 0.052 0.113 0.495 0.941 0.999 1.000 0.056 0.102 0.467 0.939 1.000 1.000
Tr,h,h 0.070 0.132 0.501 0.939 1.000 1.000 0.060 0.108 0.490 0.946 0.999 1.000
W ⋆ 0.047 0.099 0.446 0.909 0.999 1.000 0.053 0.098 0.448 0.937 0.999 1.000

0.2 Tcl 0.055 0.110 0.500 0.943 0.999 1.000 0.057 0.101 0.474 0.939 1.000 1.000
Tr,h,h 0.063 0.130 0.501 0.939 1.000 1.000 0.060 0.108 0.488 0.944 0.999 1.000
W ⋆ 0.046 0.104 0.462 0.923 0.998 1.000 0.054 0.099 0.455 0.940 1.000 1.000

0.25 Tcl 0.054 0.106 0.505 0.944 0.999 1.000 0.056 0.101 0.475 0.939 1.000 1.000
Tr,h,h 0.067 0.126 0.497 0.937 0.999 1.000 0.061 0.107 0.485 0.944 1.000 1.000
W ⋆ 0.047 0.105 0.460 0.926 0.998 1.000 0.056 0.102 0.463 0.938 0.999 1.000

0.3 Tcl 0.055 0.107 0.507 0.946 0.999 1.000 0.057 0.103 0.477 0.940 1.000 1.000
Tr,h,h 0.055 0.125 0.488 0.935 0.999 1.000 0.059 0.106 0.478 0.947 1.000 1.000
W ⋆ 0.048 0.110 0.469 0.928 0.998 1.000 0.057 0.098 0.466 0.938 0.999 1.000

0.35 Tcl 0.054 0.109 0.506 0.946 0.999 1.000 0.055 0.105 0.477 0.942 1.000 1.000
Tr,h,h 0.053 0.123 0.486 0.936 0.998 1.000 0.059 0.106 0.475 0.946 1.000 1.000
W ⋆ 0.046 0.112 0.472 0.927 0.998 1.000 0.056 0.100 0.464 0.938 0.999 1.000

0.4 Tcl 0.056 0.112 0.506 0.944 0.999 1.000 0.056 0.104 0.474 0.942 1.000 1.000
Tr,h,h 0.051 0.125 0.486 0.936 0.998 1.000 0.059 0.106 0.474 0.944 1.000 1.000
W ⋆ 0.044 0.115 0.476 0.929 0.998 1.000 0.055 0.098 0.458 0.937 0.999 1.000

0.5 Tcl 0.057 0.114 0.498 0.941 0.999 1.000 0.055 0.104 0.467 0.942 1.000 1.000
Tr,h,h 0.051 0.131 0.479 0.936 0.997 1.000 0.056 0.108 0.473 0.939 1.000 1.000
W ⋆ 0.043 0.118 0.479 0.932 0.998 1.000 0.056 0.099 0.463 0.936 0.999 1.000

hcv Tcl 0.052 0.113 0.503 0.934 0.999 1.000 0.053 0.104 0.467 0.940 1.000 1.000
Tr,h,h 0.061 0.130 0.498 0.935 0.998 1.000 0.058 0.107 0.478 0.944 1.000 1.000

our procedure with the covariate-matched Wilcoxon–Mann–Whitney statistic W ⋆ defined in Koul and Schick (1997). We
choose different smoothing parameters varying from 0.1 to 0.5 to computeW ⋆

h . For fair comparisons, we report the observed
frequencies of rejection of Tcl and Tr,h,h using the same bandwidth parameters and also the results obtained using least-
squares cross-validation bandwidth for Tcl and the robust cross-validation smoothing parameter for Tr,h,h, denoted by hcv.
Table 1 reports the obtained frequencies of rejection. All procedures lead to a similar power behaviour. It is worth noting that
inmost situations the covariate-matchedWilcoxon–Mann–Whitney statistic leads to an empirical size closer to the nominal
one, although the differences obtained with Tcl and Tr,h,h are well within the Monte Carlo margin of error. In particular,
for W ⋆ and Tcl the smallest bandwidth 0.1 leads to the best empirical size, while for the robust procedure Tr,h,h a larger
bandwidth seems preferable. On the other hand, the cross-validation choice seems to affect more the level performance
of Tr,h,h than that of Tcl, which suggests that in this situation a robust cross-validation procedure based on a robustified
deviance may be a better choice.

4.3. Design points and errors with different distribution

As mentioned above, the aim of this section is to compare the performance of the tests based on Tcl and Tr,h,h when
different distributions for the design points and the errors are considered between populations. In this study, the covariates
Xj are generated from Beta distributions on R = (0, 1), Xj ∼ Be(βj1, βj2), j = 1, 2 (in particular, we also consider the
uniform distribution, which is obtained when β11 = β12 = 1). The following scenarios were considered to simulate the
regression errors:

• The first scenario, denoted S1, corresponds to the situation where εj ∼ N(0, σ 2
j ), with σ1 = σ2 = 0.5.

• In the second scenario, denoted S2, the errors also have different distributions, that is, we choose εj = σjUj where
U1 ∼ N(0, 1) and U2 ∼ DE , where DE stands for the double exponential distribution with density exp(−|x|)/2 and
σ1 = σ2 = 0.5.

As in Section 4.2, we only report here the results obtained when m2(x) = m1(x) + ∆n−1/2, since similar results are
obtained with m2(x) = m1(x) + ∆n−1/2(sin(2πx) + 1). Table 2 reports the results for n1 = n2 = 50 and n1 = n2 = 100
and different values of βij. The bandwidths were selected by using cross-validation as in Section 4.1 when estimating the
regression function. The test statistics produce very similar results, both in terms of level approximation and in power. The
case X1 ∼ Be(0.5, 0.5) and X2 ∼ Be(2, 2) gives a slight overestimation of the size.



G. Boente, J.C. Pardo-Fernández / Computational Statistics and Data Analysis 97 (2016) 151–168 161

Table 2
Frequencies of rejection under the null hypothesis and local alternatives of Tcl and Tr,h,h under S1 and S2 .

n1 = n2 = 50 n1 = n2 = 100
∆: 0 0.5 2 4 6 8 0 0.5 2 4 6 8

scenario S1 with X1 ∼ U(0, 1) and X2 ∼ Be(0.5, 0.5)
Tcl 0.042 0.108 0.651 0.984 1.000 1.000 0.054 0.112 0.623 0.989 1.000 1.000
Tr,h,h 0.045 0.114 0.656 0.984 1.000 1.000 0.050 0.130 0.629 0.986 1.000 1.000

scenario S1 with X1 ∼ U(0, 1) and X2 ∼ Be(2, 2)
Tcl 0.044 0.122 0.625 0.984 1.000 1.000 0.048 0.115 0.606 0.992 1.000 1.000
Tr,h,h 0.050 0.126 0.616 0.981 1.000 1.000 0.054 0.120 0.609 0.994 1.000 1.000

scenario S1 with X1 ∼ Be(0.5, 0.5) and X2 ∼ Be(2, 2)
Tcl 0.065 0.137 0.606 0.971 0.999 1.000 0.057 0.130 0.577 0.966 1.000 1.000
Tr,h,h 0.066 0.149 0.622 0.971 1.000 1.000 0.068 0.128 0.584 0.969 1.000 1.000

scenario S2 with X1 ∼ U(0, 1) and X2 ∼ Be(0.5, 0.5)
Tcl 0.052 0.108 0.452 0.921 0.998 1.000 0.048 0.108 0.484 0.930 0.999 1.000
Tr,h,h 0.048 0.116 0.507 0.944 1.000 1.000 0.051 0.125 0.534 0.957 1.000 1.000

scenario S2 with X1 ∼ U(0, 1) and X2 ∼ Be(2, 2)
Tcl 0.059 0.111 0.465 0.916 0.998 1.000 0.056 0.117 0.510 0.916 0.997 1.000
Tr,h,h 0.062 0.124 0.541 0.955 0.998 1.000 0.063 0.137 0.574 0.969 1.000 1.000

scenario S2 with X1 ∼ Be(0.5, 0.5) and X2 ∼ Be(2, 2)
Tcl 0.067 0.130 0.489 0.911 0.997 1.000 0.066 0.115 0.461 0.906 0.996 1.000
Tr,h,h 0.069 0.143 0.551 0.944 0.999 1.000 0.065 0.115 0.521 0.941 0.999 1.000

5. A real data analysis

Neumeyer and Pardo-Fernández (2009) used a data set from the Data Archive of the Journal of Applied Econometrics
to illustrate their testing procedure. The data are related to total expenditures of several Dutch households. Particularly,
they tested for the equality of the regression curves that explain the relationship between the covariate ‘log of the total
expenditure’ and the response ‘log of the expenditure on food’ according to the number of household members. The
nature of the considered variables justifies the use of a one-sided type test, since it is expected that the food expenditure
increases (or, at least, does not decrease) as the size of the household increases. When comparing the households of 3
members (45 observations) and 4 members (73 observations), Neumeyer and Pardo-Fernández (2009) reported a p-value
0.092.

To evaluate if the one-sided test described in Section 3 can be applied for this data set, we first performed the test
described in Dette and Marchlewski (2010) to check homoscedasticity in both populations, using the identity function
and the Huber’s function, which leads to a more resistant procedure, to compute both the regression estimators and
the test statistic. In both cases the obtained p-values were larger than 0.5 for the households of 3 and 4 members. We
then applied the test procedure described in Section 3 with the Huber’s score function, with tuning constant kh =

1.345, both to estimate and to compute the test statistic, Tr,h,h, as well as the test statistic described in Neumeyer and
Pardo-Fernández (2009) assuming homoscedasticity, Tcl. The obtained p-values are 0.125 and 0.102 for Tcl and Tr,h,h,
respectively.

Our purpose here is to illustrate the effect of including an outlier in the data set, in a similar manner as we did under
scenario C2,c in our simulation study. We artificially add an observation of the form (10.74, c) to the first sample and then
perform the tests with bandwidths chosen by cross-validation as described in Section 4. The value 10.47 corresponds to the
sample median of the first population covariate. The obtained p-values of the tests based on Tcl and Tr,h,h are reported in
Fig. 3 for values of c ranging between 6 and 10.We can observe that the p-values of the classical test present a great variation
depending on the value of the contamination c , even leading to a rejection of the null hypothesis when c ∈ [6, 7]. On the
other hand, the robust test produces more stable p-values, all of them above 0.05. Figs. S.2 and S.3 in the supplementary
material lead to the same conclusionswhen fixed bandwidths are considered (seeAppendix B).Moreover, these figures show
that, except for c = 9.5, which is a very extreme contamination, the p-values of the robust test are very stable independently
of the bandwidth choice, with values always between 0.05 and 0.10.

Finally, we have also considered the situation in which both populations are contaminated in a similar way as described
above. Fig. 4 illustrates the p-values behaviour when adding a contaminating observation at the sample median covariate
with response taking the value c1 in the first population and c2 in the second one. The contaminating values cj vary on a grid
of points between 6 and 11with a step of 0.25, since the response should be smaller or equal to the covariate, ‘log of the total
expenditure’, whosemaximum is 11.5. The bandwidths were selected using cross-validation. Under this contamination, the
p-values of the classical test vary in the range [0.033, 0.659] showing its sensitivity and leading to different conclusions
depending on the contamination value. Indeed, in a subset of the region R = {(c1, c2) such that 6 ≤ c1 ≤ 7.75 and 8.5 ≤

c2 ≤ 11}, the p-values of the test based on Tcl leads to rejection at 5% level, so the conclusion with respect to the clean data
set is reversed. On the other hand, the test based on Tr,h,h is more stable and does not reject the null hypothesis for the
considered level.
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Fig. 3. Illustration on a real data set. p-values of the tests Tcl (grey) and Tr,h,h (blue) for different values of the contamination c. The solid horizontal line
indicates the 5%-level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Illustration on a real data set. Surface plot of the p-values of the tests Tcl (left) and Tr,h,h (right) as a function of the contamination values c1 and c2 ,
when both populations are contaminated and cross-validation bandwidths are considered.

6. Conclusion

In this paper we have studied a new robust method to test for the equality of two regression curves versus a one-sided
alternative in a nonparametric setup. The new procedure adapts the ideas in Neumeyer and Pardo-Fernández (2009) to
the situation where no moments are assumed for the regression errors. The analysis of the asymptotic distribution of the
test statistic reveals that the testing procedure is consistent against local alternatives converging to the null hypothesis
at the parametric rate n−1/2. Simulations have shown a good practical behaviour of the new test when the critical values
are obtained from an approximation of the asymptotic null distribution of the test statistic. If no outliers are present in
the sample, the behaviour of the new test is almost equal to that of the classical method, but when outliers appear in the
samples, the robust test clearly outperforms the classical procedure. The robust procedure introduced does not assume
that the design points have the same density. Besides, when the errors of both populations have a symmetric distribution, it
does not require a common distribution for the errors. Finally, the procedure still leads to a consistent test under asymmetric
errors if Ψ1 = Ψ2 = Ψ and the errors εj have the same distribution.
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Appendix A. Auxiliary results and proof of Theorem 1

A.1. Some results for the robust estimator of the regression function

In this section we give several general results for the robust estimator of the regression function given in (6) that will
be used later in the proof of Theorem 1. Strong order of convergence for local M-estimators was studied, among others,
by Boente and Fraiman (1991). Recently, Boente and Vahnovan (2015) extended these results to the functional setting,
achieving better order the convergence than in the Euclidean setting. For that reason, we will use their results.

From Boente and Vahnovan (2015) we have that, under conditions A2, A4, A5, A7 and A9,

sup
x∈K

|mj(x)− mj(x)| = Oa.co.

h2

+ θnj

, (A.1)

where θnj =

log nj/(njh) for any compact set K ⊂ R̊, where R̊ stands for the interior of the set R.

Assume thatΨj is twice continuously differentiable, with first and second derivativesΨ ′

j andΨ
′′

j , respectively. Then, from
(7) and denotingwij(x) = Kh


x − Xij


, we have the following expansion

0 =
1
nj

nj
i=1

wij(x)Ψj


Yij − mj(x)σj



=
1
nj

nj
i=1

wij(x)Ψj


Yij − mj(x)σj


+

mj(x)− mj(x)σj Aj(x,σj),
where

Aj(x,σj) =
1
nj

nj
i=1

wij(x)Ψ ′

j


Yij − mj(x)σj


−

1
2

mj(x)− mj(x)σj 1
nj

nj
i=1

wij(x)Ψ ′′

j


Yij − mj(x)+ ξij(x)σj


,

with ξij(x) an intermediate point between 0 andmj(x)− mj(x). Hence, we obtain the following representation

mj(x)− mj(x) = Aj(x,σj)−1 σj
nj

nj
i=1

wij(x)Ψj


Yij − mj(x)σj


. (A.2)

The expansion (A.2) will be helpful when deriving the asymptotic behaviour of the test statistic. Note that since the density,
fj, of Xj, is twice continuously differentiable and Ψ ′′

j is bounded from (A.1) we get that

sup
x∈K

Aj(x,σj)−
1
nj

nj
i=1

wij(x)Ψ ′

j


Yij − mj(x)σj

 = Oa.co.

h2

+ θnj

.

Hence, standard arguments and the consistency ofσj allow to show that

sup
x∈K

|Aj(x,σj)− fj(x)νj,j| = Oa.co.

h2

+ θnj

,

where νj,j = E[Ψ ′

j


Uj


], so

sup
x∈K

|Bj(x,σj)| = Oa.co.

h2

+ θnj

, (A.3)

withBj(x,σj) = A−1
j (x,σj)−


fj(x)νj,j

−1. Thus, if we denote

Lj(x,σj) =
1
nj

nj
i=1

wij(x)Ψj


Yij − mj(x)σj


,

Λj(x, u, σ ) = E

Ψj


Yj − mj(x)

σ


| Xj = u


= E


Ψj


σjUj + mj(u)− mj(x)

σ


,
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we have that

Mj(x,σj) = mj(x)− mj(x)−
σj

fj(x)νj,j
Lj(x,σj) =Bj(x,σj)σjLj(x,σj)

= Bj(x,σj)σj 1
nj

nj
i=1

Kh(x − Xij)


Ψj


Yij − mj(x)σj


−Λj(x, Xij,σj)

+Bj(x,σj)σj 1
nj

nj
i=1

Kh(x − Xij)Λj(x, Xij,σj)
= Bj(x,σj)σjMj,1(x,σj)+Bj(x,σj)σjMj,2(x,σj). (A.4)

As in Ferraty et al. (2010), we easily obtain that

sup
σ∈

 σj
2 ,2 σj

 supx∈K
|Mj,1(x, σ )| = sup

σ∈[
σj
2 ,2 σj]

sup
x∈K

 1nj

nj
i=1

Kh(x − Xij)


Ψj


Yij − mj(x)

σ


−Λj(x, Xij, σ )


= Oa.co.


θnj


, (A.5)

where θnj =

log nj/(njh). On the other hand, using that E[Ψj


σjUj/σ


] = 0 for any σ > 0, a Taylor’s expansion of order

two leads to

Λj(x, u, σ ) =
mj(u)− mj(x)

σ
E


Ψ ′

j


σjUj

σ


+

1
2
(mj(u)− mj(x))2

σ 2
E


Ψ ′′

j


σjUj + ξij(u, x)(mj(u)− mj(x))

σ


,

which, together with the fact that Ψ ′

j and Ψ ′′

j are bounded, implies that

sup
σ∈[

σj
2 ,2 σj]

sup
x∈K

|Mj,2(x, σ )| = sup
σ∈[

σj
2 ,2 σj]

sup
x∈K

 1nj

nj
i=1

Kh(x − Xij)Λj(x, Xij, σ )


= Oa.co.


h2

+ θnj


(A.6)

Therefore, (A.3), (A.5), (A.6) and the consistency ofσj yield to

sup
x∈K

|Mj(x,σj)| = sup
x∈K

mj(x)− mj(x)−
σj

fj(x)νj,j
Lj(x,σj) = Oa.co.


h2

+ θ2nj


. (A.7)

It is worth noting that, analogous arguments to those considered in Theorem 4.4 in Boente and Vahnovan (2015)
together with the previous computations allow to show that (A.1) and (A.7) still hold when m2(x) = m1(x) + n−1/2∆(x),
i.e., under the considered root-n local alternatives in which (Xi2, Yi2)

t, 1 ≤ i ≤ n2, correspond to a triangular array with
Yi2 = Y (n)i2 = m1(Xi2)+ n−1/2∆(Xi2)+ σ2Ui2.

A.2. Proof of Theorem 1

We first state some technical results collected in a Lemma whose proof can be found in the supplementary material
available online (see Appendix B).

Lemma A.1. Assume that (1) and A1 to A9 hold. Let σj be a consistent estimator of σj. For any fixed j = 1, 2, denoteR1(σ ) = (1/n2
j )


1≤i≠ℓ≤nj

Ziℓ(σ ) andR2(σ ,σ) = 1/(nj n3−j)
nj

i=1
n3−j

ℓ=1 Wiℓ(σ ,σ) where

Ziℓ(σ ) = Ψ ′


σj Uij

σ


Ψ ′

j


σjUℓj
σ


pj(Xij)wj(Xij)

fj(Xij)
Kh(Xij − Xℓj)


mj(Xℓj)− mj(Xij)


Wiℓ(σ ,σ) = Ψ ′


σj Uij

σ


Ψ ′

3−j


σ3−jUℓ,3−jσ


p3−j(Xij)wj(Xij)

f3−j(Xij)
Kh(Xij − Xℓ,3−j)


m3−j(Xℓ,3−j)− m3−j(Xij)


.

Then,

(a) supσ∈Ij

E R1(σ )
 = oP(n−1/2) and supσ∈Ij,σ∈I3−j

E R2(σ ,σ) = oP(n−1/2), where Is = [σs/2, 2σs], for s = j,
3 − j.
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(b) There exists a constant C > 0 not depending on n such that for all n ≥ n0

sup
σ∈Ij

P
√

n|R1(σ )− ER1(σ )| > ϵ


≤ C

h2

nj
+ h2


sup

σ∈Ij,σ∈I3−j

P(
√
n|R2(σ ,σ)− ER2(σ ,σ)| > ϵ) ≤ C


h2

nj
+ h4


(c) supσ∈Ij

R1(σ )− E
R1(σ )

 = oP(n−1/2) and supσ∈Ij,σ∈I3−j

R2(σ ,σ)− E
R2(σ ,σ) = oP(n−1/2).

(d) R1(σj) p
−→ 0 andR2(σj,σ3−j)

p
−→ 0

Proof of Theorem 1. We begin by obtaining an expansion forEj0 that will allow us to derive the asymptotic distribution of
T . Using that Ψ is twice continuously differentiable, a Taylor’s expansion of order two leads to

Ej0 =
1
nj

nj
i=1

Ψ


Yij − m(Xij)σj


wj(Xij)

=
1
nj

nj
i=1

Ψ


σj Uij + mj(Xij)− m(Xij)σj


wj(Xij)

=
1
nj

nj
i=1

Ψ


σj Uijσj


wj(Xij)+

1σj 1nj

nj
i=1

Ψ ′


σj Uijσj


(mj(Xij)− m(Xij))wj(Xij)

+
1

2σ 2
j

1
nj

nj
i=1

Ψ ′′


ξijσj


(mj(Xij)− m(Xij))

2wj(Xij)

= Tj1(σj)+
1σj Tj2 + Tj3,

where ξij = σj Uij + θij(mj(Xij) − m(Xij)) and θij is an intermediate point in [0, 1]. Using that σj p
−→ σj and that ζ is

bounded, standard empirical process arguments allow to show that Tj1(σj) has the same asymptotic behaviour as Tj1(σj),
i.e.,

√
n{Tj1(σj)− Tj1(σj)} = oP(1). On the other hand, using that Ψ ′′ is bounded, from A9 and (A.1), we get Tj3 = oP(n−1/2).

Hence we have that

Ej0 =
1
nj

nj
i=1

Ψ

Uij


wj(Xij)+

1σj Tj2 + oP(n−1/2). (A.8)

The term Tj2 needs to be further analysed. Note thatmj(x) = p1(x)mj(x)+ p2(x)mj(x), somj(x)− m(x) = p1(x){mj(x)−m1(x)} + p2(x){mj(x)− m2(x)} =
2

s=1 ps(x){mj(x)− ms(x)} which leads to

mj(x)− m(x) =

2
s=1

ps(x){mj(x)− ms(x)} +

2
s=1

ps(x){ms(x)− ms(x)}.

Hence,

Tj2 =
1
nj

nj
i=1

Ψ ′


σj Uijσj


(mj(Xij)− m(Xij))wj(Xij) = Tj2,1(σj)−Tj2,2(σj),

where

Tj2,1(σ ) =

2
s=1

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)(mj(Xij)− ms(Xij))wj(Xij),

Tj2,2(σ ) =

2
s=1

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)(ms(Xij)− ms(Xij))wj(Xij).

We have the following expression forTj2,1(σ )
Tj2,1(σ ) = (−1)j

1
nj

nj
i=1

Ψ ′


σj Uij

σ


(m2(Xij)− m1(Xij))wj(Xij)p3−j(Xij), (A.9)
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Note that under the null hypothesisTj2,1(σj) = 0. So, using (A.8), we obtain that

Ej0 =
1
nj

nj
i=1

Ψ

Uij


wj(Xij)+

1σjTj2,1(σj)−
1σjTj2,2(σj)+ oP(n−1/2). (A.10)

To study the termTj2,2(σj), we will use the representation for ms(x) − ms(x) given in (A.7) with K = Sj, which also holds
under n1/2 local alternatives, so

Tj2,2(σ ) =

2
s=1

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)(ms(Xij)− ms(Xij))wj(Xij)

=

2
s=1

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

σs
fs(Xij)νs,s

Ls(Xij,σs)
+

2
s=1

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)Ms(Xij,σs)wj(Xij)

= Rj,1(σ )+Rj,2(σ ), (A.11)

where Mj(x, σ ) is given in (A.4). Hence, (A.7) and the fact that

nh2

n/ log n → ∞ and nh4
→ 0 imply that, for s = 1, 2,

maxi |Ms(Xij,σs)| = oP(n−1/2) so using that 0 ≤ ps ≤ 1 and that Ψ ′ and wj are bounded, we get thatRj,2(σj) = oP(n−1/2).
Therefore, we only have to study the behaviour ofRj,1(σj). Note that

Rj,1(σ ) =

2
s=1

σs
νs,s

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)
Ls(Xij,σs)

=

2
s=1

σs
νs,s

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)

1
ns

ns
ℓ=1

Kh(Xij − Xℓs)Ψs


Yℓs − ms(Xij)σs


.

Using that Yℓs = σsUℓs + ms(Xℓs) and applying a second order Taylor’s expansion, we obtain thatRj,1(σ ) = Rj,1,1(σ ) +Rj,1,2(σ )+Rj,1,3(σ )where

Rj,1,1(σ ) =

2
s=1

σs
νs,s

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)

1
ns

ns
ℓ=1

Kh(Xij − Xℓs)Ψs


σsUℓsσs


,

Rj,1,2(σ ) =

2
s=1

1
νs,s

1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)

1
ns

ns
ℓ=1

Kh(Xij − Xℓs)Ψ ′

s


σsUℓsσs

 
ms(Xℓs)− ms(Xij)


,

Rj,1,3(σ ) =

2
s=1

1σsνs,s 1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)

×
1
ns

ns
ℓ=1

Kh(Xij − Xℓs)Ψ ′′

s


σsUℓsσs + θℓs


ms(Xℓs)− ms(Xij)

  
ms(Xℓs)− ms(Xij)

2
,

where 0 < θℓs < 1. Using that K has bounded support and mj is Lipschitz, we get that |ms(Xℓs) − ms(Xij)| ≤ Ch
where Kh(Xij − Xℓs) ≠ 0. Thus, the boundness of Ψ ′,Ψ ′′

s , wj and the fact that wj has support on Sj and infx∈Sj fj(x) > 0
together with the consistency of σs and the assumption nh4

→ 0 entail thatRj,1,3(σj) = oP(n−1/2). Note thatRj,1,2(σj) =

ν−1
j,j

R(1)j,1,2(σj)+ν−1
3−j,3−j

R(2)j,1,2(σj,σ3−j), whereR(1)j,1,2(σ ) = n−2
j


1≤i≠ℓ≤nj

Z (j)iℓ andR(2)j,1,2(σ ,σ) = n−1
j n−1

3−j
nj

i=1
n3−j

ℓ=1 W (j)
iℓ with

Z (j)iℓ = Ψ ′


σj Uij

σ


Ψ ′

j


σjUℓj
σ


pj(Xij)wj(Xij)

fj(Xij)
Kh(Xij − Xℓj)


mj(Xℓj)− mj(Xij)


,

W (j)
iℓ = Ψ ′


σj Uij

σ


Ψ ′

3−j


σ3−jUℓ,3−jσ


p3−j(Xij)wj(Xij)

f3−j(Xij)
Kh(Xij − Xℓ,3−j)


m3−j(Xℓ,3−j)− m3−j(Xij)


.

Lemma A.1 and the fact thatσj is consistent lead us toRj,1,2(σj) = oP(n−1/2).
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To deal withRj,1,1(σ ), we rearrange the sum to obtain thatRj,1,1(σ ) =
2

s=1 ν
−1
s,s

R(s)j,1,1(σ ,σs), where

R(s)j,1,1(σ ,σ) = σ 1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)

1
ns

ns
ℓ=1

Kh(Xij − Xℓs)Ψs


σsUℓsσ



=
1
ns

ns
ℓ=1

σΨs


σsUℓsσ


1
nj

nj
i=1

Ψ ′


σj Uij

σ


ps(Xij)wj(Xij)

fs(Xij)
Kh(Xij − Xℓs).

Using that E[Ψs(σsUℓs/σ)] = 0 for any σ > 0, that σj is a consistent estimator of σj and that ζ1,j(u) = uΨ ′

j (u) is bounded,
we easily get that

R(s)j,1,1(σj,σs) = σsνj
1
ns

ns
ℓ=1

Ψs (Uℓs )
ps(Xℓs)wj(Xℓs)fj(Xℓs)

fs(Xℓs)
+ oP(n−1/2). (A.12)

From (A.10), (A.11), the fact thatTj2,2(σ ) =
2

s=1(1/νs,s)R(s)j,1,1(σ ,σs)+ oP(n−1/2) and (A.12) we obtain that

Ej0 =
1
nj

nj
i=1

Ψ

Uij


wj(Xij)+

1σjTj2,1(σj)−
νj

σj

2
s=1

σs

νs,s

1
ns

ns
ℓ=1

Ψs (Uℓs )
ps(Xℓs)wj(Xℓs)fj(Xℓs)

fs(Xℓs)
+ oP(n−1/2). (A.13)

Thus, we have that

E20 =
1σ2T22,1(σ2)+

1
n2

n2
ℓ=1

Ψ (Uℓ2) w2(Xℓ2)−
ν2

ν2,2

1
n2

n2
ℓ=1

Ψ2 (Uℓ2 )
p2(Xℓ2)w2(Xℓ2)f2(Xℓ2)

f2(Xℓ2)

−
ν2σ1

σ2ν1,1

1
n1

n1
ℓ=1

Ψ1 (Uℓ1 )
p1(Xℓ1)w2(Xℓ1)f2(Xℓ1)

f1(Xℓ1)
+ oP(n−1/2),

E10 =
1σ1T12,1(σ1)+

1
n1

n1
ℓ=1

Ψ (Uℓ1) w1(Xℓ1)−
ν1

ν1,1

1
n1

n1
ℓ=1

Ψ1 (Uℓ1 )
p1(Xℓ1)w1(Xℓ1)f1(Xℓ1)

f1(Xℓ1)

−
ν1σ2

σ1ν2,2

1
n2

n2
ℓ=1

Ψ2 (Uℓ2 )
p2(Xℓ2)w1(Xℓ2)f1(Xℓ2)

f2(Xℓ2)
+ oP(n−1/2),

so that

E20 −E10 =
1
n1

n1
ℓ=1

Ψ1 (Uℓ1 )
p1(Xℓ1)
f1(Xℓ1)


ν1

ν1,1
w1(Xℓ1)f1(Xℓ1)−

ν2σ1

σ2ν1,1
w2(Xℓ1)f2(Xℓ1)


− Ψ (Uℓ1) w1(Xℓ1)

−
1
n2

n2
ℓ=1

Ψ2 (Uℓ2 )
p2(Xℓ2)
f2(Xℓ2)


ν2

ν2,2
w2(Xℓ2)f2(Xℓ2)−

ν1σ2

σ1ν2,2
w1(Xℓ2)f1(Xℓ2)


− Ψ (Uℓ2) w2(Xℓ2)

+
1σ2T22,1(σ2)−

1σ1T12,1(σ1)+ oP(n−1/2)

= S2,n2 − S1,n1 +
1σ2T22,1(σ2)−

1σ1T12,1(σ1)+ oP(n−1/2),

where

S2,n2 =
1
n2

n2
ℓ=1

Ψ2 (Uℓ2 )
p2(Xℓ2)
f2(Xℓ2)


ν1σ2

σ1ν2,2
w1(Xℓ2)f1(Xℓ2)−

ν2

ν2,2
w2(Xℓ2)f2(Xℓ2)


+ Ψ (Uℓ2) w2(Xℓ2)

S1,n1 =
1
n1

n1
ℓ=1

Ψ1 (Uℓ1 )
p1(Xℓ1)
f1(Xℓ1)


ν2σ1

σ2ν1,1
w2(Xℓ1)f2(Xℓ1)−

ν1

ν1,1
w1(Xℓ1)f1(Xℓ1)


+ Ψ (Uℓ1) w1(Xℓ1).

Therefore, the test statistic can be written as

T =

n1

n

1/2
n1/2
2 S2,n2 −

n2

n

1/2
n1/2
1 S1,n1 + ∆n1,n2 + oP(n−1/2),

where

∆n1,n2 =

n1

n
n2

n

1/2
n1/2


1σ2T22,1(σ2)−

1σ1T12,1(σ1)

.
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For j = 1, 2, the term n1/2
j Sj,nj is asymptotically normally distributed with mean 0 and variance τ 2j given in (12).

(a) Under H0,T22,1(σ2) = 0 andT12,1(σ1) = 0, thus ∆n1,n2 = 0. Therefore, T
D
−→ N(0, κ1τ 22 + κ2τ

2
1 ) under H0, concluding

the proof of (a).
(b) To analyse the asymptotic behaviour of the test statistic under H1 recall the representation given in (A.9). Let Pℓ = {x ∈

R, p3−ℓ(x) > 0}. Denote J = {j ∈ {1, 2} such that Pj ∩ Sj ∩ A ≠ ∅}. Taking into account that p2(x) = 1 − p1(x), we
have that card(J) ≥ 1. Let

Tj2,1(σ ) = E[Tj2,1(σ )] = (−1)jE

Ψ ′


σj Uj

σ


E


(m2(Xj)− m1(Xj))wj(Xj)p3−j(Xj)


.

Since σj is a consistent estimator of σj, under H1 we have that
√
n{Tj2,1(σj) − Tj2,1(σj)} has the same asymptotic

distribution as
√
n{Tj2,1(σj) − Tj2,1(σj)}, which is asymptotically normally distributed with asymptotic variance

κ−1
j E[(Ψ ′(Uj))

2
]E[(m2(Xj)−m1(Xj))

2w2
j (Xj)p23−j(Xij)] ≠ 0 for j ∈ J. Hence, ifJ = {1, 2}, using that νj = E[Ψ ′(Uij)] > 0,

we have that, under H1,
√
n(−1)jTj2,1(σj) → +∞ for j ∈ J. This implies that

√
n(−1)jTj2,1(σj) → +∞, for j ∈ J, so

that ∆n1,n2 → +∞. Otherwise, card(J) = 1 and denote j0 its unique element. Then, pj0(x) = 0 in S3−j0 ∩ A so
√
nTj02,1(σj) = 0 while

√
n(−1)3−j0T3−j02,1(σj) → +∞, which concludes the proof of (b).

(c) Finally, we now consider the behaviour under H1,n. In this case,m2(x) = m1(x)+ n−1/2∆(x), so

n1/2Tj2,1(σ ) = (−1)j
1
nj

nj
i=1

Ψ ′


σj Uij

σ


∆(Xij)wj(Xij)p3−j(Xij).

Using standard empirical process arguments, it is easy to see that the consistency of σj, implies that n1/2Tj2,1(σj) p
−→

(−1)jνjE

∆(Xj)wj(Xj)p3−j(Xj)


. Thus, we have that

n1/2


1σ2T22,1(σ2)−
1σ1T12,1(σ1)


p
−→

ν2

σ2
E [∆(X2)w2(X2)p1(X2)] +

ν1

σ1
E [∆(X1)w1(X1)p2(X1)] = d.

Taking into account that nj/n → κj, we get that ∆n1,n2
p
−→ (κ1κ2)

1/2d under H1,n. Therefore, under H1n, the test statistic
T converges in distribution to N


(κ1κ2)

1/2d, κ1τ 22 + κ2τ
2
1


, concluding the proof. �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2015.12.002.
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