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a b s t r a c t

Robust nonparametric equivariant M-estimators for the regression function have been
extensively studied when the covariates are in Rk. In this paper, we derive strong uniform
convergence rates for kernel-based robust equivariant M-regression estimator when the
covariates are functional.
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1. Introduction

A common problem in statistics is to study the relationship between a random variable Y and a set of covariates X . In
many applications, the covariates can be seen as functions recorded over a period of time and regarded as realizations of
a stochastic process, often assumed to be in the L2 space on a real interval. These variables are usually called functional
variables in the literature. In this general framework, statistical models adapted to infinite-dimensional data have been
recently studied. We refer to Ramsay and Silverman (2002, 2005), Ferraty and Vieu (2006) and Ferraty and Romain (2011)
for a description of different procedures for functional data. In particular, linear nonparametric regression estimators in the
functional setting, that is, estimators based on a weighted average of the response variables, have been considered, among
others, by Ferraty and Vieu (2004) and Ferraty et al. (2006) who also considered estimators of the conditional quantiles.
Burba et al. (2009) studied k-nearest neighbor regression estimators while Ferraty et al. (2010) obtained almost complete
uniform convergence results (with rates) for kernel-type estimators.

However, in the functional case the literature on robust proposals for nonparametric regression estimation is sparse.
Cadre (2001) studied estimation procedures for the L1 median estimators for a random variable on a Banach space while
Azzedine et al. (2008) studied nonparametric robust estimation methods based on the M-estimators introduced by Huber
(1964), when the scale is known.
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In this paper, we consider the case in which the scale is unknown since inmost practical situations, scale is unknown and
needs to be estimated. As in locationmodels,M-smoothers are shift equivariant. However, even if themean and themedian
are scale equivariant, this property does not hold for M-location estimators unless a preliminary robust scale estimator is
used to scale the residuals. The same holds for the robust nonparametric regression estimators considered in Azzedine et al.
(2008). To ensure scale equivariance and robustness, a robust scale estimator needs to be used to decide which responses
may be considered as atypical, so that their effect can be downweighted. In this sense, our contributions extend previous
proposals in two directions. On one hand, we generalize the proposal given in the Euclidean case by Boente and Fraiman
(1989) to provide robust equivariant estimators for the regression function in the functional case, that is, in the case where
the covariates are in an infinite dimensional space. On the other hand, we extend the proposal given in Azzedine et al. (2008)
to allow for an unknown scale and heteroscedastic models.

The paper is organized as follows. In Section 2, we state our notation, while in Section 3 we introduce the robust
estimators to be considered. Section 4 contains the main results of this paper, that is, uniform convergence consistency and
uniform convergence rates for the equivariant localM-estimators, over compact sets. These uniform convergence results are
obtained either by giving conditions on theM-conditional location functional or by deriving similar results on the conditional
empirical distribution function which extend those given in by Ferraty et al. (2010). Proofs are relegated to Appendix A and
to the supplementary file available online (see Appendix B).

2. Basic definitions and notation

Throughout this paper, we consider independent and identically distributed observations (Yi, Xi), 1 ≤ i ≤ n such that
Yi ∈ R and Xi ∈ H with the same distribution as (Y , X), where (H, d) is semi-metric functional space, that is, d satisfies the
metric properties but d(x, y) = 0 does not imply x = y. We say that the observations satisfy a nonparametric functional
regression model if (Y , X) is such that

Y = r(X)+ U (1)

where r : H → R is a smooth operator not necessarily linear. Throughout this paper, wewill not require anymoment condi-
tions on the errors distribution. Usually in a robust framework, the error U is such that U = σ(X)u, where u is independent
of X and with distribution F0 symmetric around 0, that is, we assume that the errors u have scale equal to 1 to identify the
function σ . When second moment exists, as it is the case of the classical approach, these conditions imply that E(U|X) = 0
and Var(U|X) = σ 2(X), which means that, in this situation, r and σ represent the conditional mean and standard deviation
of the responses given the covariates, respectively. Hence, when E|Y | < ∞, the regression function r(X) in (1), which in this
case equals E(Y |X), can be estimated using the extension to the functional setting of the Nadaraya–Watson estimator (see,
for example, Härdle, 1990). To be more precise, let K be a kernel function and h = hn a sequence of strictly positive real
numbers. Denote as

wi(x) = Ki(x)


n

i=1

Ki(x)

−1

, (2)

where Ki(x) = K (d(x, Xi)/h). Then, the classical regression estimator is defined as

r(x) =

n
i=1

wi(x)Yi. (3)

Under regularity conditions, Ferraty and Vieu (2006) obtained convergence rates for the estimatorr(x), while Ferraty
et al. (2010) derived uniform consistency results with rates for the estimator of the so-called generalized regression function
rϕ(x) = E(ϕ(Y )|X = x) where ϕ is a known real Borel measurable function. As mentioned therein, this convergence is
related to the Kolmogorov’s ϵ-entropy of SH and the function φ that controls the small ball probability of the functional
variable X .

The conditional cumulative distribution function of Y given X = x is defined, for each x ∈ H, as F(y|X = x) = P(Y ≤

y|X = x), for any y ∈ R. As in Ferraty et al. (2010), we will assume that there is a regular version of the conditional distribu-
tion. An estimator of the conditional distribution function, can be obtained noting that F(y|X = x) = E(I(−∞,y](Y )|X = x),
that is, taking ϕ(Y ) = I(−∞,y](Y ) in the generalized regression function rϕ(x) and using (3). Hence, the kernel estimatorF(y|X = x) of F(y|X = x) equals

F(y|X = x) =

n
i=1

wi(x)I(−∞,y](Yi), (4)

wherewi(x) are defined in (2). Among other results, in Section 4, we obtain uniform strong convergence rates forF(y|X = x)
over R × SH with SH ⊂ H a compact set, generalizing the results in Ferraty et al. (2010).

From now on,m(x) stands for the median of the conditional distribution function, that is,m(x) = inf

y ∈ R : F(y|X = x)

≥
1
2


. If F(·|X = x) is a strictly increasing distribution function, then the conditional median exists and is unique. Moreover,
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it can be defined as m(x) = (F x
Y )

−1(1/2), where F x
Y (y) = F(y|X = x). An estimator m(x) of the conditional median is easily

obtained as the median ofF(y|X = x).

3. The robust equivariant estimators and its related functional

The estimators defined in (3) are sensitive to atypical observations, since they are based on averaging the responses. The
effect of an outlier Yi will be larger as the distance of the related covariate Xi to the point x is smaller. In this sense, atypical
data in the responses in nonparametric regression may lead to a complete distorted estimation. As mentioned by Härdle
(1990) ‘From a data-analytic viewpoint, a nonrobust behavior of the smoother is sometimes undesirable. . . . Any erratic behavior
of the nonparametric pilot estimate will cause biased parametric formulations’. This effect observed for covariates in Rk still
appears for functional covariates. In this sense, robust estimates in a functional non-parametric setting can thus be defined
as insensitive to a single wild spike outlier. To provide resistant estimators to large residuals when dealing with functional
covariates, Azzedine et al. (2008) extended the robust nonparametric kernel regression estimator defined by Collomb and
Härdle (1986) when X ∈ Rk to the infinite-dimensional setting. Some asymptotic results can be found in Crambes et al.
(2008) and Attouch et al. (2009). The proposal given in Azzedine et al. (2008) assumes that scale is known and thus, has two
main drawbacks. As discussed in the Introduction, it cannot be directly applied in practice where scale is usually unknown.
Besides, if scale estimation is avoided, theM-local estimators do not provide equivariant estimators.

Let (Y , X) be a random element in R × H and define

λ(x, a, σ ) = E

ψ


Y − a
σ

 X = x

, (5)

where ψ : R → R is an odd, bounded and continuous function. We denote by g(x) the solution of λ(x, a, s(x)) = 0 where
s(x) is a robust measure of the conditional scale. The conditional scale measure can be taken as the normalized conditional
median of the absolute deviation from the conditional median, that is,

s(x) =
1
cG

med(|Y − m(x)| |X = x) = madc(F x
Y (·)) (6)

where m(x) is the median of the conditional distribution as defined in Section 2 and cG is a constant ensuring Fisher-
consistency at a given distribution G. Note that s(x)which corresponds to a robust measure of the conditional scale, usually
equals σ(x) up to a multiplicative constant, when U = σ(X)u with u independent of X . For instance, the median of the
absolute deviation is usually calibrated so that mad(Φ) = 1, taking cΦ = Φ−1(3/4), where Φ states for the distribution
function of a standard normal random variable. In this case, when the errors u have a Gaussian distribution, we have that
s(x) = madc(F x

Y (·)) = σ(x).
To obtain estimators of g(x) we plug-into (5) an estimator of F x

Y (y), which will be taken asF(y|X = x). Denote bys(x) a
robust estimator of the conditional scale, for instance,s(x) = madc(F(·|X = x)), the scalemeasure defined in (6) evaluated inF(y|X = x). With this notation, the robust nonparametric estimator of g(x) is given by the solutiong(x) ofλ(x, a,s(x)) = 0,
where

λ(x, a, σ ) =


ψ


y − a
σ


dF(y|X = x) =

n
i=1

wi(x)ψ

Yi − a
σ


. (7)

Remark 3.1. (a) In the classical setting, the target is to estimate the conditional mean E(Y |X = x) and this quantity is
obtained choosing ψ(t) = t in (5). When considering ψ(t) = sgn(t) the target is now the conditional median. For
general score functions ψ , the target is the solution g(x) of λ(x, a, s(x)) = 0. When ψ is a strictly increasing function,
g(x) is the so-called robust conditional location functional as introduced in Boente and Fraiman (1989) who noted that
this functional provides a natural extension of the conditional expectation. As mentioned, for instance, in Collomb and
Härdle (1986), the choice of a bounded functionψ in (7) suggests more stable prediction properties, in particular, when
a small amount of outliers are present in the responses Yi.

As in the finite-dimensional setting, under model (1), the researcher is seeking for consistent estimators of the
regression function r without requiring moment conditions on the errors Ui in which case bounded score functions are
helpful. In this case, whenψ is odd, the assumption that the conditional distribution of the error U given X is symmetric
around 0 is needed if we want to guarantee that all robust location conditional estimators are estimating the same
quantity. This property is usually known as Fisher-consistency and means that the target functional is the quantity
of interest, in our case, the regression function r in model (1). Hence, the robust conditional location functional g is
Fisher-consistent for errors with symmetric conditional distribution and for that reason, we will call g(x) the regression
function. In particular, if U = σ(X)u, with u independent of X and with symmetric distribution, g is Fisher-consistent.
This result may be extended straightforward if the oddness of the score function and the symmetry assumption on the
errors distribution are replaced by EF0 (ψ (u/σ)) = 0, for any σ > 0.

(b) From Theorem 2.1 of Boente and Fraiman (1989), if the score function ψ is a strictly increasing bounded continuous
score function such that limt→−∞ ψ(t) < 0 < limt→+∞ ψ(t), the robust location conditional functional g(x) exists, is
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unique and measurable. Furthermore, its weak continuity was obtained in Theorem 2.2 therein. Therefore, by applying
this functional to weak consistent estimators of the conditional distribution, we obtain consistent and asymptotically
strongly robust estimators of the robust location conditional functional g(x). These results can be applied in our func-
tional framework too, since they only require the existence of a regular version of the conditional distribution. It is also
clear that whenψ is an odd function as required in A4 below, the condition limt→−∞ ψ(t) < 0 < limt→+∞ ψ(t) is ful-
filled. Besides, in this case, the continuity ofψ entails that for each fixed x, the estimating equationλ(x, a,s(x)) = 0 also
has a solution, which is unique if ψ is strictly increasing, since this property is inherited byλ(x, a,s(x)). As mentioned
for the location model in Maronna et al. (2006), uniqueness may hold without requiring the strict monotonicity ofψ as
is the situation when considering ψ(t) = sgn(t) or as ψ the Huber score function.

4. Main results

Uniform convergence results and uniform convergence rates for the local M-estimators are derived in Sections 4.1 and
4.2 under some general assumptions that are described below. From now on,

a.co.
−→ and a.co. stand for almost complete

convergence while
a.s.

−→ stands for almost sure convergence.
As mentioned in Section 2, the observations to be considered are such that the covariates X belong to a semi-metric

functional space (H, d). In this space, the open and closed balls will be indicated as V(x, δ) = {y ∈ H : d(x, y) < δ} and
B(x, δ) = {y ∈ H : d(x, y) ≤ δ}, respectively.

For the sake of completeness, we recall the definition of the Kolmogorov’s entropy developed by Kolmogorov (1956) to
classify compact sets according to their massivity and which is an important tool to obtain uniform convergence results.
Given a subset SH ⊂ H and ϵ > 0, denote Nϵ(SH) the minimal number of open balls of radius ϵ needed to cover SH, that
is, Nϵ(SH) is the smallest integer k such that there exists x1, . . . , xk such that SH ⊂ ∪

k
j=1 V(xk, ϵ). If no such n exists, then

Nϵ(SH) = ∞. The quantity ψSH
(ϵ) = log(Nϵ(SH)) is called Kolmogorov’s ϵ-entropy of the set SH and it provides a measure

of the complexity of the set SH, in the sense that a high entropy means that much more information is needed to describe
the set with an accuracy ϵ. As is well known, the set SH is totally bounded if it has a finite entropy, so that compact sets
are complete and with finite entropy sets. Moreover, under the assumption that the space is complete, the set SH has finite
entropy if and only if its closure is compact. As mentioned in Ferraty et al. (2010), the choice of the topological structure
through the choice of the semi-metric plays a crucial role to obtain uniform asymptotic results over SH. Several examples of
sets with finite Kolmogorov’s ϵ-entropy are discussed, among others, in Section 2.2 of Ferraty et al. (2010).

Throughout this paper, when no confusion will be possible, we will denote by C and C ′ some strictly positive generic
constants.

As mentioned in Ferraty and Vieu (2006), convergence results in nonparametric statistics for functional variables are
closely related to the concentration properties of the probability measure of the functional variable X given by the function
φ defined in A1. As in Ferraty et al. (2010), we have to take into account the uniformity aspect to obtain uniform results.

We will consider the following set of assumptions:

A1. For all x ∈ SH there exists φ : R → R>0 such that φ(h) → 0 when h → 0 and 0 < Cφ(h) ≤ P(X ∈ B(x, h)) ≤ C ′φ(h).
A2. The kernel K is a bounded nonnegative function with support [0, 1] such that


K(u)du = 1 and satisfies a Lipschitz

condition of order one. Also,
(a) If K(1) = 0, K is differentiable with derivative K ′ and −∞ < infu∈[0,1] K ′(u) ≤ supu∈[0,1] K ′(u) = ∥K ′

∥∞ < 0.
(b) If K(1) > 0, there exist C, C ′ > 0 such that C I[0,1](u) < K(u) < C ′I[0,1](u).

A3. The functions φ and ψSH
are such that:

(a) φ : R → R>0 is differentiable with first derivative φ′. Moreover, there exists Cφ > 0 and η0 > 0, such that for all
η < η0, φ′(η) < Cφ . If K(1) = 0, the function φ satisfies also the following additional condition: there exist C > 0
and η0 > 0 such that for any 0 < η < η0 we have that

 η
0 φ(u)du > Cηφ(η).

(b) for n large enough,
(log n)2

nφ(h)
< ψSH


log n
n


<

nφ(h)
log n

.

A4. ψ : R → R is an odd, strictly increasing, bounded and continuous differentiable function, with bounded derivative ψ ′

such that ζ (u) = uψ ′(u) is bounded.
A5. The sequence h = hn is such that hn → 0, nφ(hn) → ∞ and nφ(hn)/ log n → ∞ as n → ∞.

The requirement φ(h) > 0 in A1 is a generalization to the functional setting of the assumption that the random vec-
tor X ∈ Rk has a positive density over compact sets. Note that we further assume that φ(h) → 0 when h → 0, which
entails P(X = x) = 0 for all x ∈ H. Moreover, assumption A5 also generalizes the bandwidth requirements from the
finite-dimensional setting to the infinite-dimensional one to obtain uniform rates of convergence. Detailed comments on
assumptions A1, A3(b) and, in particular, on the requirements on the bandwidth parameter are relegated to Section 4.3. As-
sumptions A2 and A3(a) are standard conditions on the kernel weight and the function φ to deal with functional covariates,
while A4 is a usual requirement when consideringM-location functionals.
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4.1. Uniform strong convergence results

In this section, we will obtain uniform convergence results of the regression estimator g defined as a solution ofλ(x, a,s(x)) = 0, over sets compact sets. Theorems 4.1 and 4.3 provide uniform convergence for the robust regression
estimatorsg . The main difference between Theorems 4.3 and 4.1 is that the latter bypass the estimators of the conditional
distribution function requiring only smoothness to the function λ(·, a, σ ), for each fixed a and σ .

Theorem 4.1. Let SH ⊂ H be a compact set such that λ(·, a, σ ) : H → R is a continuous function on SH . Assume that A1
to A5 hold and that, for all σ > 0, g(x) is the unique solution of λ(x, a, σ ) = 0. Lets(x) be a robust scale estimator such that with
probability 1, there exist real constants 0 < A < B and A <s(x) < B for all x ∈ SH and n ≥ n0. Then, supx∈SH

|g(x)−g(x)|
a.s.

−→ 0
as n → ∞.

Theorem 4.2 generalizes the result obtained in Lemma 6.5 of Ferraty and Vieu (2006) and is the functional counterpart
of Theorem 3.1 in Boente and Fraiman (1991). The following additional conditions are needed.

A6. F(y|X = x) is symmetric around g(x).
A7. Let SH be a compact subset of H such that

(a) for any fixed y ∈ R, the function F(y|X = x) is continuous on SH.
(b) the following equicontinuity condition holds:

∀ ϵ > 0 ∃ δ > 0 : |u − v| < δ ⇒ sup
x∈SH

|F(u|X = x)− F(v|X = x)| < ϵ

.
A8. F(y|X = x) has a unique medianm(x).

Theorem 4.2. Let SH ⊂ H be a compact set. Under A1 to A3, A5 and A7, we have that supx∈SH
supy∈R |F(y|X = x)− F(y|X =

x)|
a.s.

−→ 0.

Theorem 4.3. Assume that A1 to A3 and A5 to A7 hold for a given compact set SH ⊂ H. Moreover, lets(x) be a robust scale
estimator such that with probability 1, there exist real constants 0 < A < B and A <s(x) < B for all x ∈ SH and n ≥ n0. Then,
we have that

(a) supx∈SH
|g(x)− g(x)|

a.s.
−→ 0 as n → ∞, if A4 also holds.

(b) supx∈SH
|m(x)− m(x)|

a.s.
−→ 0 when n → ∞, if in addition A8 holds.

Remark 4.1. (i) Lemma A.4 in Appendix A together with Theorem 4.2 implies that if we chooses(x) = madc(F(·|X = x)),
the condition required to the scale estimator in Theorems 4.1 and 4.3 is fulfilled.

(ii) When estimating the scale function, assumption A6 ensures that λ(x, g(x), σ ) = 0 for all σ > 0, as required in Theo-
rem 4.1. Besides, this condition is also needed in Theorem 4.3 to derive consistency of the robust equivariant proposal
(see also, Boente and Fraiman, 1989). Note that to ensure uniform consistency of the local median, we assume that
F(y|X = x) has a unique medianm(x) instead of A4.

(iii) It is worth noting that A7(a) and the compactness of SH entail that for any ϵ > 0, there exists δ > 0 such that
supx∈SH

supd(x,u)<δ |F(y|X = x)− F(y|X = u)| < ϵ, which is used in the proof of Lemma A.3(a). Furthermore, A7(a) also
implies that there exist real numbers a, b such that, for all x ∈ SH, F(b|X = x) > 1 − ϵ and F(a|X = x) < ϵ which
allows to show that s(x) = madc(F x

Y (·)) is bounded and bounded away from 0 for any x ∈ SH.
(iv) Assume that (Y , X) fulfills the model (1) with U = σ(X)u, where u is independent of X and has a symmetric distri-

bution. Then, F(y|X = x) = F0((y − r(x))/σ (x)), so A7(a) holds if F0 is a continuous function and r : H → R and
σ : H → R are continuous functions on SH. Moreover, if infx∈SH

σ(x) > 0 and F0 is Lipschitz then A7(b) holds. It is
worth noticing that if the distribution F0 of u has unique median at 0 then A8 holds.

4.2. Uniform strong convergence rates

The uniform convergence rates of this section will require the following additional assumptions

A9. The Kolmogorov ϵ-entropy of SH satisfies one of the following
(a)


∞

n=1 n exp

(1 − β)ψSH

(log(n)/n)

< ∞ for some β > 1.

(b)


∞

n=1 n
1/2 exp


(1 − β)ψSH

(log(n)/n)

< ∞ for some β > 1.

A10. The function F(y|X = x) is uniformly Lipschitz in a neighborhood SϵH of SH, that is, there exist a constant D > 0 and
η1 > 0 such that for x1, x2 ∈ SϵH, we have supy∈R |F(y|X = x1)− F(y|X = x2)| ≤ D dη1(x1, x2).

Theorems 4.5 and 4.6 give almost complete convergence rates for the estimators of the empirical conditional distribution
and for the localM-estimators of the regression function. Besides, Theorem 4.4 also provides uniform convergence rates for
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the robust regression estimatorsg . The main difference between Theorems 4.6 and 4.4 is that the latter requires a Lipschitz
condition on the regression function instead of requiring a uniform Lipschitz condition on the conditional distribution func-
tion, which is more natural in the present setting. However, a stronger condition on the entropy of the set SH, assumption
A9(a), is required. On the other hand, to obtain rates of convergence for the conditional distribution function A9(b) and A10
will be used. The proofs of the results in this Section are given in the supplementary material available online (see Appendix
B).

Theorem 4.4. Let SH ⊂ H be a compact set. Assume that A1 to A5 and A9(a) hold. Moreover, assume that σ and g are
Lipschitz functions of order ησ and ηg , respectively. If ηmin = min(ησ , ηg) is such that ηmin < 1, assume furthermore that
conditions (8) or (9) below hold

h


n
log n

1−ηmin

≤ Cηmin for all n ≥ 1 (8)

φ(h)


n
log n

1−ηmin

≤ Cηmin for all n ≥ 1. (9)

Let g(x) be the unique solution of λ(x, a, s(x)) = 0 and lets(x) be a robust scale estimator satisfying that with probability 1,
there exist real constants 0 < A < B such that A <s(x) < B for all x ∈ SH and n ≥ n0. Then, if g(x) is a solution of (7) such that
supx∈SH

|g(x)− g(x)|
a.s.

−→ 0, we have that supx∈SH
|g(x)− g(x)| = Oa.co. (hηmin + θn), where θ2n = ψSH

(log(n)/n)/(nφ(h)).

Theorem 4.5. Let SH ⊂ H be a compact set and denote as θ2n = ψSH
(log(n)/n)/(nφ(h)). Assume that A1 to A3, A5, A7, A9(b)

and A10 hold. If η1 in A10 is such that η1 < 1/2, assume in addition that there exists a positive constant C⋆ such that
n

log n

1−η1
φ(h) ≤ C⋆. (10)

Then, we have that supy∈R supx∈SH
|F(y|X = x)− F(y|X = x)| = Oa.co. (hη1 + θn).

Remark 4.2. Assume that (Y , X) satisfymodel (1)withU = σ(X)uwhereσ(x) = σ > 0 for all x, i.e., that the nonparametric
regression model is homoscedastic. Then, if F0 is Lipschitz and r is Lipschitz of order η1, A10 holds. In the heteroscedastic
situation, to ensure that A10 holds we need to require that infx∈SH

σ(x) > 0, σ is Lipschitz of order η1 and F0 has a density
f0 such that y f0(y) is bounded.

It is worth mentioning that if instead of being concerned with uniform convergence rates for x ∈ SH and y ∈ R, we are
only interested in obtaining uniform rates for x ∈ SH as in Corollary 3 of Ferraty et al. (2010), it suffices that the Kolmogorov’s
ϵ-entropy of SH satisfies


∞

n=1 exp

(1 − β)ψSH

(log(n)/n)

< ∞, for some β > 1, instead of A9. The uniformity for y ∈ R

needed to obtain uniform convergence rates forg require stronger conditions on the entropy of the set SH.

Theorem 4.6. Let SH ⊂ H be a compact set. Assume that A1 to A7 , A9(b) and A10 hold. Moreover, if η1 in A10 is such that
η1 < 1/2, assume that (10) holds. Lets(x) be a robust scale estimator such that with probability 1, there exist real constants
0 < A < B verifying A < s(x) < B for all x ∈ SH and n ≥ n0. Then, if θ2n = ψSH

(log(n)/n)/(nφ(h)), we have that
supx∈SH

|g(x)− g(x)| = Oa.co. (hη1 + θn).

4.3. General comments on the assumptions

In this section, we will briefly discuss the assumptions considered and in particular, how they influence the obtained
convergence rates.

As mentioned for instance in Ferraty et al. (2010), assumptions A1, A3 and A5 are standard conditions to derive uniform
consistency of the classical Nadaraya–Watson estimator in a functional setting, while some additional conditions on the
entropy of the set SH are needed to obtain uniform convergence rates.

The functionφ defined in A1 controls uniformly the concentration of the probabilitymeasure of the functional variable on
a small ball. It is a decreasing function of h and limh→0 φ(h) = 0. Hence, the condition of having a bounded derivative given
in A3(a), allows us to consider φ as a Lipschitz function around zero, that is, φ(h) ≤ Chwhich together with A5 implies that
nh/ log n → ∞. Sufficient conditions ensuring that A1 holds, i.e., that a concentration property for the probability measure
holds uniformly in SH, are given in Section 7.2 of Ferraty et al. (2010).

As discussed in Ferraty et al. (2006, 2010), besides to the rates hη1 and hηmin related to the smoothness of the target
function appearing in Theorems 4.4 and 4.5, respectively, the rate θn =


ψSH

(log(n)/n)/(nφ(h)) is linked to topological
properties, taking into account both the concentration of the probabilitymeasure of the randomelementX and the ϵ-entropy
of the set SH. Asmentioned by these authors, the notion of small ball is strongly relatedwith the semi-metric dwhose choice
can increase the concentration of the probability measure to deal with the curse of the infinite-dimension simultaneously
increasing the entropy of the set SH.
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We will give some examples in which the assumptions on the entropy and the measure concentration are fulfilled. For
further discussions we refer to Ferraty and Vieu (2006) and Ferraty et al. (2006, 2010).

(i) The first example corresponds tomultivariate nonparametric regression, i.e.,X ∈ Rk. In this setting, oneusually assumes
that the covariate X has bounded density fX that is strictly positive over compact sets, so that φ(h) = hk and A5
corresponds to the standard requirements on the bandwidth. On the other hand, the ball of radius ρ in Rk can be
covered by (4ρ + ϵ)k/ϵk balls of radius ϵ (see van de Geer, 2000). Hence, the ϵ-entropy of any compact set, ψSH

(ϵ) is
of order log(1/ϵ) so that A9 is fulfilled for β > 2. Finally, A3 is satisfied in the Euclidean situation if (log n)2 = O(nhk).
In this case, the term θn =


log n/(nhk) is the standard pointwise rate of convergence in the Euclidean setting. In

particular, if h = n−τ , then, A5 and A3(b) hold if 0 < τ < 1/k.
(ii) Our second example is the Cameron Martin space and we refer to Li and Shao (2001) for the results to be mentioned

below. From now on, f1(ϵ) ≈ f2(ϵ)means that f1 and f2 have the same order, i.e., for some constants C1, C2 > 0 and for
ϵ small enough C1f1(ϵ) ≤ f2(ϵ) ≤ C2f1(ϵ).

Let us consider the situation where H is a real separable Banach space with norm ∥ · ∥ and X is a centered Gaussian
random element with law µ. Let Hµ be the reproducing Hilbert space generated by µ and denote as ∥ · ∥µ the inner
product norm induced on Hµ. The unit ball BHµ(0, 1) = {x ∈ Hµ : ∥x∥µ ≤ 1} is a compact set of H with the topology
induced by ∥·∥. Moreover, its ϵ-entropy,ψBHµ (0,1)(ϵ), with respect to ∥·∥, is related to the centered small ball probability
ϕ0(ϵ) = µ(∥x∥ ≤ ϵ) = P(∥X∥ ≤ ϵ) = P(X ∈ B(0, ϵ)). From Theorem 3.3 in Li and Shao (2001), we have that for
α1 > 0 and α2 ∈ R,

− log(ϕ0(ϵ)) ≈ ϵ
−

2
α1 | log(ϵ)|α2 if and only if ψBHµ (0,1)(ϵ) ≈


ϵ

−
2
α1 | log(ϵ)|α2

 α1
1+α1

. (11)

On the other hand, using Theorem 3.1 in Li and Shao (2001) we get that, for any x ∈ BHµ(0, 1),

exp(−1/2) ϕ0(h) ≤ P(X ∈ B(x, h)) = P(∥X − x∥ ≤ h) ≤ ϕ0(h),

so the choice φ(h) = ϕ0(h) satisfies A1 and A3. Stochastic processes such that − log(φ(h)) ≈ h−2/α1(log(1/h))α2 for
α1 > 0 are usually known as exponential-type processes and pointwise convergence results are discussed in Ferraty
and Vieu (2006).

Straightforward calculations and (11) allow to see that if we consider an exponential-type process with α1 > 1 and
we choose SH = BHµ(0, 1) and the bandwidth hn such that φ(h) = ϕ0(h) = n−A where A < (α1 − 1)/(α1 + 1), then
A3(b), A5 and A9 are fulfilled.

Examples of Gaussian processes such that − log(φ(h)) ≈ h−2/α1(log(1/h))α2 , with α1 > 1, can be found in Li and
Shao (1999, 2001) and Bogachev (1999). Among others, wewill discuss the following two situations: (a)H is the Banach
space of continuous functions C(0, 1) with supremum norm ∥x∥ = supt∈(0,1) |x(t)| and (b) H = L2(0, 1) with the L2

norm ∥x∥2
2 =

 1
0 x(s)2dt .

(a) When considering the sup norm, the fractional Brownian motion of order α ∈ (1, 2) and the integrated fractional
Brownian motion of order α ∈ (0, 2) are examples of exponential-type process with α1 > 1.

For the first one, α1 = α and β = 0, i.e., − log(φ(h)) ≈ h−2/α and ψSH
(ϵ) = ϵ−2/(α+1). Hence, the choice

h = (A log n)−α/2, with A < (α− 1)/(α+ 1), which leads to φ(h) = ϕ0(h) = n−A, fulfills the assumptions. For this
process, we have that θn = (n/ log n)1/(α+1) √1/(nφ(h)). Therefore, in Theorems 4.4 and 4.6 the dominating term
is related to the bias, i.e., we have that supx∈SH

|g(x)− g(x)| = Oa.co. (hη) = Oa.co.

(log n)−αη/2


with η = ηmin and

η = η1 respectively, showing the deterioration in the convergence rate.
On the other hand, for the integrated fractional Brownianmotion, α1 = 2+α and β = 0, so thatψSH

(log n/n) =

(n/ log n)2/(α+3) and we can choose h = (A log n)−1−α/2, with A < (α + 1)/(α + 3).
(b) When H is the Hilbert space L2(0, 1) and X is the fractional Brownian motion of order α ∈ (1, 2), − log(φ(h)) ≈

h−2/α , so that similar rates to those described in (a) can be derived. On the other hand, if X is them-fold integrated
Brownian motion, Theorem 1.1 in Chen and Li (2003) imply that − log(φ(h)) ≈ h−2/(2m+1), i.e., the process is an
exponential-type process with α1 = (2m + 1) > 1 and α2 = 0, so again, the rate of convergence is dominated by
the bias term

Denote as ∥x∥p = (
 1
0 x(s)pdt)1/p the Lp norm and ∥x∥β,p,q = ∥x∥p +

 1
0 (1/t)


ωp(t, x)/tβ

q dt1/q the Besov norm,

whereωp(t, x) = sup|δ|≤t

 1
δ

|x(s − δ)− x(s)|pds
1/p

. Furthermore, let ∥x∥β = sups,t∈(0,1) |x(t)− x(s)|/|t − s|β be the
Hölder norm. Similar results to those given above can be obtained for the fractional Brownianmotion of orderα ∈ (1, 2)
taking as norms the Lp, the Hölder or the Besov norms when p ≥ 1 and β < (α − 1)/2. In those situations, we have
that α2 = 0 while α1 = α, for the Lp norm and α1 = α − 2β > 1 for the Hölder and Besov norms. For situations in
which α1 > 1 and α2 > 0, we refer again to Li and Shao (2001) who considered the Brownian sheet in [0, 1]2 with the
sup−L2 and the L2 − sup norms.

(iii) Finally, we describe a situation in which the choice of the semi-metric may increase the concentration of φ(h) around
0, to avoid that the rate of convergence deteriorates with the dimension as in (ii). In this sense, as mentioned in Ferraty
et al. (2006, 2010) the choice of the semi-norm is also an important statistical tool. Let us consider the projection
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semi-metric in a separable Hilbert H with inner product ⟨·, ·⟩ and orthonormal basis {ej : j ≥ 1}. For a fixed integer

k > 0, dk(x1, x2) =

k
j=1⟨x1 − x2, ej⟩2

1/2
defines a semi-metric. Let X be a random element in (H, dk) and denote

as χ : H → Rk the operator χ(x) = (⟨x, e1⟩, . . . , ⟨x, ek⟩). Then, as shown in Ferraty et al. (2010) for any compact set
SH of (H, dk), we have that χ(SH) is a compact subset of Rk, so from (i), the ϵ-entropy of SH has order log(1/ϵ). On the
other hand, using Lemma 13.6 in Ferraty and Vieu (2006) we have that if the random vector X = χ(X) has a density fX
bounded and positive over compact sets, then there exist C1, C2 > 0 such that C1hk

≤ P(dk(X .x) ≤ h) ≤ C2hk. Hence,
we can take φ(h) = hk in A1 which means that the process is fractal of order k with respect to the semi-metric dk and
the same uniform convergence rates as in (i) are obtained.
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Appendix A

To prove Theorems 4.1, 4.2 and 4.5, we begin by fixing some notation. For any random variable Wi such that |Wi| ≤ 1
denote for j = 0, 1

Rj(x) =
1
n

n
i=1

W j
i
Ki(x)

EK1(x)
Rj(x) =

1
n

n
i=1

W j
i
Ki(x)
φ(h)

. (A.1)

Note that Lemmas 4.3 and 4.4 of Ferraty and Vieu (2006), A1 and A2 imply that there are constants 0 < C < C ′ < ∞ such
that

Cφ(h) < EK1(x) < C ′φ(h) for any x ∈ SH. (A.2)

Then, ifC = 1/C , we have |Rj(x)− ERj(x)| ≤C |Rj(x)− ERj(x)|. In order to prove Theorems 4.1 and 4.2, we will show that

sup
x∈SH

|Rj(x)− ERj(x)|
a.co.
−→ 0, (A.3)


n≥1

P(An) < ∞ with An =


inf
x∈SH

R0(x) <
1
2


. (A.4)

The following results will be helpful to derive the desired results. The proof of Lemmas A.1, A.3 and A.4 can be found in the
supplementary material available online (see Appendix B).

Lemma A.1. Let SH ⊂ H be a compact set. For random variablesWi, 1 ≤ i ≤ n, such that |Wi| ≤ 1 let Rj(x), j = 0, 1 be defined
as in (A.1). Assume that A1, to A3 hold, then, for j = 0, 1, we have that

(a) for all n ≥ n0 and for any ϵ > 0

sup
y∈R

sup
x∈SH

P{|Rj(x)− ERj(x)| > ϵ} ≤ 2 exp

−
ϵ2nφ(h)

2C ′∥K∥2
∞


1 +

ϵ
C ′∥K∥∞


 .

(b) There exist a1 > 0, a2 > 0 such that, for all n ≥ n0 and for any ϵ > 0

P

sup
x∈SH

|Rj(x)− ERj(x)| > ϵ


≤ 8Nρ(SH) exp


−

ϵ2nφ(h)
a1(1 + a2ϵ)


,

where ρ is such that ρ/h → 0 and ρ/φ(h) → 0 when n → ∞.
(c) Let θ2n = ψSH

(log(n)/n)/(nφ(h)). There exists c > 2 such that, for any ϵ0 > c and n ≥ n0,

sup
y∈R

P

θ−1
n sup

x∈SH

|Rj(x)− ERj(x)| > ϵ0


≤ 8 exp


1 −

ϵ20

8(1 + ϵ0)


ψSH


log n
n


.

Corollary A.2. Let SH be a compact set and assume that A1 to A3 and A5 hold. Then, for any random variable Wi such that
|Wi| ≤ 1, (A.3) and (A.4) hold.

Proof. Using Lemma A.1(b) with ρn = log(n)/n and the fact that A3(b) implies that for n ≥ n0, ψSH
(ρn) /(nφ(h)) <

(1/2) ϵ2/(a1(1 + a2ϵ)), we get that for n ≥ n0, P

supx∈SH

|Rj(x)− ERj(x)| > ϵ


≤ 8 exp

− ϵ2 nφ(h)/[2 a1(1 + a2ϵ)]


.
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Therefore, using that nφ(h)/ log n → ∞wehave that (A.3) holds. On the other hand, using thatER0(x) = 1 and infx∈SH
R0(x)

≥ infx∈SH
ER0(x)− supx∈SH

|R0(x)− ER0(x)|, together with the fact that |Rj(x)− ERj(x)| ≤C |Rj(x)− ERj(x)|, from (A.3) we
get that (A.4) holds. �

Lemma A.3. LetRj(x) be defined in (A.1) for j = 0, 1 with Wi = I(−∞,y](Yi). Under A1, A2 and A7, if hn → 0, we have that

(a) supy∈R supx∈SH
|ER1(x)− F(y|X = x)ER0(x)| → 0.

(b) If in addition A10 holds, then supy∈R supx∈SH
|ER1(x)− F(y|X = x)ER0(x)| = O(hη1).

Note that from Lemma A.3(b), we also have that supy∈R supx∈SH
|ER1(x) − F(y|X = x)ER0(x)| = O (hη1 + θn), where

θ2n = ψSH
(log(n)/n)/(nφ(h)).

Lemma A.4. Let SH be a compact set and Fn(y|X = x) be a sequence of conditional distribution functions verifying

sup
x∈SH

sup
y∈R

|Fn(y|X = x)− F(y|X = x)| → 0. (A.5)

Then, if F verifies Assumption A7, there exist positive constants A ≤ B such that sn(x) = madc(Fn(·|X = x)) verifies A ≤

sn(x) ≤ B for all x ∈ SH and n ≥ n0.

Proof of Theorem 4.1. Using thatλ(·, a, σ ) : H → R is a continuous function on SH, it is easy to see that g is also continuous
on SH and that, for each fixed a, λ(u, g(u) + a, σ ) is continuous for (u, σ ) ∈ SH × [A, B]. For details see the proof of
Theorem 4.3(a) available online (see Appendix B). Let us begin by showing that

sup
x∈SH

|λ(x, g(x)+ a,s(x))−λ(x, g(x)+ a,s(x))| a.s.
−→ 0 (A.6)

entails that supx∈SH
|g(x)− g(x)|

a.s.
−→ 0. Effectively, given ϵ > 0, the continuity of λ(x, g(x)± ϵ, σ ), the fact that g(x) is the

unique solution of λ(x, a, σ ) = 0 and A4 imply that

λ1 = sup
A≤σ≤B

sup
x∈SH

λ(x, g(x)+ ϵ, σ ) < 0 < inf
A≤σ≤B

inf
x∈SH

λ(x, g(x)− ϵ, σ ) = λ2. (A.7)

So, if (A.6) holds, from (A.7) we conclude that for n large enough

λ(x, g(x)+ ϵ,s(x)) < λ1

2
< 0 <

λ2

2
<λ(x, g(x)− ϵ,s(x)),

for all x ∈ SH almost surely, which entails that P(supx∈SH
|g(x)− g(x)| < ϵ) = 1 as desired.

Note that (A.6) follows immediately if we show that for each fixed a

An = sup
x∈SH

sup
A≤σ≤B

|λ(x, g(x)+ a, σ )− λ(x, g(x)+ a, σ )|
a.s.

−→ 0.

Denote Wi,σ (x) = ψ ((Yi − g(x)− a)/σ ) /∥ψ∥∞ and define R1(x, σ ) and R1(x, σ ) as in (A.1), where we strength the
dependence on σ . Then,λ(x, g(x)+ a, σ ) = ∥ψ∥∞

R1(x, σ )/R0(x), so

1
∥ψ∥∞

|λ(x, g(x)+ a, σ )− λ(x, g(x)+ a, σ )| ≤
1

inf
x∈SH

R0(x)

B0,n +B1,n +B2,n

, (A.8)

whereB0,n = supx∈SH
|R0(x)− ER0(x)|,B1,n = supx∈SH

supA≤σ≤B |R1(x, σ )− ER1(x, σ )| and

B2,n = sup
x∈SH

sup
A≤σ≤B

1
∥ψ∥∞

E [λ(X1, g(x)+ a, σ )− λ(x, g(x)+ a, σ )] K1(x)
EK1(x)

 .
Using that, for each fixed a, λ(x, g(x) + a, σ ) is continuous for (x, σ ) ∈ SH × [A, B] and that SH is a compact set, we
obtain easily that given η > 0 there exists δ > 0 such that for any x ∈ SH and for any u such that d(u, x) < δ
we have that supσ∈[A,B] |λ(u, g(u) + a, σ ) − λ(x, g(x) + a, σ )| < η/2 and |g(u) − g(x)| < (η/2)A∥ψ ′

∥∞. Hence,
supσ∈[A,B] |λ(u, g(x) + a, σ ) − λ(x, g(x) + a, σ )| < η. This bound and similar arguments to those considered in the proof
of Lemma A.3(a) allow to show thatB2,n → 0. Hence, for any fixed ϵ > 0, we have thatB2,n < ϵ, for n ≥ n0. Using (A.8), we
conclude that for n ≥ n0, P(An > 6 ϵ∥ψ∥∞) ≤ P(An)+ P(B0,n > ϵ)+ P(B1,n > ϵ), where An, defined in (A.4), is such that

n≥1 P(An) < ∞. On the other hand, Corollary A.2 entails that


n≥1 P(B0,n > ϵ) < ∞. Hence, it only remains to show
that


n≥1 P(B1,n > ϵ) < ∞ for any ϵ > 0.
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Recall that |R1(x, σ )− ER1(x, σ )| ≤ |R1(x, σ )− ER1(x, σ )|/C with C given in (A.2). Therefore, it is enough to show that
n≥1 P(B1,n > ϵ) < ∞ where B1,n = supx∈SH

supA≤σ≤B |R1(x, σ )− ER1(x, σ )|. SinceWi,σ (x) ≤ 1, Lemma A.1(b) entail that
for ρ = log(n)/n

sup
A≤σ≤B

P

sup
x∈SH

|R1(x, σ )− ER1(x, σ )| > ϵ


≤ 8Nρ(SH) exp


−

ϵ2nφ(h)
a1(1 + a2ϵ)


.

Let Mn = max(Nρ(SH), n) and νn = (B − A)/Mn → 0. Let us consider a finite covering of [A, B] with Mn intervals
Ij = [σj, σj+1] such that |σj+1−σj| ≤ νn. Using that ζ (t) = tψ ′(t) is bounded,we get that forσ ∈ Ij, |R1(x, σ )−S1(x, a, σj)| ≤

(∥ζ∥∞/A)|σ−σj|
n

i=1 Ki(x)/nφ(h) ≤ (∥ζ∥∞/A)|σ−σj|R0(x). Therefore, using thatER0(x) = EK1(x)/φ(h) ≤ C ′, we obtain
the bound

B1,n ≤ max
1≤j≤N

sup
x∈SH

|R1(x, σj)− ER1(x, σj)| +
∥ζ∥∞

A
νn sup

x∈SH

|R0(x)− ER0(x)| + 2C ′
∥ζ∥∞

A
νn. (A.9)

The fact that νn → 0, (A.9) and Lemma A.1(b) entail that

P

B1,n > 3 ϵ


≤ 8 (1 + Mn) Nρ(SH) exp


−

ϵ2nφ(h)
a1(1 + a2ϵ)


≤ 16 exp


−

ϵ2nφ(h)
a1(1 + a2ϵ)

+ 2ψSH
(ρn)+ log n


.

Note that A3(b) and A5 imply that (2ψSH
(ρn) + log n)/(nφ(h)) < ϵ2/[4 a1(1 + a2ϵ)], for n ≥ n0. Thus, P


B1,n > 3 ϵ


≤

16 exp

− ϵ2 nφ(h)/[2 a1(1 + a2ϵ)]


and the proof is concluded since that nφ(h)/ log n → ∞ entails that

n≥1 P

B1,n > 3 ϵ


< ∞. �

Proof of Theorem 4.2. Let y ∈ R be fixed and take Wi = I(−∞,y](Yi) in (A.1). Then,F(y|X = x) = R1(x)/R0(x) and as in
Collomb (1982), we have the following bound

sup
x∈SH

|F(y|X = x)− F(y|X = x)|

≤
1

inf
x∈SH

R0(x)


sup
x∈SH

|R1(x)− ER1(x)| + sup
x∈SH

|R0(x)− ER0(x)| + sup
x∈SH

|ER1(x)− F(y|X = x)ER0(x)|

. (A.10)

Corollary A.2, Lemma A.3(a) and (A.10) entail that supx∈SH
|F(y|X = x) − F(y|X = x)|

a.s.
−→ 0. The proof follows now using

similar arguments to those considered in the proof of Theorem 3.1 in Boente and Fraiman (1991). �

Proof of Theorem 4.3. The proof of part (a) can be found in the supplement available online (see Appendix B). To prove (b),
we begin by showing thatm(x) is continuous at any x0 ∈ SH. The fact that there is only onemedian entails that for any η > 0
F(m(x0) + η|X = x0) > F(m(x0)|X = x0) > F(m(x0) − η|X = x0). Moreover, A7(b) implies that given ϵ > 0 there exists
δ > 0 such that d(x0, x) < δ implies |F(m(x0)± η|X = x)− F(m(x0)± η|X = x0)| < ϵ.

Let ϵη = min{F(m(x0)|X = x0)− F(m(x0)− η|X = x0), F(m(x0)+ η|X = x0)− F(m(x0)|X = x0)}. Following the same
ideas used in the proof of (a), we obtain that if d(x0, x) < δ1 then F(m(x0) − η|X = x) < F(m(x0) − η|X = x0) + ϵη <
F(m(x0)|X = x0) = 1/2, so that m(x0) − m(x) < η. Similarly we have that m(x0) − m(x) > −η if d(x0, x) < δ2 for some
δ2 > 0, which leads to the continuity ofm at x0.

Let ϵ > 0, A7(b) entails that there exists δ > 0 such that |u − v| < δ implies that supx∈SH
|F(u|X = x) − F(v|X = x)|

< ϵ/2. Define δ1 = min(δ, ϵ/4) and δ2 = δ1/4 < ϵ/8. Therefore, for any x ∈ SH, we have that |F(m(x) + δ2|X =

x) − F(m(x) − δ2|X = x)| < ϵ/2. Using that F(m(x)|X = x) = 1/2, we obtain that 1/2 < F (m(x)+ δ2|X = x) <
1/2 + ϵ/2 and 1/2 − ϵ/2 < F (m(x)− δ2|X = x) < 1/2. The continuity of m and F(y|X = ·) implies that iδ2 =

infx∈SH
F (m(x)+ δ2|X = x) > 1/2 and sδ2 = supx∈SH

F (m(x)− δ2|X = x) < 1/2. Let ν = min{iδ2 − 1/2, 1/2 − sδ2} > 0
and ϵ1 = min{ν/2, ϵ/2}. Theorem 4.2 implies that P(N) = 0, where N = {ω ∈ Ω : supx∈SH

supy∈R |F(y|X = x)− F(y|X =

x)| ↛ 0}. Let ω ∉ N, then there exists n0 such that if n ≥ n0, for all x ∈ SH and for all y ∈ R, we have that
|F(y|X = x)− F(y|X = x)| < ϵ1. In particular, for j = 0, 1, |F m(x)+ (−1)jδ2|X = x


− F


m(x)+ (−1)jδ2|X = x


| < ϵ1,

that is, we have that for j = 0, 1
m(x)+ (−1)jδ2|X = x


− ϵ1 <F m(x)+ (−1)jδ2|X = x


< F


m(x)+ (−1)jδ2|X = x


+ ϵ1. (A.11)

On the other hand, using that F(m(x)−δ2|X = x) < sδ < 1/2 and ϵ1 < ν/2, we get that for all x ∈ SHF (m(x)− δ2|X = x)+
ϵ1 < 1/2. Likewise, we have F (m(x)+ δ2|X = x)−ϵ1 > 1/2. Hence, from (A.11), we obtain thatF (m(x)− δ2|X = x) < 1/2
andF (m(x)+ δ2|X = x) > 1/2. AsF(m(x)|X = x) = 1/2, we conclude that m(x) − δ2 < m(x) < m(x) + δ2, i.e.,
supx∈SH

|m(x)− m(x)| < ϵ/8. �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.spl.2015.01.028.
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