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a b s t r a c t

In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal
components analysis using projection-pursuit techniques. This procedure was generalized
to the functional setting by Bali et al. (2011), where also different penalized estimators
were defined to provide smooth functional robust principal component estimators. This
paper completes their study by deriving the influence function of the functional related to
the principal direction estimators and their size. As is well known, the influence function
is a measure of robustness which can also be used for diagnostic purposes. In this sense,
the obtained results can be helpful for detecting influential observations for the principal
directions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Principal Components Analysis is a standard technique used in the context of multivariate analysis as a dimension-
reduction technique. Traditionally, the goal is to determine an orthonormal basis such that each direction maximizes the
variability of the random elements.

Two lines ofworkwere developed inparallel from thismethod. First, the possibility of replacing the variancewith a robust
dispersion scale is considered, in order to gain resistance when atypical data are present in the sample. This alternative was
pursued by Li and Chen [23] who following principles of projection-pursuit defined the first principal direction estimator
as that maximizing a robust scale of the projected data. The subsequent directions are obtained by imposing orthogonality
conditions. Croux and Ruiz-Gazen [11] obtained the influence function of these projection-pursuit estimators.

Another line of work was to extend the euclidean setting to a functional one. Among them, Dauxois et al. [12] studied
the asymptotic properties of the eigenfunctions of the sample covariance operator while Rice and Silverman [29] proposed
smooth estimators by penalizing the sample variance using an additive roughness term. Besides, Silverman [33], considered
an approach based on penalizing the norm instead of the sample variance, see also Ramsay and Silverman [28] for a review.

There are few works that combine both aspects: robustness and functional setting. One of the first ones is Locantore
et al. [24] where spherical principal components are introduced. Their influence function was derived by Gervini [19].
Recently, Bali et al. [3] considered robust estimators of the functional principal directions using a projection-pursuit
approach that includes a penalization in the scale or in the norm. Consistency and qualitative robustness are derived therein.

∗ Correspondence to: Departamento de Matemáticas, FCEyN, UBA, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina.
E-mail addresses: lbali@dm.uba.ar (J.L. Bali), gboente@dm.uba.ar, gboente@fibertel.com.ar (G. Boente).

http://dx.doi.org/10.1016/j.jmva.2014.09.004
0047-259X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2014.09.004
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2014.09.004&domain=pdf
mailto:lbali@dm.uba.ar
mailto:gboente@dm.uba.ar
mailto:gboente@fibertel.com.ar
http://dx.doi.org/10.1016/j.jmva.2014.09.004


174 J.L. Bali, G. Boente / Journal of Multivariate Analysis 133 (2015) 173–199

In this paper, we complement the paper by Bali et al. [3] providing an expression for the influence function of the
functional related to the ‘‘raw’’ estimators, that is, the unsmoothed estimators obtainedwithout a penalization term included
either on the scale or in the norm. We also define a smooth functional to analyse the infinitesimal effect of outliers on the
estimators obtainedpenalizing the scale. Smoothed functionalswere also considered in other settings such as nonparametric
regression and tolerance intervals to define influence functions of smooth estimators. The paper is organized as follows,
Section 2 states some preliminary concepts and results that will be helpful along the paper. To measure robustness with
respect to single outliers, the influence function of the raw estimator is studied in Section 3.1, while Section 3.2 considers
the situation of a smoothed functional. As a particular case, in Section 4 we derive an expression for the influence function
of the projection-pursuit estimators obtained using anM-scale estimator which includes as particular situation the classical
estimators. Besides being of theoretical interest, measuring the influence of an observation on the classical estimates can
be used as a diagnostic tool to detect influential observations. For that reason, a discussion on diagnostic tools based on the
influence function to detect atypical observations is given in Section 5. Proofs are relegated to the Appendix.

2. Preliminaries

2.1. Elliptical families

Elliptical families play an important role when deriving consistency and infinitesimal robustness of the principal
component robust estimators, in the finite-dimensional setting. This notion has been extended to the functional setting
by Bali and Boente [2]. We recall here their definition for the sake of completeness.

Let Z ∈ Rd be a random vector. We say that Z has an elliptical distribution, and we denote it as Z ∼ Ed(µ,6, ψ), if there
exists a vector µ ∈ Rd, a positive semidefinite matrix 6 ∈ Rd×d and a function ψ : R+ → R, called the characteristic
generator, such that the characteristic function of Z − µ is given by ϕZ−µ(t) = ψ(tt 6t), for all t ∈ Rd. Let now X be a
random element in a separable Hilbert space H and µ ∈ H . Let 0 : H → H be a self-adjoint, positive semidefinite and
compact operator. The random element X has an elliptical distribution with parameters (µ,0), denoted as X ∼ E(µ,0, ψ),
if for any linear and bounded operator A : H → Rd, AX has a multivariate elliptical distribution with parameters Aµ and
A0A∗, i.e., AX ∼ Ed(Aµ, A0A∗, ψ), where A∗

: Rp
→ H stands for the adjoint operator of A. For the sake of simplicity,

we will omit the symbol ψ and denote X ∼ Ed(µ,0), when there is no confusion. As in the finite-dimensional setting, if
the covariance operator, 0X , of X exists then, 0X = a 0, for some a ∈ R. The elliptical distributions in H include, among
others, the Gaussian distributions and scale mixtures of Gaussian. Recently, Boente et al. [7] provide a characterization of
elliptical distributions on separable Hilbert spaces. To be more precise, they show that, when 0 has infinite range, the class
of elliptical distributions is equivalent to the class of scale mixtures of Gaussian distributions on H .

From now on, denote by ⟨·, ·⟩ the inner product in H and by ∥α∥
2

= ⟨α, α⟩. Moreover, let P[α] be the distribution of
⟨α, X⟩ when X ∼ P .

The following lemma, whose proof is given in the Appendix, states that the projected distributions P[α] belong to the
same location–scale family. This property is analogous to Lemma 1 in [11].

Lemma 2.1. Let X ∈ H be such that X ∼ E(µ,0, ψ). Then, there exists an univariate symmetric distribution F0 such that

P[α]((−∞, y]) = P (⟨α, X⟩ ≤ y) = F0


y − ⟨µ, α⟩
√

⟨α,0α⟩


,

for any α such that α ∉ ker(0), i.e., such that ⟨α,0α⟩ ≠ 0. That is, the random variable Zα = ⟨α, X − µ⟩/
√

⟨α,0α⟩ has
distribution F0. On the other hand, if ⟨α,0α⟩ = 0, P(⟨α, X − µ⟩ = 0) = 1.

2.2. The robust functional

Principal components analysis for general Hilbert spaces can be described as follows.
Let X ∈ H be a random element of a Hilbert space H with inner product ⟨·, ·⟩ defined in (Ω,A, P). Let ⊗ stand for the

tensor product on H , e.g., for u, v ∈ H , the operator u ⊗ v : H → H is defined as (u ⊗ v)w = ⟨v,w⟩u. When X has
finite second moment, i.e., E(∥X∥

2) < ∞, the covariance operator of X , 0X , can be written as 0X = E{(X − µ)⊗ (X − µ)}
with µ = E(X). In this situation, the operator 0X which is linear, self-adjoint and continuous is in the trace class, so that, in
particular, 0X is a Hilbert–Schmidt operator.

In general, for Y = ⟨α, X⟩, we have var(Y ) = ⟨α,0Xα⟩. An important optimality property of the first principal component
variable is that it can be defined as the variable Z1 = ⟨α1, X⟩ such that

var(Z1) = sup
{α:∥α∥=1}

var (⟨α, X⟩) = sup
{α:∥α∥=1}

⟨α,0Xα⟩. (1)

Any solution to (1), i.e. any α for which the supremum is obtained, corresponds to an eigenfunction associated with the
largest eigenvalue of the covariance operator 0X , i.e., α1 = φ1 and var(Z1) = λ1. If λ1 > λ2, then α1 is unique up to a sign
change. As in the multivariate setting, the other principal components can be obtained successively via (1), but under the
orthogonality condition that ⟨αj, αk⟩ = 0 for j < k.
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The idea beyond the approach in [3] is to view principal components as in (1), but replacing the variance by a robust
scale functional. Denote by G the set of all univariate distributions. As it is well known, a scale functional σr : G → [0,+∞)
is one which is location invariant and scale equivariant, i.e., if Ga,b stands for the distribution of aY + b when Y ∼ G,
then, σr(Ga,b) = |a|σr(G), for all real numbers a and b. Two well known examples of scale functionals are the standard
deviation, sd(G) =


E(Y − E(Y ))2

1/2, where Y ∼ G, and the median absolute deviation about the median, mad(G) =

c median (|Y − median(Y )|). The normalization constant c , used in the mad, can be chosen so that its empirical or sample
version is consistent for a scale parameter of interest. Typically, one chooses c = 1/Φ−1(0.75) so that the mad equals
the standard deviation at a normal distribution. A broader class which includes the previous ones is the class of theM-scale
functionals. AnM-scale functional with a bounded and continuous score function can have both a high breakdown point and
a continuous and bounded influence function. Given a location parameterµ, anM-scale functionalsσM(G)with a continuous
score function χ : R → R can be defined to be a solution to the equation

E

χ


Y − µ

σr(G)


= δ. (2)

Typically, the score function χ is even with χ(0) = 0, non-decreasing on R+ and with 0 < supx∈R χ(x) = χ(+∞) =

limx→+∞ χ(x). When χ(+∞) = 2δ, the M-estimate of scale has a 50% breakdown point, and by choosing χ properly one
can also obtain a highly efficient estimate, see [9]. A popular choice, which corresponds to that considered in Section 4, is
the score function introduced by Beaton and Tukey [4], namely χc(y) = min(3 (y/c)2 − 3 (y/c)4 + (y/c)6 , 1), with c being
a tuning constant chosen so that the corresponding M-estimator of scale is consistent for a scale parameter of interest.
For example, the choice c = 1.56 when δ = 1/2 ensures that the M-scale functional is Fisher-consistent at the normal
distribution and has a 50% breakdown point.

For a given σr scale functional, denote as σ(α) = σr(P[α]). Bali et al. [3] defined the raw (meaning unsmoothed) robust
functional principal component directions as

φr,1(P) = argmax
∥α∥=1

σ(α)

φr,m(P) = argmax
∥α∥=1,α∈Bm

σ(α), 2 ≤ m, (3)

where Bm = {α ∈ H : ⟨α, φr,j(P)⟩ = 0, 1 ≤ j ≤ m − 1}. Them-th largest principal value functional is given by

λr,m(P) = σ 2(φr,m) = max
∥α∥=1,α∈Bm

σ 2 (α) . (4)

As mentioned in [3], the maximum above is attained if the scale functional σr is (weakly) continuous. Besides, for elliptical
distributions the functionals φr,m(P) and λr,m(P) have a simple interpretation. Effectively, when considering a robust scale
functional, we have that σ 2(α) = c⟨α,0α⟩ if X has an elliptical distribution E(µ,0). Hence, Lemma 5.1 in [3] entails that
the functionals φr,m(P) defined through (3) correspond to the eigenfunctions of 0X .

2.3. Differentiability

Several notions of differentiability have been defined in normed spaces, the weakest being the Gateaux differentiability,
which has been extendedly used in statistics due to its relation to the influence function and the stronger being Fréchet
differentiability. In many situations, Fréchet differentiability is too strong for the functionals considered in statistics. In
particular, to derive asymptotic normality of estimators obtained from a given functional, Gateaux differentiability is not
enough while Fréchet differentiability is many times not satisfied, an intermediate notion is the Hadamard differentiability
which turns out to be helpful to apply the delta method. For the sake of completeness we recall their definitions.

Definition 1. Let D1 and D2 be two normed spaces and consider a map Υ : DΥ ⊂ D1 → D2.
(a) The map Υ is said to be Fréchet differentiable at θ ∈ DΥ if there exists a linear and bounded operator Υ ′

θ : D1 → D2 such
that

lim
h→0

∥Υ (θ + h)− Υ (θ)− Υ ′

θ (h)∥
∥h∥

= 0.

(b) ThemapΥ is said to beHadamard differentiable at θ ∈ DΥ if there exists a linear and continuous operatorΥ ′

θ : D1 → D2
such that for every compact K ⊂ D1

lim
t→0

sup
h∈K ,θ+th∈DΥ

Υ (θ + th)− Υ (θ)

t
− Υ ′

θ (h)
 = 0.

(c) The map Υ is said to be Gateaux differentiable at θ ∈ DΥ , in the direction h, if there exists a quantity Υ ′

θ (h) such that, for
any sequence tn → 0 as n → ∞,

lim
n→∞

Υ (θ + tnh)− Υ (θ)

tn
= Υ ′

θ (h).
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Higher order derivatives can also be defined similarly. Even if we are using the same notation in the three definitions, it will
be clear in each situation, which differentiability is considered.

Remark 2.1. (a) Hadamard differentiability is the weakest kind of differentiability that satisfies the chain rule. When
D1 = R the three notions Fréchet, Hadamard and Gateaux differentiability are equivalent. On the other hand, if D1
is a Banach space, continuous Gateaux differentiability is equivalent to Hadamard differentiability, where continuity is
understood as θ varies in D1. For relations among these notions see, for instance, [18].

(b) Let B(D1,D2) be the set of linear and bounded (and hence continuous) operators from D1 to D2. If DΥ is an open set and
Υ is Hadamard differentiable at each θ ∈ DΥ , we can consider the map Υ ′

: DΥ → B(D1,D2) defined as Υ ′(θ) = Υ ′

θ

that will be called the Hadamard derivative of Υ . When Υ ′ is continuous, we will say that Υ is C1-Hadamard.
(c) When D1 is a separable Hilbert space, as the one we are considering, if Υ : DΥ → R is Fréchet differentiable at θ ∈ DΥ ,

with DΥ an open subset of D1, the Riesz Theorem allows to represent the linear and bounded operator Υ ′

θ : D1 → R
through an element of the Hilbert space D1, that will be named the gradient ofΥ and denoted∇Υθ , that is, we have that
Υ ′

θα = ⟨∇Υθ , α⟩.
Denote as D⋆1 = B(D1,R) the dual space. If Υ : DΥ → R is twice Fréchet differentiable at θ ∈ DΥ , DΥ ⊂ D1, us-
ing that B(D1,D⋆1) can be identified with the space of bilinear and continuous operator from D1 × D1 to R, denoted
BL(D1 × D1,R), we get that Υ ′ ′

θ defines a continuous bilinear operator from D1 × D1 to R, through the identification
Υ ′ ′

θ (α, β) = (Υ ′ ′

θ (α)) β for (α, β) ∈ D1 × D1. In particular, if D1 is a Hilbert space, Υ ′ ′

θ can be represented through a
bounded operator, HΥθ : D1 → D1 as Υ ′ ′

θ (α, β) = ⟨HΥθα, β⟩. Besides, if we define Ψ (θ) = ∇Υθ , then HΥθ = Ψ ′

θ .
Similar arguments can be used for Hadamard differentiable maps.

Remark 2.2. (a) Let H be a separable Hilbert space. As a simple example, that will be used in the sequel, let us consider the
maps Υ : H → R defined as Υ (α) = ⟨α,0α⟩ and Ψ : H → R, defined as Ψ (α) = ⟨β0, α⟩ with 0 a self-adjoint, semi-
definite and compact operator and β0 ∈ H fixed. Note thatΨ is a linear and bounded operator. The Gateaux derivatives
of Υ and Ψ at a given α0 can easily be computed and they result to be the linear and bounded operators Υ ′

α0
: H → R

and Ψ ′
α0

: H → R given by Υ ′
α0
α = 2⟨0α0, α⟩ and Ψ ′

α0
α = ⟨β0, α⟩. In fact easy calculations allow to show that Υ

and Ψ are Fréchet differentiable with Fréchet derivatives Υ ′
α0

and Ψ ′
α0
, respectively, and gradients ∇Υα0 = 20α0 and

∇Υα0 = β0. Moreover, HΥα0 = 20.
(b) We will also use the following property.

Let us consider maps Υ : U ⊂ H → R and Ψ : U ⊂ H → R, where H is a separable Hilbert space and U is an open
set. Define Υ (θ) = Υ (θ)Ψ (θ). Then, if Υ and Ψ are Fréchet (Hadamard or Gateaux) differentiable at θ0 ∈ U, we have
that Υ is Fréchet (Hadamard or Gateaux) differentiable at θ0 and ∇Υθ0 = Ψ (θ0)∇Υθ0 + Υ (θ0)∇Ψθ0 .

In product spaces, partial differentiability can also be defined.

Definition 2. Let D1, D2 and D be Banach spaces, Ui ⊂ Di, i = 1, 2 open subsets, Υ : U1 ×U2 → D and θ0 = (θ01, θ02) ∈

U1 × U2 fixed. We say that Υ is partially Fréchet differentiable with respect to the first coordinate at θ0 if Υθ02 : U1 → D
defined as Υθ02(θ1) = Υ (θ1, θ02), is Fréchet differentiable at θ01. We will denote its partial Fréchet derivative at θ0,
D1,θ0Υ = (∂Υ /∂D1)(θ0). Hence, D1,θ0Υ is a bounded and linear operator D1,θ0Υ : D1 → D that satisfies

lim
h1→0

∥Υ (θ0 + (h1, 0))− f (θ0)− (D1,θ0Υ )h1∥

∥h1∥
= 0.

Analogously we define D2,θ0Υ . In particular, the map D1Υ : U1 × U2 → B(D1,D) defined as (D1Υ )θ = D1,θΥ is defined
when Υ is partially Fréchet differentiable at any θ ∈ U1.

Remark 2.3. (a) It is easy to show that if Υ is Fréchet differentiable at θ0, then it is partially differentiable with respect to
each coordinate at θ0 and for any h = (h1, h2) ∈ D1 × D2, we have Υ ′

θ0
h = (D1,θ0Υ )h1 + (D2,θ0Υ )h2. Moreover, if we

define Ji : D1 → D as J1(h1) = (h1, 0) and J2(h2) = (0, h2), then Di,θ0Υ = Υ ′

θ0
◦ Ji.

(b) Partial Hadamard differentials and Gateaux differentials can be defined in the same way, as well as higher order partial
derivatives.
For instance, assume that D1,θΥ exists for θ in a neighbourhood of θ0 and define Ψ : U1 × U2 → B(D1,D) as
Ψ (θ) = D1,θΥ . Then, we say that Υ is twice partially Fréchet differentiable with respect to the first coordinate at
θ0 if there exists a linear and bounded operator D2

11,θ0
Υ : D1 → B(D1,D) such that

lim
h1→0

∥Ψ (θ0 + (h1, 0))− Ψ (θ0)− (D2
11,θ0

Υ )h1∥

∥h1∥
= 0,

where the norm in the numerator is the operator norm in B(D1,D2).
Hence, D2

11,θ0
Υ ∈ B(D1, B(D1,D)). Noting that B(D1, B(D1,D)) can be identified with the space of bilinear and contin-

uous operator from D1 × D1 to D, denoted BL(D1 × D1,D), we get that D2
11,θ0

Υ defines a continuous bilinear operator



J.L. Bali, G. Boente / Journal of Multivariate Analysis 133 (2015) 173–199 177

from D1 × D1 to D, through the identification D2
11,θ0

Υ (h1, v1) = ((D2
11,θ0

Υ )h1) v1 for (h1, v1) ∈ D1 × D1. In particular,
if Di are Hilbert spaces and D = R, D2

11,θ0
Υ can be represented through a bounded operator, G11 : D1 → D1 as

D2
11,θ0

Υ (α, β) = ⟨G11α, β⟩.
We can also define D2

11Υ : U1 × U2 → BL(D1 × D1,D) as (D2
11Υ )θ0 = D2

11,θ0
Υ . Similar arguments can be used for the

other partial second derivatives D2
12,θ0

Υ , D2
21,θ0

Υ and D2
22,θ0

Υ where to avoid confusion in the notation, D2
21,θ0

Υ will
stand for the derivative in the second coordinate of Ψ (θ) = D1,θΥ , while D2

12,θ0
Υ will stand for the derivative in the

first coordinate of D2,θΥ .
(c) As in real analysis, if Υ is twice continuously Fréchet differentiable at θ0, then Υ ′ ′

θ0
is symmetric, which entails that

D2
12,θ0

Υ (θ1, θ2) = D2
21,θ0

Υ (θ2, θ1).
Similar results hold for Hadamard differentiable maps.

(d) In particular, we have the following property.
Given Υ : D1 × D2 → F, η : D → D1, υ : D → D2 defineΛ : D → F asΛ(θ) = Υ (η(θ), υ(θ)) and ζ : D → D1 × D2
as ζ(θ) = (η(θ), υ(θ)). If Υ and ζ are Fréchet (Hadamard) differentiable at α0 = ζ (θ0) = (η(θ0), υ(θ0)) and θ0,
respectively, then we have thatΛ is Fréchet (Hadamard) differentiable at θ0 and for any h ∈ D

Λ′

θ0
h = Υ ′

α0
◦ ζ′

α0
h = (D1,α0Υ )η

′

θ0
h + (D2,α0Υ )υ

′

θ0
h.

For the sake of completeness we recall, in Theorems 2.1 and 2.2, the Implicit Function Theorem and the Lagrange multipliers
method that will be used in the sequel. Their proof can be found, for instance, in [18].

Theorem 2.1. Let D1 and D2 be Banach spaces and Υ : D1 × D2 → D be a C1-Fréchet differentiable map. Let θ0 = (x0, y0) ∈

D1×D2 be such that Υ (θ0) = 0 andD2,θ0Υ : D2 → D is an invertible operator. Then, there exist open neighbourhoodsUx0 ⊂ D1

of x0 and Vy0 ⊂ D2 of y0 and a C1-Fréchet differentiable map υ : Ux0 → Vy0 such that y0 = υ(x0) and for any x ∈ Ux0 and
y ∈ Vy0 , we have that Υ (x, y) = 0 if and only if y = υ(x). Moreover, for any x ∈ Ux0 , if θ = (x, υ(x)) and if D2,θΥ : D2 → D
is an invertible operator, the derivative of υ is given by υ ′

x =

D2,θΥ

−1 D1,θΥ , and υ ′
x is continuous at x0.

Let D and F be Banach spaces, U ⊂ D an open set, Υ : U × R and Γ : U → F. We say that Υ has a local maximum
at θ0 ∈ U subject to the condition Ψ (θ) = 0 if θ0 belongs to the surface level S = Ψ−1({0}) = {θ : Ψ (θ) = 0} and there
exists a neighbourhoodUθ0 ⊂ U of θ0 such thatΥ (θ) ≤ Υ (θ0) for any θ ∈ S∩Uθ0 . Local conditional minimum are defined
similarly.

Given Ψ : U → F, we say that Ψ is onto F if for any y ∈ F there exists θ ∈ U such that Ψ (θ) = y.

Theorem 2.2. Let D and F be Banach spaces, U ⊂ D an open set, Υ : U × R and Ψ : U → F. Let θ0 ∈ U be such that
Ψ (θ0) = 0. Assume that
(i) Υ has a local maximum (or minimum) at θ0 subject to the condition Ψ (θ) = 0.
(ii) Υ is Hadamard differentiable at θ0.
(iii) Ψ is Hadamard differentiable on a neighbourhood of θ0, Ψ ′

θ is onto F and is continuous at θ0.
Then, ker(Ψ ′

θ0
) ⊂ ker(Υ ′

θ0
) and there existsΛ ∈ F⋆, where F⋆ stands for the dual space, such that Υ ′

θ0
= Λ ◦ Ψ ′

θ0
.

Remark 2.4. In particular, if F = Rq, we have that there exists γ = (γ1, . . . , γq)
t

∈ Rq, such that Υ ′

θ0
= γt Ψ ′

θ0
.

Moreover, if F = R and D1 is a separable Hilbert space, there exists γ ∈ R, such that Υ ′

θ0
= γΨ ′

θ0
and ∇Υθ0 = γ∇Ψθ0 .

3. Influence function

Usually, in robustness, there are two popular measures of the resistance to outliers of a given estimator: the breakdown
point and the influence function of the related functional. Loosely speaking, the breakdown point of an estimator is the
smallest fraction of outliers that can take the estimate beyond any bound. On the other hand, the influence function is
a measure of robustness with respect to single outliers that allows us to study the local robustness and the asymptotic
efficiency of the estimators, providing a rationale for choosing appropriate weight functions and tuning parameters. It
can be thought as the first derivative of the functional version of the estimator which, under mild conditions, enables the
derivation of the asymptotic covariance matrix of the corresponding estimator. Let M be the set of all probability measures
over H and a functional T : M → D, where D is a Banach normed space. The influence function of T at P is defined as
IF(x0; T , P) = limϵ→0(T (Px0,ϵ) − T (P))/ϵ, where Px0,ϵ = (1 − ϵ)P + ϵδx0 and δx0 denotes the probability measure which
puts mass 1 at the point x0 and represents the contaminated model. With the notations given in Section 2, we have that
IF(x; T , P), is the Gateaux derivative at P in the direction P − δx of the functional T .

When D = Rq, under mild conditions, see [15], it allows to provide a Bahadur expansion for the estimators, i.e.,√
n {T (Pn)− T (P)} = (1/

√
n)
n

i=1 IF (Xi; T , P) + op(1), where Pn denotes the empirical probability measure of the
observations Xi, 1 ≤ i ≤ n. Therefore, the asymptotic variance of the estimates can be evaluated as asvar (T , P) =

EP {IF (X1, T , P)⊗ IF (X1, T , P)}. Besides being of theoretical interest and helpful to calibrate the efficiency of the robust
estimates, measuring the influence of an observation on the classical estimates can be used as a diagnostic tool to detect
influential observations, see for instance, [8,32,10,5].
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3.1. Raw functional principal components

The following theorem, whose proof is given in the Appendix, provides an expression for the influence function of the
functional defined through (3) at an elliptical distribution E(µ,0). It also proves the existence of the influence function. In
this case, if λ1 ≥ λ2 ≥ · · · denote the eigenvalues of 0 and φj its associated eigenfunctions, we have that φr,j(P) = φj and
λr,j(P) = cλj, for some constant c related to the scale functional. So, if λ1 > λ2 > · · · > λq > λq+1, for 1 ≤ j ≤ q, φr,j(P)
are unique up to a sign change. Without loss of generality, we assume that the location parameter µ equals 0.

Theorem 3.1. Let P be an elliptical probability measure P = E(0,0), where0 is a self-adjoint, positive semidefinite and compact
operator with eigenvalues λ1 ≥ λ2 ≥ · · ·. Denote by φj the eigenfunction associated to λj. Assume that λ1 > λ2 > · · · > λq >
λq+1.

Let F0 be the univariate measure defined in Lemma 2.1. Suppose that the map S : [0, 1] × R → R defined by S(ϵ, y) =

σr((1−ϵ)F0 +ϵδy) is twice continuously differentiable at any (0, y). In particular, IF(y; σr, F0) is differentiable and its derivative
with respect to y will be denoted DIF(y; σr, F0).

Besides, assume that there exists ϵ0 < 1, such that for each fixed ϵ ∈ [0, ϵ0] and x ∈ H , the map Υx,ϵ : H → R defined
as Υx,ϵ(α) = σ 2

r (Px,ϵ[α]) is Hadamard differentiable, where Px,ϵ = (1 − ϵ)P + ϵδx is the contaminated probability measure.
Assume further that, for k ≤ q, themapΥ : [0, ϵ0]×H → R defined asΥ (ϵ, α) = σ 2

r (Px,ϵ[α]) is twice continuously Hadamard
differentiable at (0, φk).

Without loss of generality, assume that λr,j = λj which means that σr is Fisher-consistent at F0. Then, for any k ≤ q, the
influence function of the principal direction functional defined through (3) exist and is given by

IF(x;φr,k, P) =


j≥k+1

√
λk

λk − λj
DIF


⟨x, φk⟩
√
λk

; σr, F0


⟨x, φj⟩φj +

k−1
j=1


λj

λk − λj
DIF


⟨x, φj⟩
λj

; σr, F0


⟨x, φk⟩φj, (5)

while that of the principal values defined through (4) is given by

IF(x; λr,k, P) = 2 λkIF


⟨x, φk⟩
√
λk

; σr, F0


. (6)

3.2. A functional related to the penalized functional principal components

In this section, we study the influence function of a smoothed functional related to the estimators defined in [3] obtained
bypenalizing the robust scale. Asmentioned in the Introduction, smoothed functionalswere also considered in other settings
such as nonparametric regression and tolerance intervals. In nonparametric regression, a smoothed functional approach to
nonparametric kernel estimators was introduced by Aït Sahalia [1] and used by Tamine [36] to define a smoothed influence
function. On the other hand, Fernholz [17] studied the influence function of the smoothed corrected content of tolerance
intervals. A general discussion on kernel-smoothed versions of functionals is given in Fernholz [16].

Let us denote Hs, the subset of ‘‘smooth elements’’ of H . Let D : Hs → H be a linear operator, which we will refer to
as the ‘‘differentiator’’. Using D, we define the symmetric positive semidefinite bilinear form ⌈·, ·⌉ : Hs × Hs → R, where
⌈α, β⌉ = ⟨Dα,Dβ⟩. The ‘‘penalization operator’’ is then defined as L : Hs → R, L(α) = ⌈α, α⌉, and the penalized inner
product as ⟨α, β⟩τ = ⟨α, β⟩ + τ⌈α, β⌉. Therefore, ∥α∥

2
τ = ∥α∥

2
+ τL(α).

We want to study the sensitivity to single outliers of the robust scale penalized estimators defined in [3]. For a sample
X1, . . . , Xn of i.i.d. observations Xi ∈ H, Xi ∼ X ∼ P , these estimators are given by

φ s,1 = argmax
∥α∥=1


s2n(α)− ρL(α)


φ s,m = argmax

α∈Bm,s


s2n(α)− ρL(α)


2 ≤ m, (7)

with Bm,s = {α ∈ H : ∥α∥ = 1, ⟨α,φ s,j⟩ = 0, ∀ 1 ≤ j ≤ m − 1} and s2n(α) = σ 2
r (Pn[α]), where σr(Pn[α]) stands for the

functional σr computed at the empirical distribution of ⟨α, X1⟩, . . . , ⟨α, Xn⟩. Note that the ‘‘raw’’ estimators correspond to
the choice ρ = 0. Bali et al. [3] have shown that, under mild condition, if the smoothing parameter ρ varies with the sample
size and is such that ρ = ρn → 0, then the estimators are consistent to the functional defined through (3). However,
the influence function derived in Theorem 3.1, does not allow to measure the sensitivity of the smoothed estimators to
anomalous data, since this functional does not dependon the penalization parameter. For that purpose, even if the estimators
are consistent to the functional defined through (3), to strength the dependence on the penalization, we will derive, for a
fixed value of ρ the influence function of the functional defined through

φr,s,1(P) = argmax
∥α∥=1

σ (α)− ρL(α)

φr,s,m(P) = argmax
∥α∥=1,α∈Bm,s

σ (α)− ρL(α) 2 ≤ m, (8)
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with Bm,s = {α ∈ H : ⟨α, φr,s,j(P)⟩ = 0, 1 ≤ j ≤ m − 1}. The corresponding principal values are defined as
λr,s,m(P) = σ 2

r (P[φr,s,m]). Note that to allow for a proper definition of φr,s,m(P) and to derive the influence function of
the resulting functionals, we assume that there exists α such that L(α) < ∞, i.e., Hs ≠ ∅. The idea beyond this approach
is that the influence of the smooth functional defined in (8) may allow to approximate the sensitivity of the smoothed
estimators to anomalous data, since it may be thought as an approximation of the finite-sample version of the influence
function introduced by Tukey [37].

Theorem 3.2. Let P be an elliptical probability measure P = E(0,0), where0 is a self-adjoint, positive semidefinite and compact
operatorwith eigenvaluesλ1 ≥ λ2 ≥ · · ·. Denote asφj the eigenfunction associated toλj. Let F0 be the univariatemeasure defined
in Lemma 2.1 and assume, without loss of generality, that σr(F0) = 1, so that σ(α) = ⟨α,0α⟩.

Denoteλk = λr,s,k(P) = ⟨φr,s,k,0φr,s,k⟩, assume that there exists q ≥ 2 such thatλ1 >λ2 > · · ·λq >λq+1.
Suppose that the map S : [0, 1] × R → R defined by S(ϵ, y) = σr((1 − ϵ)F0 + ϵδy) is twice continuously differentiable at

any (0, y). In particular, IF(y; σr, F0) is differentiable and denote DIF(y; σr, F0) its derivative with respect to y.
Besides, assume that there exists ϵ0 < 1, such that for each fixed ϵ ∈ [0, ϵ0] and x ∈ H , the map Υx,ϵ : H → R defined as

Υx,ϵ(α) = σ 2
r (Px,ϵ[α]) is Hadamard differentiablewith respect to the norm ∥·∥ρ , where Px,ϵ = (1−ϵ)P+ϵδx is the contaminated

probability measure. Assume further that, for k ≤ q, the map Υ : [0, ϵ0] × H → R defined as Υ (ϵ, α) = σ 2
r (Px,ϵ[α]) is twice

continuously Hadamard differentiable at (0, φr,s,k)with respect to the norm ∥ · ∥ρ . Then, for any k ≤ q, the influence function of
the principal direction functional φr,s,k(P) defined through (8) is given through the implicit solution of

⟨πkAk, α⟩ − 2ρ⌈IFk, α⌉ + 2ρ
k
ℓ=1

⌈IFk, φℓ,0⌉⟨φℓ,0, α⟩

= 2λ̃k⟨IFk, α⟩ + 2

ℓ<k

⟨0φk,0, φℓ,0⟩⟨IFℓ, α⟩ + 2
k
ℓ=1

⟨0φk,0, IFℓ⟩⟨φℓ,0, α⟩

− 2ρ
k
ℓ=1

⌈IFℓ, φk,0⌉⟨φℓ,0, α⟩ − 4ρ
k
ℓ=1

⌈φk,0, φℓ,0⌉⟨IFℓ, α⟩ (9)

for any α ∈ H , with IFk = IF(x, φr,s,k, P), φk,0 = φr,s,k(P), Ak = 20IFk + ∇k and

∇k = 2 IF


⟨x, φk,0⟩λk ; σ 2

r , F0


0φr,s,k +λkDIF ⟨x, φk,0⟩λk ; σ 2

r , F0

x − ⟨x, φk,0⟩
0φk,0λkλk

 .
Remark 3.1. As an application of Theorem 3.2, we provide an example in which the operator 0 has as eigenfunctions the
elements of the Fourier basis. For that purpose, assume that H = L2(0, 1)with its standard inner product. Let X ∼ E(0,0)
with 0 =


i≥1 λiφi ⊗ φi where λ1 > λ2 > · · · > λj > λj+1 > · · ·, that is, λj converge to 0 in a strictly decreasing way and

{φi}i≥1 are elements of the Fourier basis. Thus, φi(x) is either sin(aiπx) or cos(aiπx), with ai → ∞, in a non-decreasing way.
When the first eigenfunction equals 1, we take a1 = 0. Define Df = f ′′, then, L(α) =

 1
0 (α

′′(t))2dt . Note that the bilinear
form of the penalization is closable, that is there exists a symmetric, non-negative operator D(2) defined on a subspace
V ⊂ Hs such that ⌈α, β⌉ = ⟨α,D(2)β⟩, for any α ∈ Hs and β ∈ V . Moreover, in this situation φr,s,k(P) = φk. For technical
reasons, we will also require that λ1 − λ2 − 2ρa41π

4
≠ 0 and λ1 − 4ρa41π

4
≠ 0.

Under these conditions, in the Appendix we derive the following explicit formula for the influence function of the first
principal direction,

IF1 = IF(φr,s,1, x, P) = −


λ1DIF


⟨x, φ1⟩
√
λ1

; σr, F0


ℓ≥2

⟨x, φℓ⟩
λℓ − λ1 − ρ(a4ℓ − 2 a41)π4

φℓ. (10)

Hence,

∥IF1∥2
= λ1DIF2


⟨x, φ1⟩
√
λ1

; σr, F0


ℓ≥2

⟨x, φℓ⟩2

(λℓ − λ1 − ρ(a4ℓ − 2 a41)π4)2
.

Notice that, when ρ → ∞, we have that ∥IF1∥2
→ 0. In this sense, the estimators will be more stable when ρ is large.

However, as is well known over-smoothing introduces a bias in the estimation procedure. In particular, consistency results
require that the smoothing parameter ρn → 0 as the sample size n increases, leading to a compromise between consistency
and resistance in this setting. Also notice that, as is to be expected, when ρ = 0 we get the expression for the influence
function given in (5).
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4. The influence function forM-scale based estimators

To illustrate the performance of the projection-pursuit estimators when considering M-scales, in this section, we give
an explicit formula for the influence function of the functionals φr,k and λr,k for Gaussian distributions, when the scale
functional is an M-estimator. In particular, the expression includes the standard deviation and an M-scale estimator using
the bisquare Tukey’s function.

Let {φj}j∈N be an orthonormal basis of H and assume that X ∼ P , is a Gaussian process with principal components φj and
meanµ = 0, so that X =


j≥1 Zjφj, with Zj ∼ N(0, λj) independent. Moreover,0X =


j≥1 λjφj⊗φj and for any α such that

α ∉ ker(0X ), we have that Zα = ⟨α, X − µ⟩/
√

⟨α,0α⟩ ∼ N(0, 1). Hence, the distribution F0 in Lemma 2.1 equals F0 = Φ

the standard normal distribution. In this case, the functional defined through (3) is Fisher-consistent, so that φr,k(P) = φk,
while λr,k(P) = λk if the scale functional is Fisher-consistent at F0.

On the other hand, the influence function of scale estimators σr(G) defined through (2) is given by

IF(x; σr,G) = σr(G)

χ


x − µ(G)
σr(G)

− b


χ ′


y − µ(G)
σr(G)


y − µ(G)
σr(G)

dG(y)
−1

,

see [21]. Thus,

DIF(x; σr,G) = χ ′


x − µ(G)
σr(G)


χ ′


y − µ(G)
σr(G)


y − µ(G)
σr(G)

dG(y)
−1

,

withχ ′ the derivative ofχ . Usually,σr(G) is calibrated to attain Fisher-consistency at the normal distribution, i.e.,σr(F0) = 1
and the location functional is also Fisher-consistency. Therefore, if we denote by Y ∼ N(0, 1), we have that the above
expressions reduce to

IF(t; σr, F0) = {χ (t)− b}

EF0χ

′ (Y ) Y
−1

,

DIF(t; σr, F0) = χ ′ (t)

EF0χ

′ (Y ) Y
−1

.

By plugging these expressions into (5) and (6), we observe that, as in the euclidean setting, the principal values influence
function remains bounded if σr has a bounded influence function, i.e., if χ is bounded. On the other hand, as noted by Croux
and Ruiz-Gazen [11], the influence function of the principal directions is related to the behaviour of DIF(x; σr, F0), so that
robust scale estimators having a smooth bounded derivative should be preferred. When considering M-scales, this means
that the practitioner should prefer a bounded χ function with continuous and bounded derivative χ ′. However, even in this
case, the influence function for the principal directions may still become unbounded as in the finite-dimensional situation.
To be more precise, denote as xj = ⟨x, φj⟩ the components of x in the orthonormal basis {φj}j≥1. Thus, Theorem 3.1 leads to

∥IF(x;φr,k, P)∥2
= λk DIF2


xk

√
λk

; σr, F0

 
j≥k+1

x2j
λk − λj

2 + x2k
k−1
j=1

λj
λk − λj

2DIF2


xj
λj

; σr, F0


. (11)

As mentioned in [11], for most robust scale estimators DIF (y; σr, F0) is bounded or even tends to or becomes 0 when
|y| converges to ∞. For instance, these assumptions are fulfilled for M-scales when χ ′ is bounded or limt→∞ χ

′(t) = 0,
respectively. The choice of χ as the bisquare’s Tukey function satisfies both conditions. However, the term x2j in the first
term of the right hand side of (11) can still make the influence function to go beyond any limit. As in the finite-dimensional
situation, assume that the scale functional σr has an influence functionwith bounded derivative redescending to zero. Then,
for any principal direction, large values of |x1| = |⟨x, φ1⟩| will have bounded influence. On the other hand, for any fixed
j > 1, two situations arise. Large absolute values of xj = ⟨x, φj⟩ have bounded influence on the principal directions φr,k
when k > j, while for k < j they may still yield to a huge influence on the principal direction φr,k if they are combined with
a small absolute value of xk. Finally, if k = j, large values of |xk|may have large influence on the principal directionφr,k if they
are combined with small values of |xℓ|, for ℓ < k. In this sense, the raw robust estimators of the principal directions based
on robust scales, such as M-scales behave as those defined in the finite-dimensional setting. The same comments apply to
influence function of the smooth functional.

However, it is worth noting, that if the Gaussian process has finite range, or more generally, if X ∼ E(0,0), where
0 has finite range, the influence function of the unsmoothed functional will not have a finite expansion as in the finite-
dimensional case. To be more precise, assume that 0 has range p, so that λi > 0 for i ≤ p and λi = 0 for i ≥ p+1Moreover,
as in Theorem 3.1 assume that, for some q ≤ p, λ1 > λ2 > · · · > λq > λq+1. Then, for any k ≤ q, (5) reduces to

IF(x;φr,k, P) = DIF


xk
√
λk

; σr, F0


1

√
λk


j≥p+1

xjφj

+DIF


xk
√
λk

; σr, F0

 
k+1≤j≤p

√
λk

λk − λj
xjφj + xk

k−1
j=1


λj

λk − λj
DIF


xj
λj

; σr, F0


φj, (12)
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a b

Fig. 1. Norm of the influence function of the largest eigenfunction functional for (a) the classical estimator and (b) the projection-pursuit estimator based
on anM-scale when x3 = 0, 4.

where the middle term equals 0 if k = p. The last two terms of the above expression correspond to the influence function
obtained in Theorem 1 of Croux and Ruiz-Gazen [11]. However, in the infinite-dimensional setting, even in the finite-range
situation, IF(x;φr,k, P) has an infinite expansion since the first term on the right hand side of (12) may not be 0. To be
more precise, let ker(0)⊥ be the orthogonal of ker(0). Hence, any element x ∈ ker(0)⊥ with large values of some of its
components xj = ⟨x, φj⟩, for j > p will still have influence on the first p principal directions.

For instance, when considering the standard deviation, using (5), we get that

IF(x;φsd ,k, P) = ⟨x, φk⟩

j≠k

1
λk − λj

⟨x, φj⟩φj = xk

j≠k

1
λk − λj

xjφj (13)

IF(x; λsd ,k, P) = ⟨x, φk⟩
2
− λk = x2k − λk, (14)

so that the classical estimators will have unbounded influence functions as in the finite-dimensional case. On the other
hand, as mentioned above, if x is collinear with φk then IF(x;φsd ,k, P) = 0. Besides, any point mass contamination on the
direction of a principal component will lead to a zero influence, so in order to produce significant modifications on the
classical estimators it is necessary for the contamination to propagate in several components. The above expressions are the
functional counterpart of those obtained by Croux and Ruiz-Gazen [11] in the finite-dimensional setting and allow to define
outlier detection rules by plugging-in a robust estimator if the direction and their sizes in (13) and (14).

As an example, let us consider X = Z1φ1 + Z2φ2 + Z3φ3 where {φk}k≥1 is an orthonormal basis and Zj are independent
random variables Zj ∼ N(0, λj), λ1 = 16, λ2 = 4 y λ3 = 1. To plot the influence function, we consider the classical
estimator, based on the standard deviation and the robust one computed with an M-scale estimator with bisquare Tukey’s
function and tuning constant c = 1.56 and breakdown point 1/2. Fig. 1 gives the plots of ∥IF(x;φr,1, P)∥2 as a function of
x1 and x2 when


j≥4 x2j = 0 and x3 equals 0 and 3, respectively where xj = ⟨φj, x⟩, that is, we consider values of x such that

x = x1φ1 + x2φ2 + x3φ3. Other values of xwill lead to similar shapes, when varying x1 and x2 since for the selected process
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a b

Fig. 2. Influence function of the largest eigenvalue for (a) the classical estimator and (b) the projection-pursuit estimator based on anM-scalewhen x3 = 0.

a b

Fig. 3. Norm of the influence function of the largest eigenfunction functional for (a) the classical estimator and (b) the projection-pursuit estimator based
on anM-scale when x3 = 0 and ρ = 0.005.

∥IF(x;φr,1, P)∥2 and ∥IF(x;φsd ,k, P)∥2 equal

∥IF(x;φr,1, P)∥2
= DIF2


x1

√
λ1

; σr, F0


1
λ1


j≥4

x2j + DIF2


x1
√
λ1

; σr, F0

 3
j=2

λ1

(λ1 − λj)2
x2j ,

∥IF(x;φsd ,1, P)∥2
= x21

1
λ1


j≥4

x2j + x21
3

j=2

1
λ1 − λj

x2j .

As expected these plots are analogous to those obtained in the finite-dimensional setting. The shape of the influence function
for the projection pursuit estimator based on the M-scale with Tukey’s function is comparable to the classical estimator at
the centre of the distribution. Observations far away from the centre of the distribution have a much smaller influence by
using the robust estimator. However, for the principal directions the squared norm ∥IF(x;φr,1, P)∥2 can still attain huge
values, but only for smaller values of x1 combined with huge values of x2. On the other hand, Fig. 2 gives the influence
function of the eigenvalue functional λr,1(P) and confirms the boundedness of IF(x; λr,k, P)when using the robust scale.

Fig. 3 shows the plots of ∥IF(φr,s,1, x, P)∥2 for ρ = 0.005. No difference was obtained in the general shape of the plots
except a change in the scale. Larger values of ρ imply lower value for the norm of the influence function, which as was noted
before it is to be expected.

5. Diagnostic tools for the detection of influential observations

Even if the aim of the paper is to provide an expression for the influence functions of principal component projection-
pursuit estimates in an infinite dimensional setting, as an application, in this section we provide a discussion on how the
obtained influence functions may be used for diagnostic purposes, to detect observations with a significant impact on
the principal direction estimators. As mentioned in the Introduction, besides being of theoretical interest, measuring the
influence of an observation on the classical estimates can be used as a diagnostic tool to detect influential observations. In
this sense, we are not interested in providing a rule to detect any kind of outliers in functional data, but only to identify
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observations which influence the principal direction estimation. It is worth noticing that, in general, an outlier may not be
an influential observation for the estimation of the quantity of interest, but an influential observation is usually an outlier.
As mentioned, for instance, in [27] and Boente et al. [6], an influential observation can be described as an observation with
high influence on something, usually an estimate of the parameter of interest. In this sense, the influence function is a useful
tool for their detection.

In the finite-dimensional case, several authors have considered this approach. For instance, Croux and Haesbroeck [10]
discussed the use of the empirical influence functions in principal component analysis. As described in multivariate and
regression settings, the influence function of the functional related to a robust estimator hardly changeswhen contaminated
data points are included in the samples. On the other hand, if we consider the empirical influence of the classical estimators,
that is, the influence function of the functional related to the classical estimators replacing now the unknown quantities
by the classical estimators, a masking effect may appear and so outlying observations are not detected. A recommended
approach is to consider a robustified empirical influence function for the classical estimators, that is, to consider the influence
function for the classical estimators but plugging-in robust parameter estimates rather than classical ones, in order to
avoid masking and to detect influential observations. This procedure is analogous to the use of the robustified version of
Mahalanobis distance introduced by Rousseeuw and van Zomeren [30] and has been considered among others by Pison
et al. [26], Boente et al. [5] and Pison and van Aelst [27] to identify the data points that do not obey the model assumptions.

The problem of identifying general atypical observations for functional data is much more complex mainly due to the
difficulties of extending to the functional setting the robustMahalanobis distance introduced in [30]. Besides, in a functional
setting outliers may occur in several different ways. As mentioned by Locantore et al. [24] and Hyndman and Shang [22],
outlying curves may correspond to atypical trajectories lying outside the range of the vast majority of the data, that is,
with extreme values for the L2 norm, also to isolated points within otherwise typical trajectories (corresponding to a single
extrememeasurement) or they can be related to an extreme on some principal components, that is, they may be within the
range of the data but they may have a different shape from other curves. The latter situation is the most difficult to detect
and phenomena showing a combination of these features may also arise.

To identify outlying functional data, several approaches have been considered so far. Some are based on depth measures
while others investigate the data performance on some finite-dimensional principal component space. Febrero et al. [13,14]
provide a revision on different depth measures and propose a procedure to detect atypical curves. Based on the band depth
defined in [25], Sun and Genton [34] developed a functional boxplot and its generalization, the enhanced functional boxplot,
which is an extension of the univariate boxplot and which provides a visualization tool for functional data, as well as, a
detection rule for potential outliers (see also Sun and Genton [35]). Recently, to identify outlying observations, Gervini [20]
considered an interdistance procedure based on the boxplot of the radius of the smallest ball centred at Xi that contains
100α%of the observations. AsmentionedbyGervini [20], for outlier-screeningpurposes itmaybeuseful to consider different
values of α.

Also for functional data, Hyndman and Shang [22] propose two graphical procedures to detect atypical observations: the
functional bagplot and the highest density region boxplot. Both of them are based on the scores of robust projection pursuit
functional principal component estimators and outliers in the functional data are identified as outliers in the bivariate score
space. In this sense, the detection rules defined in [22] are related tomeasures based on the influence function of the principal
values considered in Section 3.

As mentioned above, we focus our attention on providing methods to identify observations which may be influential
when estimating the principal directions and their size. As discussed above, to measure the influence of an observation on
the analysis, the influence function of the classical estimators given in (13) and (14) plugging-in robust estimators of the
unknown quantities may be helpful. Given i.i.d. observations X1, . . . , Xn, letµ be a location estimator, such as the functional
spatial median defined in [19]. Furthermore, letφr,j stand for the robust estimator of the jth principal direction, such as the
unsmoothed projection-pursuit estimator (that is, taking ρ = 0 in (7)) and denote asλr,j = s2n(φr,j) the robust estimator of
its size.

Note that, when plugging-inφr,j andλr,j into (13), only a finite sum can be evaluated, since we are only able to estimate
a finite number q of directions. Hence, the quantities

IFk,φ(x) = ⟨x −µ,φr,k⟩


1≤j≠k≤q

1λr,k −λr,j ⟨x −µ,φr,j⟩φr,j

IFk,λ(x) = ⟨x −µ,φr,k⟩
2
−λr,k,

will allow the practitioner to evaluate if a given observation may be atypical or influential. More precisely, to measure
the influence of Xi on the k-th principal direction or its size, one may plot the values of ∥IFk,φ(Xi)∥ or those of IFk,λ(Xi),
respectively, against the index of the observation. Also, a detection rule can be obtained by providing a functional boxplot
of the new curves Yi,k = IFk,φ(Xi), 1 ≤ i ≤ n, for each value 1 ≤ k ≤ q of interest, identifying as atypical the trajectories
which are labelled as outliers in the boxplot.

Since for Gaussian processes, var

IF(X; λsd,k, P)


= 2λ2k , to investigate the influence of a data Xi on the eigenvalue

estimators, one may give a boxplot of the standardized valuesIFk,λ(Xi)/(
√
2λk) or even to consider the aggregate measure
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for the first q principal values defined in [5] as

IM2
λ(x) =

q
k=1

IF2k,λ(x)
2λ2k =

q
k=1


⟨x −µ,φr,k⟩

2
−λr,k2

2λ2k .

However, in many situations the researcher is interested in detecting curves with high impact on the estimation of some
of the principal directions. Assume that we are interested in the first q principal directions. In this case, we also have
var


IF(X;φsd,k, P)


= λk


j≠k


λj/(λk − λj)

2

φj ⊗ φj, where we have assumed that λ1 > λ2 > · · · > λq. However, we

cannot proceed as in [5] unless we truncate the above operator. Using again that we can only estimate q principal directions,
it is sensible to consider the truncated influence function of the classical principal directions

IFtr(X;φsd,k, P) = ⟨x − µ, φk⟩


1≤j≠k≤q

1
λk − λj

⟨x − µ, φj⟩φj 1 ≤ k ≤ q.

It is worth noting that IFk,φ(x) correspond to plugging into IFtr(x;φsd,k, P) the unknown quantities by robust estimatorsµ,φr,j andλr,j. As above, for Gaussian processes and, for any k ≤ q, IFtr(X;φsd,k, P) has a covariance operator given by
λk


1≤j≠k≤q


λj/(λk − λj)

2

φj ⊗ φj. So, as in [5], one may consider the aggregated diagnostic measure

IM2
φ(x) =

q
k=1


1≤j≠k≤q

⟨x −µ,φr,k⟩
2
⟨x −µ,φr,j⟩

2λr,kλr,j .

Asymptotic cut-off values for IM2
λ(x) and IM2

φ(x) are given in [5] for some values of q.
A different approach may be to consider an aggregate measure, similar to that defined in [27], that is

IM2
φ(x) =

q
k=1

∥IFk,φ(x)∥2
=

q
k=1

⟨x −µ,φr,k⟩
2

j≠k

1

(λr,k −λr,j)2 ⟨x −µ,φr,j⟩
2.

Note that IM2
φ(x) corresponds to plugging into IF2tr(x) =

q
k=1 ∥IFtr (x;φsd,k, P)∥2 the unknown quantities by robust

estimators. The disadvantage of this lastmethod is that, to detect influential points, the cut-off value for the overall influence
needs to be computed by Monte Carlo simulation. One possibility is to use a procedure analogous to that considered in [27],
to compute the cut-off points. A faster procedure can be implemented by noting that for Gaussian processes IF2tr(X) has
the same distribution as


1≤j≠k≤q


λjλk/(λk − λj)

2

Z2
j Z

2
k , where Zj are i.i.d. Zj ∼ N(0, 1). Hence, one may proceed by

generatingM times q random variables N(0, 1). For each of the datasets the measure IF2tr(X) is computed for all data points
replacingλj in the above expression by the estimatorsλr,k obtained from the original sample. This replacement is reasonable
because the robust estimators provide a good approximation for the true principal values, if the sample is large enough. The
cut-off value is then the (1−α) quantile of the overall influencesIM2

φ(Xi). The procedure can be repeated nr times to obtain
more stable estimators of the cut-off values. In our simulations we choose, M = 10 000, nr = 100 and we selected the
median of the obtained quantiles. In this way, we derive a critical value for the overall influence under the null hypothesis
that there are no influential points in the dataset.

In order to evaluate the detection measures introduced, we performed a small simulation study in which we evaluate
the capability of IM2

λ(x), IM
2
φ(x) andIM2

φ(x) to detect the generated atypical observations. In all cases, we choose the sample
size n = 100, α = 0.05 and α = 0.01 and we selected q = 4 principal directions.

A complete comparison with all the procedures discussed in the literature is beyond the scope of the paper. In this study,
we only consider as potential competitors, the outlier detection rules provided by: (i) the functional boxplot of the data Xi
introduced by Sun and Genton [34] and (ii) the bagplot of the first two scoresVi = (⟨Xi−µ,φr,1⟩, ⟨x−µ,φr,2⟩)

t , considered
in [22], denoted as FBox and FBag in the Tables, respectively.

We consider the following situations, which correspond to contaminated Gaussian processes with an infinite-
dimensional and finite range, respectively:

(a) The uncontaminated or original observations X (u)i correspond to a Gaussian process with covariance kernel equal to
γX (s, t) = (1/2)(1/2)0.9|s−t|, 0 < t < 1. The contamination introduced correspond to a peak contamination and has
been considered by Sawant et al. [31]. The contaminated observations Xi are defined as

Xi(s) = X (u)i (s)+ Vi Di M I{Ti<s<Ti+ℓ}

where Vi ∼ Bi(1, p), Di is such that P(Di = 1) = P(Di = −1) = 1/2, Ti ∼ U(0, 1 − ℓ), ℓ < 1/2 and Vi, Xi,Di and Ti are
independent. We choose ℓ = 1/15 and p = 0.1. Several values of M were tested M = 2,M = 5 and M = 15, the last
two correspond to mild and extreme outliers, respectively while in the first one the atypical data are more difficult to
detect.
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Table 1
Mean over replications of the proportion of outliers detected PO and of the proportion of good observations not detected as atypical PG when α = 0.01.

Model PO PGIM2
φ(x) IM2

λ(x) IM2
φ(x) FBox FBag IM2

φ(x) IM2
λ(x) IM2

φ(x) FBox FBag

(a)M = 2 0.2171 0.0964 0.0992 0.0906 0.0282 0.9461 0.9827 0.9810 0.9985 0.9832
(a)M = 5 0.6914 0.5988 0.5983 0.5080 0.1131 0.9563 0.9871 0.9851 0.9985 0.9867
(a)M = 15 0.9917 0.9916 0.9939 0.5174 0.7127 0.9605 0.9908 0.9882 0.9985 0.9892
(b) ν = 4 0.7419 0.5229 0.5673 0.0098 0.0235 0.9648 0.9852 0.9724 0.9993 0.9885
(b) ν = 8 0.9991 0.9823 0.9960 0.9317 0.5826 0.9533 0.9887 0.9752 0.9994 0.9855

Table 2
Mean over replications of the proportion of outliers detected PO and of the proportion of good observations not detected as atypical PG when α = 0.05.

Model PO PGIM2
φ(x) IM2

λ(x) IM2
φ(x) FBox FBag IM2

φ(x) IM2
λ(x) IM2

φ(x) FBox FBag

(a)M = 2 0.3686 0.2185 0.2341 0.2351 0.0923 0.8825 0.9432 0.9381 0.9812 0.9403
(a)M = 5 0.8309 0.7524 0.7709 0.5207 0.2496 0.9021 0.9551 0.9502 0.9812 0.9484
(a)M = 15 0.9970 0.9967 0.9981 0.5208 0.8252 0.9111 0.9661 0.9600 0.9812 0.9562
(b) ν = 4 0.9802 0.7874 0.8698 0.1803 0.1156 0.9096 0.9514 0.9239 0.9893 0.9552
(b) ν = 8 0.9999 0.9975 0.9996 0.9998 0.7554 0.8934 0.9607 0.9313 0.9899 0.9492

Table 3
Mean over replications of the proportion of outliers detected PO and of the proportion of good observations not detected as atypical PG when α = 0.05.

Model PO PG
FB1 FB2 FB3 FB4 FB1 FB2 FB3 FB4

(a)M = 2 0.2284 0.2666 0.3850 0.4146 0.8848 0.8993 0.8992 0.8960
(a)M = 5 0.5026 0.7220 0.8342 0.8506 0.8936 0.9099 0.9095 0.9077
(a)M = 15 0.9422 0.9885 0.9890 0.9888 0.9019 0.9160 0.9109 0.9059
(b) ν = 4 0.4712 0.9302 0.9841 0.6860 0.9067 0.9250 0.9224 0.9006
(b) ν = 8 0.8904 0.9991 0.9967 0.9190 0.9051 0.9222 0.9224 0.9046

(b) The observations are such that Xi(t) = Zi1φ1(t) + Zi2φ2(t) + Zi3φ3(t) where φ1(t) = sin(4π t), φ2(t) = cos(7π t)
and φ3(t) = cos(15π t) are elements of the Fourier basis on L2(−1, 1). The distributions of the scores is given by
Zi1 ∼ N(0, σ 2

1 ), (Zi2, Zi3) ∼ (1 − ϵ) N

(0, 0) , diag


σ 2
2 , σ

2
3


+ ϵ N ((ν, ν) , diag (0.01, 0.01)), where σ1 = 4, σ2 = 2

and σ3 = 1. The situation ϵ = 0 corresponds to the uncontaminated data, while in the situation under study ϵ = 0.1, so
that the observations are contaminated in the diagonal between the second and third principal directions. Two values
of ν are studied, ν = 4 and ν = 8 corresponding to influential points that can be seen as mild and extreme outliers.

Tables 1 and 2 summarize the results obtained for all the models described above and for the methods based on
IM2

λ(x), IM
2
φ(x) andIM2

φ(x), forα = 0.01 and0.05 respectively. The reported results correspond to themeanover replications
of the proportion of atypical data PO detected and to the mean over replications of proportion of good observations not
detected as atypical PG. These twomeasures can be seen as measures of the sensitivity and specificity of the detection rules,
respectively.

For fair comparisons with the proposed detection rules, when considering the bagplot of Vi, we choose as the factors to
define the fence κ = 2.58 (see [22]), and also κ = 2.079. When the projected bivariate scores have a normal distribution,
κ = 2.58 allows the fence to contain a 100× (1− α)% of the observations, with α = 0.01, while κ = 2.079 corresponds to
α = 0.05. Similarly, for the functional boxplot, the fences were obtained with two factors κfbox = 1.5 and κfbox = 1 which
correspond to inflate the envelope of the 50% central region κ times the range of the 50% central region. The results corre-
sponding to κfbox = 1.5 are reported in Table 1, while those related to κfbox = 1 in Table 2, since for an univariate boxplot,
they correspond to rejecting outliers with a probability of α = 0.01 and 0.05, respectively, when the data are normal.

Table 3 report similar measures when considering the functional boxplot of the new curves Yi,k = IFk,φ(Xi), 1 ≤ i ≤ n,
which are denoted as FBk for each 1 ≤ k ≤ 4 taking κfbox = 1.5. Hence, they should be compared with the results given in
Table 1.

The obtained results show thatIM2
φ(x), IM

2
λ(x), IM

2
φ(x), the functional boxplot of the data and the functional bagplot all

have a high specificity meaning that in most cases, the uncontaminated data are not declared as influential except for the
percentage allowed by the selection of α or the cut-off value given in the functional boxplot and bagplot respectively. The
lower values are obtained when consideringIM2

φ(x) which tends to identify more outliers than actually exist. On the other
hand, the specificity of the functional boxplots FBk of the new curves Yi,k is much smaller, indicating that in many situations
the uncontaminated trajectories are declared as influential, identifying in this way spurious outliers.

With respect to the proportion of detected outliers, IM2
φ(x) seems to have the best performance followed by IM2

φ(x)

that also gives accurate results for the considered models. The better behaviour of IM2
φ(x) is at the expense of a loss of
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Fig. 4. Plots ofIM2
φ(Xi), IM2

φ(Xi) or IM2
λ(Xi), against the index of the observation, when n = 100.

Fig. 5. Plots ofIM2
φ(Xi), IM2

φ(Xi) or IM2
λ(Xi), against the index of the observation, when n = 1000.

specificity and also with a larger numerical cost. In most cases, the functional boxplot is not able to detect the contaminated
observations. This is mainly due to the fact that the contaminations do not change the location (unless M or ν are large
enough) but rather affects the principal directions. As mentioned by several authors, the functional depth approach does
not take shape outliers into account, so that the functional boxplot fail to detect some outliers that are not far from the
median curve. On the other hand, the functional bagplot looses its ability to detect the introduced atypical data when their
effect on the first two scores is not large, as is the case when ν = 4 and M = 2 or 5. In this sense, the functional boxplots
FBk of the new curves Yi,k provide an idea on which direction the contaminated data have their main influence.

Finally, we have also considered an example based on the model studied in [22], i.e., Xi(t) = ai sin(2π t) + bi cos(2π t),
with 0 < t < 1, ai and bi i.i.d. such that ai ∼ U(0, 0.1) and bi ∼ U(0, 0.1). In their study, Hyndman and Shang [22] replaced
10 of the original observations by new observations such that X (n)i (t) = ai sin(2π t)+ bi cos(2π t), where ai and bi are i.i.d.
but their distribution is now U(0.1, 0.12). In this situation, the two principal directions have the same size, and the process
is not Gaussian. Hence, it is not appropriate to use cut-off values for IM2

λ(x) and IM2
φ(x) given in [5], since they may lead to

wrong conclusions. However, one may still plotIM2
φ(Xi), IM2

φ(Xi) or IM2
λ(Xi), against the index of the observation to identify

the observations with larger values as candidates for atypical. Figs. 4 and 5 show the obtained plots when n = 100 and
n = 1000, the 10 outliers correspond to the last ten generated data. We have chosen q = 2. It is worth noting that when
n = 100, IM2

λ(Xi) does not allow to clearly distinguish the outliers, moreover, some good observations may be considered
as influential, leading to a high false positive rate. On the other hand, for this sample size, when considering IM2

φ(Xi) or
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IM2
φ(Xi), the generated shape outliers, attain the largest values. Finally, when n = 1000 which is the situation studied

in [22], all measures are able to identify the anomalous observations. It is worth noting that when using the functional HDR
boxplot, with α = 0.01 then the ten outliers are identified when n = 1000, while the observation i = 59 is the only one
classified as atypical when n = 100.

The above results show that, at least for the situations considered, the diagnostic measures based on the influence
function have a better performance over other detection rules. Hence, they may be considered as helpful tools for detecting
influential observations for the principal directions.

6. Conclusions

In this paper, we derive a general expression for the influence function of the functional related to the projection-pursuit
estimators of the principal directions. As expected, the influence function of the classical estimators based on the standard
deviation is not bounded. On the other hand, as in the multivariate case, using a robust scale as projection index, the
eigenvalue influence function remains bounded. However, this property does not hold for the principal directions. Based
on the influence function, we have introduced diagnostic measures which allow to detect trajectories suspicious of having
an effect on the principal directions estimation. We have also obtained an implicit expression for the influence function
of a smoothed functional related to the projection-pursuit estimators which penalize the scale. Though perhaps difficult
to handle, nevertheless for some special cases we obtain an explicit formula which agrees with can be expected from the
behaviour of the estimators: large values ofρ tend toproduce over-smoothing. Oneof the consequences of over-smoothing is
that the functional related to the principal directionswill bemore stable. However, thismay entail losing Fisher-consistency,
i.e., we may be estimating a direction different from the one of interest.
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Appendix

A.1. Proof of Lemma 2.1

First note that since X ∼ E(µ,0, ψ), we have that X −µ ∼ E(0,0, ψ), so that ⟨α, X −µ⟩ has a symmetric distribution.
Hence, we only have to prove that the distribution of ⟨α, X −µ⟩/

√
⟨α,0α⟩ will not depend on α, when ⟨α,0α⟩ ≠ 0, which

will follow from the fact that its characteristic function does not depend on α.
If we define A : H → R as Ax = ⟨α, x⟩, we have that Xα = A(X − µ) ∼ E(0, A0A∗, ψ) = E(0, ⟨α,0α⟩, ψ). Therefore,

the characteristic function of Xα is given by ϕXα (y) = ψ(⟨α,0α⟩y2). When ⟨α,0α⟩ = 0, we have that ϕXα (y) = 1 for any y,
so that P(Xα = 0) = 1. On the other hand, if σα = ⟨α,0α⟩ ≠ 0, we get easily that ϕXα/σα (y) = ϕXα (y/σα) = ψ(y2) which
does not depend on α, concluding the proof. �

A.2. Proof of Theorem 3.1

Webegin by fixing our notation andmaking some computations that will be used in the sequel. Denote by IH the identity
operator, i.e., IH (α) = α.

If V stands for the random variable independent of X ∼ P such that P(V = 1) = ϵ and P(V = 0) = 1 − ϵ, we have that
(1 − V )X + Vδx,∼ Px,ϵ .

For any ϵ < ϵ0, x ∈ H denote as φj,ϵ = φr,j(Px,ϵ) and λj,ϵ = λr,j(Px,ϵ). Recall that ∥φj,ϵ∥ = 1 and ⟨φj,ϵ, φℓ,ϵ⟩ = 0, for
ℓ ≠ j.

Let P be as in Theorem 3.1, i.e., an elliptical probability measure P = E(µ,0), where µ = 0 and 0 is a self-adjoint,
positive semidefinite and compact operator with eigenvalues λ1 ≥ λ2 ≥ · · · such that λ1 > λ2 > · · · > λq > λq+1. Define
Υ : [0, ϵ0] → R as Υ (ϵ, α) = σ 2

r (Px,ϵ[α]).
Let k ≤ q and define the restrictions 9 : H → Rk as 9(α) = (Ψ0(α), . . . ,Ψk−1(α)) with Ψ0(α) = ∥α∥

2
− 1 and

Ψj(α) = ⟨α, φj,ϵ⟩, for 1 ≤ j ≤ k − 1, where we understand that when k = 1, 9(α) = Ψ0(α). From Remark 2.2, 9 is
C1-Fréchet differentiable. Moreover, 9′

φk,ϵ
is onto Rk since 9′

φk,ϵ
= (Ψ ′

0,φk,ϵ
, . . . ,Ψ ′

k−1,φk,ϵ
)with

Ψ ′

0,φk,ϵ (α) = ⟨2φk,ϵ, α⟩ Ψ ′

j,φk,ϵ (α) = ⟨φj,ϵ, α⟩, for 1 ≤ j ≤ k − 1.

Effectively, given y = (y1, . . . , yk)t ∈ Rk, consider α = (y1/2)φk,ϵ +
k−1

j=1 yj+1φj,ϵ , then 9′

φk,ϵ
(α) = y. Thus, assumption

(iii) in Theorem 2.2 is satisfied.
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From (3), we have that, for any fixed ϵ, φk,ϵ maximizes Υx,ϵ(α) = σ 2
r (Px,ϵ[α]) over the surface {α : 9(α) = 0}, that is,

Υx,ϵ(α) has a local maximum at φk,ϵ subject to the condition 9(α) = 0. Besides, Υx,ϵ : H → R is a Hadamard differentiable
function.

Hence, keeping in mind that Υx,ϵ depends on ϵ and denoting asΛ(α) = Υ (ϵ, α) = Υx,ϵ(α), we have that, Theorem 2.2
entails that there exist γ0, γ1, . . . , γk−1 ∈ R (depending on ϵ) such that

Λ′

φk,ϵ
=

k−1
j=0

γjΨ
′

j,φk,ϵ .

It is worth noting thatΛ′

φk,ϵ
= D2,θϵΥ with θϵ = (ϵ, φk,ϵ) ∈ [0, ϵ0]×H with D2,(ϵ,α)Υ the first partial Hadamard derivative

with respect to the second component of Υ at (ϵ, α).
The fact that Λ′

φk,ϵ
is a linear and continuous operator (see Remark 2.1) implies that there exists a unique ∇Λφk,ϵ ∈ H

such that Λ′

φk,ϵ
(α) = ⟨∇Λφk,ϵ , α⟩ and similarly, Ψ ′

j,φk,ϵ
(α) = ⟨∇Ψj,φk,ϵ , α⟩. Hence, ∇Λφk,ϵ =

k−1
j=0 γj∇Ψj,φk,ϵ . On the other

hand, from Remark 2.2 we get that ∇Ψ0,φk,ϵ = 2φk,ϵ while ∇Ψj,φk,ϵ = φj,ϵ , for 1 ≤ j ≤ k − 1 which entails that

∇Λφk,ϵ = 2γ0φk,ϵ +

k−1
j=1

γjφj,ϵ . (A.1)

From (A.1), we obtain that 2γ0 = ⟨∇Λφk,ϵ , φk,ϵ⟩ while γj = ⟨∇Λφk,ϵ , φj,ϵ⟩. Hence, (A.1) can be written as

∇Λφk,ϵ =

k
j=1

⟨∇Λφk,ϵ , φj,ϵ⟩φj,ϵ, (A.2)

that is,

(D2,θϵΥ )α = Λ′

φk,ϵ
α =

k
j=1

⟨∇Λφk,ϵ , φj,ϵ⟩⟨φj,ϵ, α⟩. (A.3)

We will use this expression several times in the sequel.
We will need the following lemma which is an extension of an analogous result obtained in the multivariate setting.

Lemma A.2.1. Let P be an elliptical probability measure P = E(µ,0), where µ = 0 and 0 is a self-adjoint, positive semi-
definite and compact operator with eigenvalues λ1 ≥ λ2 ≥ · · · and let φj be the eigenfunction associated to λj. Assume that
λ1 > λ2 > · · · > λq > λq+1.

Let F0 be the univariate measure defined in Lemma 2.1. Suppose that the map S : [0, 1] × R → R defined by S(ϵ, y) =

σr((1 − ϵ)F0 + ϵδy) is twice continuously differentiable at any (0, y). In particular, IF(y; σr, F0) needs to be differentiable with
respect to y and its derivative will be denoted by DIF(y; σr, F0).

Then, for any k ≤ q, there exists a neighbourhood Uk of φk such that for any α ∈ Uk,

IF(⟨α, x⟩; σ 2
r , P[α]) = ⟨α,0α⟩IF


⟨α, x⟩

√
⟨α,0α⟩

; σ 2
r , F0


. (A.4)

Moreover, if Λ : H → R stands for the mapΛ(α) = IF(⟨α, x⟩; σ 2
r , P[α]), thenΛ is Hadamard differentiable at φk and

∇Λφk = 2λk IF


⟨φk, x⟩
√
λk

; σ 2
r , F0


φk + λkDIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


x − ⟨x, φk⟩φk

√
λk


, (A.5)

that is,

Λ′

φk
(α) = 2λk IF


⟨φk, x⟩
√
λk

; σ 2
r , F0


⟨φk, α⟩ + λkDIF


⟨φk, x⟩
√
λk

; σ 2
r , F0

 
α,

x − ⟨x, φk⟩φk
√
λk


.

Proof. Using that λk > 0, we get there exists a neighbourhood Uk of φk such that for any α ∈ Uk, α ∉ ker(0), hence
Lemma 2.1 entails that Zα = ⟨α, X⟩/

√
⟨α,0α⟩ ∼ F0. Let us recall that

IF(⟨α, x⟩; σ 2
r , P[α]) = lim

ϵ→0

σ 2
r ((1 − ϵ)P[α] + ϵδ⟨x,α⟩)− σ 2

r (P[α])

ϵ
. (A.6)

Using that σr is a scale functional and the fact that ⟨α, X⟩ ∼ P[α], we get that σr(P[α]) =
√

⟨α,0α⟩σr(F0).
On the other hand, if V stands for a random variable independent of X such that P(V = 1) = ϵ and P(V = 0) = 1 − ϵ,

we have that (1 − V )⟨X, α⟩ + V ⟨x, α⟩ ∼ Px,ϵ[α] = (1 − ϵ)P[α] + ϵδ⟨x,α⟩. Noting that (1 − V )⟨X, α⟩ + V ⟨x, α⟩ =
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√
⟨α,0α⟩ ((1 − V )Zα + Vzα) with zα = ⟨α, x⟩/

√
⟨α,0α⟩ and that (1 − V )Zα + Vzα ∼ (1 − ϵ)F0 + ϵδzα , we also get

that

σr((1 − ϵ)P[α] + ϵδ⟨x,α⟩) =


⟨α,0α⟩ σr((1 − ϵ)F0 + ϵδzα ),

which using (A.6) entails (A.4).
It remains to show (A.5). Define the maps Υ : Uk → R and Ψ : Uk → R as Υ (α) = ⟨α,0α⟩ and

Ψ (α) = IF


⟨α, x⟩
√

⟨α,0α⟩
; σ 2

r , F0


.

Then, Λ(α) = IF(⟨α, x⟩; σ 2
r , P[α]) = Υ (α)Ψ (α). Remark 2.2 entails that Υ is Hadamard differentiable with ∇Υα = 20α.

Hence, if we show that Ψ is Hadamard differentiable at φk, we get thatΛ is also Hadamard differentiable φk and

∇Λφk = Υ (φk)∇Ψφk + Ψ (φk)∇Υφk . (A.7)

Using that φk is the eigenfunction of 0 associated to λk, we get that Υ (φk) = λk, ∇Υφk = 20φk = 2λk and

Ψ (φk) = IF


⟨φk, x⟩
√
λk

; σ 2
r , F0


,

which together with (A.7) entail that

∇Λφk = λk∇Ψφk + 2λkIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


φk.

Thus, to conclude the proof, it remains to show that Ψ is Hadamard differentiable at φk and

∇Ψφk = DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


x − ⟨x, φk⟩φk

√
λk


.

Define now f : R → R as f (y) = IF(y; σr, F0) and Φ : Uk → R as Φ(α) = ⟨x, α⟩/
√

⟨α,0α⟩ = ⟨x, α⟩/
√
Υ (α). Then, the

Hadamard differentiability of Ψ at φk follows easily from the chain rule and the fact that f is differentiable,Φ is Hadamard
differentiable at φk, since Υ (φk) = λk ≠ 0, and Ψ = f ◦ Φ . Moreover, the chain rule entails that Ψ ′

φk
= f ′

Φ(φk)
◦ Φ ′

φk
, which

together with the fact that f ′

Φ(φk)
(v) = f ′(Φ(φk))v andΦ(φk) = ⟨φk, x⟩/

√
λk, f (y) = DIF(y; σr, F0) imply that

Ψ ′

φk
(α) = f ′

Φ(φk)


Φ ′

φk
(α)


= f ′(Φ(φk))Φ
′

φk
(α)

= DIF


⟨φk, x⟩
√
λk

; σr, F0


Φ ′

φk
(α).

Using again Remark 2.2 and the fact that 0φk = λk, we get that

Φ ′

φk
(α) =

⟨x, α⟩
√
λk −

⟨α,0φk⟩√
λk

⟨x, φk⟩

λk
=

⟨x, α⟩ − ⟨φk, α⟩⟨x, φk⟩
√
λk

=


x − ⟨x, φk⟩φk

√
λk

, α


,

concluding the proof. �

Proof of Theorem 3.1. Since, we have assumed that the scale functional σr is calibrated so that c = 1, i.e., σr(F0) = 1, we
have that σ(α) = ⟨α,0α⟩.

We begin by proving the existence of the influence function. For that purpose, wewill prove the existence of the influence
function of the functional related to the first principal direction. With no loss of generality, we will assume that the scale
functional is calibrated so that σ 2

r (P[α]) = ⟨α,0α⟩.
Remind that Υ : [0, ϵ0] × H → R+ is given by Υ (ϵ, α) = σ 2

r (Px,ϵ[α]). Then, we have D2,(ϵ,φ1,ϵ )Υ : H → R defined
through (A.3), is such that (D2,(ϵ,φ1,ϵ )Υ )(h) = ⟨∇Λφ1,ϵ , φ1,ϵ⟩⟨φ1,ϵ, h⟩. Note that (D2,(ϵ,φ1,ϵ )Υ )(φ1,ϵ) = ⟨∇Λφ1,ϵ , φ1,ϵ⟩ ×

⟨φ1,ϵ, φ1,ϵ⟩ so that (D2,(ϵ,φ1,ϵ )Υ )(h) = (D2,(ϵ,φ1,ϵ )Υ )(φ1,ϵ)⟨φ1,ϵ, h⟩.
To avoid burden notation, let u(ϵ, α)(h) = (D2,(ϵ,α)Υ )(α)⟨α, h⟩. Define the map L : [0, ϵ0] × H → B(H,R) as

L(ϵ, α) = D2,(ϵ,α)Υ − (D2,(ϵ,α)Υ )(α)⟨α, ·⟩ = D2,(ϵ,α)Υ − u(ϵ, α). Note that L(ϵ, φ1,ϵ) = 0, in particular we have that
L(0, φ1) = 0. In order to apply the Implicit Function Theorem, we need to show that D2,(0,φ1)L : H → B(B(H,R),R) is an
isomorphism, since Υ is two times differentiable.

Note that D2,(0,φ1)L = D2
22,(0,φ1)

Υ − D2,(0,φ1)u and Υ (0, α) = ⟨α,0α⟩, which implies that D2,(0,α)Υ = 2⟨0α, ·⟩. Hence,
D2
22,(0,φ1)

Υ (α)

(β) = 2⟨0α, β⟩ and u(0, α) = (D2,(0,α)Υ )(α)⟨α, ·⟩ = 2⟨α,0α⟩⟨α, ·⟩. Therefore, u(0, α) =

2Υ (0, α)⟨α, ·⟩ = ⟨2Υ (0, α)α, ·⟩ = ⟨u(α), ·⟩, entailing that (D2,(0,α)u)(h) = 4⟨0α, h⟩α + 2⟨α,0α⟩h. Hence, we get that
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(D2,(0,φ1)u)(h) = 4λ1⟨φ1, h⟩φ1 + 2λ1h, so that,

D2,(0,φ1)L(h) = 20h − 4λ1⟨φ1, h⟩φ1 − 2λ1h

= 2


j≥1

λjφj ⊗ φj − 2λ1φ1 ⊗ φ1 − λ1IH


h.

Using that the identity operator IH equals to


j≥1 φj ⊗ φj, we obtain that

T =
1
2
D2,(0,φ1)L = −2λ1(φ1 ⊗ φ1)−


j≥2

(λ1 − λj)(φj ⊗ φj).

The fact that λ1 > 0 and λ1 − λj > 0 for j ≥ 2 entails that T is a monomorphism. It remains to see that T is an epi-
morphism, that is, we have to prove that for any y ∈ H there exists x ∈ H such that Tx = y. We begin by proving that

j≥2(λ1 − λj)
−2

⟨y, φj⟩
2 < ∞. Indeed, λ1 − λj ≥ λ1 − λ2 > 0 for j ≥ 2, then

j≥2

1
(λ1 − λj)2

⟨y, φj⟩
2

≤
1

(λ1 − λ2)2
∥y∥2 < ∞.

Define x = −{⟨y, φ1⟩/(2λ1)}φ1 −


j≥2(λ1 − λj)
−1

⟨y, φj⟩φj. It is easy to see that x ∈ H (that is, it has finite norm) and that
Tx = y. Therefore, T is an isomorphism and so we can apply the Implicit Function Theorem to the equation L(0, φ1) = 0 to
ensure that ∂φ1,ϵ/∂ϵ|ϵ=0 exists as desired.

We will now show that the influence function of the functional φr,k exists by using an induction argument. Assume that
φ1,ϵ, . . . , φk−1,ϵ are differentiable with respect to ϵ at ϵ = 0. We want to see that φk,ϵ is also differentiable with respect to
ϵ at ϵ = 0. Using the orthogonality of the directions φj,ϵ , we have

D2,(ϵ,φk,ϵ )Υ (h) =

D2,(ϵ,φk,ϵ )Υ


(φk,ϵ)⟨φk,ϵ, h⟩ +

k−1
j=1


D2,(ϵ,φk,ϵ )Υ


(φj,ϵ)⟨φj,ϵ, h⟩.

Let L : [0, ϵ0] × H → B(H,R) defined as L(ϵ, α) = D2,(ϵ,α)Υ − u0(ϵ, α)−
k−1

j=1 uj(ϵ, α), where

u0(ϵ, α) =

D2,(ϵ,α)Υ


(α)⟨α, ·⟩

uj(ϵ, α) =

D2,(ϵ,α)Υ


(φj,ϵ)⟨φj,ϵ, ·⟩, for 1 ≤ j ≤ k − 1.

Then, L(ϵ, φk,ϵ) = 0, in particular, L(0, φk) = 0 and L is differentiable. Again, to apply the Implicit Function Theorem, we
have to show that D2,(0,φk)L : H → B(B(H,R),R) is an isomorphism.

Recall that D2,(0,φk)L = D2
22,(0,φk)

Υ − D2,(0,φk)u0 −
k−1

j=1 D2,(0,φk)uj, where again, D2
22,(0,φk)

Υ (h) = 2 ⟨0h, ·⟩,

D2,(0,φk)u0(h) = 4λk⟨φk, h⟩⟨φk, ·⟩ + 2λk⟨h, ·⟩ and D2,(0,φk)u0 =


D2
22,(0,φk)

Υ


(φj)⟨φj, ·⟩ = 20φj⟨φj, ·⟩ = 2λjφj⟨φj, ·⟩. There-

fore, (D2,(0,φk)L)(h) = ⟨20h − (4λk⟨φk, h⟩φk + 2λkh) − 2
k−1

j=1 λjφj⟨φj, h⟩, ·⟩, that is, D2,(0,φk)L = 20 − 4λkφk ⊗ φk −

2λkIH − 2
k−1

j=1 λjφj ⊗ φj. Define

T =
1
2
D2,(0,φk)L =


s≥1

λsφs ⊗ φs − 2λkφk ⊗ φk − λkIH −

k−1
j=1

λjφj ⊗ φj.

Using again that IH =


s≥1 φs ⊗φs, we get that T = −


s>k(λk −λs)φs ⊗φs −2λk(φk ⊗φk)−λk
k−1

j=1 φs ⊗φs. Therefore,
arguing as above, we obtain that T is an isomorphism since λk − λs > λk − λk+1 > 0, which concludes the proof of the
existence of the influence function.

We will now derive (5). Recall that (D2,θϵΥ )α = Λ′

φk,ϵ
α =

k
j=1⟨∇Λφk,ϵ , φj,ϵ⟩⟨φj,ϵ, α⟩. Note that the fact that the map

Υ (ϵ, α) = σ 2
r (Px,ϵ[α]) is twice continuously Hadamard differentiable at (0, φk) implies that ∇Υϵ,φk,ϵ is differentiable with

respect to ϵ at ϵ = 0, where ∇Υϵ,φk,ϵ ∈ H is such that Υ ′

ϵ,φk,ϵ
(α) = ⟨∇Υϵ,φk,ϵ , α⟩ with Υ ′

ϵ,α = D2,(ϵ,α)Υ .
Define now the function f : [0, ϵ0] → H as f (ϵ) = ∇Λφk,ϵ = ∇Υϵ,φk,ϵ . The above arguments entail that f is dif-

ferentiable with respect to ϵ at ϵ = 0. For the sake of simplicity denote f ′(0) = f ′

0 ∈ H its derivative at 0. Using that
hj(ϵ) = φj,ϵ and gj(ϵ) = ⟨∇Λφk,ϵ , φj,ϵ⟩ = ⟨f (ϵ), hj(ϵ)⟩ are also differentiable with respect to ϵ at ϵ = 0 and (A.2), we get
that f ′(0) =

k
j=1 g

′

j (0)hj(0)+ gj(0)h′

j(0). Using Remarks 2.2 and 2.3, we have that

h′

j(0) = IF(x;φr,j, P)

g ′

j (0) = ⟨f ′(0), hj(0)⟩ + ⟨f (0), h′

j(0)⟩ = ⟨f ′(0), φj⟩ + ⟨f (0), IF(x;φr,j, P)⟩.
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Noting that gj(0) = 2⟨φk, φj⟩ and f (0) = ∇Υ0,φk = 2λkφk, since Υ (0, α) = σ 2
r (P[α]) = ⟨α,0α⟩, we get

f ′(0) =

k
j=1

g ′

j (0)hj(0)+ gj(0)h′

j(0)

=

k
j=1


⟨f ′(0), φj⟩ + 2λk⟨φk, IF(x;φr,j, P)⟩


φj + 2λk⟨φk, φj⟩IF(x;φr,j, P).

Since ⟨φk, φj⟩ = 0 for j ≠ k, we obtain that f ′(0) =
k

j=1


⟨f ′(0), φj⟩ + 2λk⟨φk, IF(x;φr,j, P)⟩


φj + 2λkIF(x;φr,k, P). Denote

byLk the linear space spanned byφ1 . . . φk and byπk the orthogonal projection overL⊥

k , that is,πk = IH
k

j=1 φj⊗φj. Then,

πkf ′(0) = 2λkIF(x;φr,k, P)+

k
j=1

2λk⟨φk, IF(x;φr,j, P)⟩φj. (A.8)

In order to compute f ′(0), let us consider ϵ1 < ϵ0 andUk a neighbourhood ofφk such thatΥ (ϵ, α) is continuously Hadamard
differentiable at (ϵ, α) ∈ [0, ϵ1] × Uk. Define Φ : [0, ϵ1] × Uk → H⋆ as Φ(ϵ, α) = D2,θΥ = Υ ′

ϵ,α with θ = (ϵ, α) and
g : [0, ϵ1] → H⋆ as g(ϵ) = Φ(ϵ, φk,ϵ). Note that g(ϵ) canbe identifiedwith∇Υϵ,φk,ϵ = f (ϵ). Therefore, usingRemark 2.3(d),
we get that g ′

0 = D1,(0,φk)Φ + (D2,(0,φk)Φ)IF(x;φr,k, P). Using again Remark 2.2, we get that D2,(0,φk)Φ = D2
22,(0,φk)

Υ so
that (D2,(0,φk)Φ(α))(β) = 2⟨Γ α, β⟩ since Υ (0, α) = σ 2

r (P[α]) = ⟨α,0α⟩. On the other hand, for any (ϵ, α) ∈ R × H ,
D1,(0,φk)Φ


(ϵ, α) = D2

12,(0,φk)
Υ (ϵ, α). Using that Υ is twice continuously differentiable at (0, φk) we obtain easily that

D2
12,(0,φk)

Υ (ϵ, α) = D2
21,(0,φk)

Υ (α, ϵ) = (D2,(0,φk)ξ)(ϵ, α)with

ξ(ϵ, α) = D1,(ϵ,α)Υ . (A.9)

The fact that ξ(0, α) = D1,(0,α)Υ = IF(⟨α, x⟩; σ 2
r , P) and Lemma A.2.1 entail that

D2
12,(0,φk)Υ (ϵ, α) = ϵ


2λk IF


⟨φk, x⟩
√
λk

; σ 2
r , F0


⟨φk, α⟩ + λkDIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


⟨α,

x − ⟨x, φk⟩φk
√
λk

⟩


,

which leads us to

(g ′

0(ϵ))(α) =

D1,(0,φk)Φ


(ϵ, α)+ ϵ⟨(D2,(0,φk)Φ)IF(x;φr,k, P), α⟩ = ϵ⟨∇k, α⟩ + ϵ⟨20 IF(x;φr,k, P), α⟩

= ϵ⟨∇k + 20 IF(x;φr,k, P), α⟩,

where

∇k = 2λk IF


⟨φk, x⟩
√
λk

; σ 2
r , F0


φk + λkDIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


x − ⟨x, φk⟩φk

√
λk


.

Since (g ′

0(ϵ))(α) = ϵ⟨f ′(0), α⟩, we obtain that f ′(0) = 20 IF(x;φr,k, P) + ∇k, which replacing in (A.8) implies that
πk

20 IF(x;φr,k, P)+ ∇k


= 2λkIF(x;φr,k, P) +

k
j=1 2λk⟨φk, IF(x;φr,j, P)⟩φj. Using that πkφk = 0, we obtain that

πk∇k =
√
λkDIF


⟨φk, x⟩/

√
λk; σ

2
r , F0


πkx. Thus,

πk0 IF(x;φr,k, P)− λkIF(x;φr,k, P) = −

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


πkx +

k
j=1

λk⟨φk, IF(x;φr,j, P)⟩φj,

so that

(πk0 − λkIH )IF(x;φr,k, P) = −

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


πkx +

k
j=1

λk⟨φk, IF(x;φr,j, P)⟩φj. (A.10)

Note that for any α ∈ H , πk0α = 0α −
k

j=1⟨0α, φj⟩φj = 0α −
k

j=1 λj⟨α, φj⟩φj =


∞

j=k+1 λj⟨α, φj⟩φj, hence

πk0 − λkIH =

∞
j=k+1

(λj − λk)φj ⊗ φj − λk

k
j=1

φj ⊗ φj.

Define τk : H → H as

τk =


j≥k+1

1
λj − λk

φj ⊗ φj −
1
λk

k
j=1

φj ⊗ φj = τk −
1
λk

k
j=1

φj ⊗ φj.
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We have to check that the map is well defined, i.e., that ∥τk(α)∥ < ∞ for any α ∈ H . Clearly since
k

j=1 φj ⊗ φj has a finite
range,weonly need to show that∥τk(α)∥ < ∞. First note that, since k ≤ q, λk > λk+1 so that,λk−λj ≥ λk−λk+1 = Mk > 0,
for j ≥ k + 1, thus, 1/(λk − λj) ≤ 1/Mk. Then, for any N > k + 1 we have that N

j=k+1

1
λk − λj

⟨φj, α⟩φj


2

=

N
j=k+1

1
(λk − λj)2

⟨φj, α⟩
2

≤
1
M2

k

N
j=k+1

⟨φj, α⟩
2

≤
1
M2

k
∥α∥

2.

Hence, τk(α) ∈ H . It remains to show that τk ◦ (πk0 − λkIH )(α) = α. Effectively,

τk ◦ (πk0 − λkIH )(α) = τk


∞

j=k+1

(λj − λk)⟨φj, α⟩φj − λk

k
j=1

⟨φj, α⟩φj



=

∞
j=k+1

(λj − λk)⟨φj, α⟩τkφj − λk

k
j=1

⟨φj, α⟩τkφj.

Noticing that τkφj = φj/(λj − λk) for j ≥ k + 1 and τkφj = −φj/λk when j ≤ k, we get that

τk ◦ (πk0 − λkIH )(α) =

∞
j=k+1

(λj − λk)⟨φj, α⟩
1

λj − λk
φj − λk

k
j=1

⟨φj, α⟩


−

1
λk


φj =


j≥1

⟨φj, α⟩ = α.

Hence, applying τk in both sides of (A.10), we get

IF(x;φr,k, P) = τk


−

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


πkx +

k
j=1

λk⟨φk, IF(x;φr,j, P)⟩φj


. (A.11)

Using that 1 = ∥φ1,ϵ∥
2

= ⟨φk,ϵ, φk,ϵ⟩ and the chain rule, we get that ⟨IF(x;φr,k, P), φk⟩ = 0. Therefore, using τkφj = −φj/λk
when j ≤ k and that τk ◦ πk = πk, (A.11) can be re-written as

IF(x;φr,k, P) = τk


−

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


πkx +

k−1
j=1

λk⟨φk, IF(x;φr,j, P)⟩φj



= −

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0

τkx −

k−1
j=1

⟨φk, IF(x;φr,j, P)⟩φj

=

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0

 ∞
j=k+1

⟨φj, x⟩
λk − λj

φj −

k−1
j=1

⟨φk, IF(x;φr,j, P)⟩φj. (A.12)

Therefore, using that IF(x;φr,k, P) =


j≥1⟨IF(x;φr,k, P), φj⟩φj, ⟨IF(x;φr,k, P), φk⟩ = 0 and that (A.12) entails that for
j ≥ k + 1

⟨IF(x;φr,k, P), φj⟩ =

√
λk

2
DIF


⟨φk, x⟩
√
λk

; σ 2
r , F0


⟨φj, x⟩
λk − λj

, (A.13)

while for j < k we get

⟨IF(x;φr,k, P), φj⟩ = −⟨φk, IF(x;φr,j, P)⟩ = −


λj

2
DIF


⟨φj, x⟩
λj

; σ 2
r , F0


⟨φk, x⟩
λj − λk

=


λj

2
DIF


⟨φj, x⟩
λj

; σ 2
r , F0


⟨φk, x⟩
λk − λj

,

where we have used (A.13). The proof of (5) is now concluded from the fact that DIF(a; σ 2
r , F0) = 2 DIF(a; σr, F0).

It remains to show (6). Denote λk,ϵ = λr,k(Px,ϵ). Then, h(ϵ) = λk,ϵ = Υ (ϵ, φk,ϵ), so that the chain rule entails that
h′(0) = IF(x; λr,k, P) = D1,(0,φk)Υ + (D2,(0,φk)Υ )IF(x;φr,k, P). Recall that Λ′

φk,ϵ
= D2,(ϵ,φk,ϵ )Υ and Λ′

φk,ϵ
(α) = ⟨∇Λφk,ϵ , α⟩

where f (ϵ) = ∇Λφk,ϵ is such that f (0) = ∇Λφk = 2λkφk. Thus, the fact that ⟨IF(x;φr,k, P), φk⟩ = 0 implies that
(D2,(0,φk)Υ )IF(x;φr,k, P) = 2λk⟨IF(x;φr,k, P), φk⟩ = 0.

On the other hand, (A.9) entails that D1,(0,φk)Υ = ξ(0, φk). We have already shown that ξ(0, α) = IF(⟨α, x⟩; σ 2
r , P)

hence, IF(x; λr,k, P) = IF(⟨x, φk⟩; σ
2
r , P). The proof is now concluded using Lemma A.2.1 and the fact that IF(a; σ 2

r , F0) =

2 IF(a; σr, F0). �
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A.3. Proof of Theorem 3.2

In the proofs of this section, wewill use the fact that if ∥α∥ρ → 0, then ∥α∥ → 0 and that ifK is compact in the topology
induced by the norm ∥ ·∥ρ , it is compact in the topology induced by ∥ ·∥. These facts entail that if an applicationΛ : H → R
is Hadamard differentiable with respect to ∥ · ∥, it is Hadamard differentiable with respect to ∥ · ∥ρ .

First, wewill re-phrase Lemma A.2.1 to Lemma A.3.1 which does not require the Fisher consistency of φr,s,k and that uses
another type of differentiability. Lemma A.3.1 will be helpful to derive Theorem 3.2.

Lemma A.3.1. Let P be an elliptical probability measure P = E(µ,0), whereµ = 0 and 0 is a self-adjoint, positive semidefinite
and compact operator with eigenvalues λ1 ≥ λ2 ≥ · · · and let φj be the eigenfunction associated to λj. Denoteλj = σr(φr,s,j).
Assume thatλ1 >λ2 > · · · >λq >λq+1.

Let F0 be the univariate measure defined in Lemma 2.1 and assume that σr(F0) = 1, so thatλj = ⟨φr,s,j,0φr,s,j⟩. Moreover,
assume that the map S : [0, 1] × R → R defined by S(ϵ, y) = σr((1 − ϵ)F0 + ϵδy) is twice continuously differentiable at any
(0, y). In particular, IF(y; σr, F0) is differentiable with respect to y and its derivative will be denoted by DIF(y; σr, F0).

Then, for any k ≤ q, there exists a neighbourhood Uk of φr,k such that for any α ∈ Uk,

IF(⟨α, x⟩; σ 2
r , P[α]) = ⟨α,0α⟩IF


⟨α, x⟩

√
⟨α,0α⟩

; σ 2
r , F0


. (A.14)

Moreover, if Λ : H → R stands for the map Λ(α) = IF(⟨α, x⟩; σ 2
r , P[α]), then Λ is Hadamard differentiable with respect to

the norm ∥ · ∥ρ at φr,s,k and

∇k = ∇Λφr,s,k = 2 IF


⟨φr,s,k, x⟩λk ; σ 2

r , F0


0φr,s,k +λkDIF ⟨φr,s,k, x⟩λk ; σ 2

r , F0


x − ⟨x, φr,s,k⟩0φr,s,k/λkλk


. (A.15)

Proof. Using thatλk > 0, we get there exists a neighbourhood Uk of φk such that for any α ∈ Uk, α ∉ ker(0), hence
Lemma 2.1 entails that Zα = ⟨α, X⟩/

√
⟨α,0α⟩ ∼ F0. Let us recall that

IF(⟨α, x⟩; σ 2
r , P[α]) = lim

ϵ→0

σ 2
r ((1 − ϵ)P[α] + ϵδ⟨x,α⟩)− σ 2

r (P[α])

ϵ
. (A.16)

Using that σr is a scale functional and the fact that ⟨α, X⟩ ∼ P[α], we get that σr(P[α]) =
√

⟨α,0α⟩. As in the proof of
Lemma A.2.1, we have that σr((1 − ϵ)P[α] + ϵδ⟨x,α⟩) =

√
⟨α,0α⟩ σr((1 − ϵ)F0 + ϵδzα ), which using (A.16) entails (A.14).

It remains to show (A.15). Define the maps Υ : Uk → R and Ψ : Uk → R as Υ (α) = ⟨α,0α⟩ and Ψ (α) =

IF

⟨α, x⟩/

√
⟨α,0α⟩; σ 2

r , F0

. Then, Λ(α) = IF(⟨α, x⟩; σ 2

r , P[α]) = Υ (α)Ψ (α). Note that Υ is Hadamard differentiable
with respect to the ∥ · ∥ρ norm with ∇Υα = 20α. Hence, if we show that Ψ is Hadamard differentiable at φr,s,k, we will get
thatΛ is also Hadamard differentiable φr,s,k and

∇Λφr,s,k = Υ (φr,s,k)∇Ψφr,s,k + Ψ (φr,s,k)∇Υφr,s,k . (A.17)

Note thatΥ (φr,s,k) = ⟨φr,s,k,0φr,s,k⟩ =λk,∇Υφr,s,k = 20φr,s,k andΨ (φr,s,k) = IF

⟨φr,s,k, x⟩/

λk; σ 2
r , F0


, which together

with (A.17) entail that ∇Λφr,s,k =λk∇Ψφr,s,k + 2 IF

⟨φr,s,k, x⟩/

λk; σ 2
r , F0


0φr,s,k. Thus, to conclude the proof, it remains

to show that Ψ is Hadamard differentiable at φr,s,k with respect to ∥ · ∥ and

∇Ψφr,s,k = DIF


⟨φr,s,k, x⟩λk ; σ 2

r , F0

x − ⟨x, φr,s,k⟩
0φr,s,kλkλk

 .
Define now f : R → R as f (y) = IF(y; σr, F0) and Φ : Uk → R as Φ(α) = ⟨x, α⟩/

√
⟨α,0α⟩ = ⟨x, α⟩/

√
Υ (α). Then, the

Hadamard differentiability ofΨ atφr,s,k follows easily from the chain rule and the fact that f is differentiable,Φ is Hadamard
differentiable at φr,s,k with respect to ∥ · ∥ρ , since Υ (φr,s,k) =λk ≠ 0, and Ψ = f ◦Φ . Moreover, the chain rule entails that
Ψ ′

φr,s,k
= f ′

Φ(φr,s,k)
◦ Φ ′

φr,s,k
, which together with the fact that f ′

Φ(φr,s,k)
(v) = f ′(Φ(φr,s,k))v and Φ(φr,s,k) = ⟨φr,s,k, x⟩/

λk,
f ′(y) = DIF(y; σr, F0) imply that

Ψ ′

φr,s,k
(α) = f ′

Φ(φr,s,k)


Φ ′

φr,s,k
(α)


= f ′(Φ(φr,s,k))Φ
′

φr,s,k
(α) = DIF


⟨φr,s,k, x⟩λk ; σr, F0


Φ ′

φr,s,k
(α).
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Using again Remark 2.2, we get that

Φ ′

φr,s,k
(α) =

⟨x, α⟩

λk −
⟨α,0φr,s,k⟩√λk ⟨x, φr,s,k⟩λk =


α, x − ⟨x, φr,k⟩

0φr,s,kλk


λk
concluding the proof. �

As in Appendix A.2, for any ϵ < ϵ0, x ∈ H , denote as φj,ϵ = φr,s,j(Px,ϵ) and λj,ϵ = λr,s,j(Px,ϵ). Recall that ∥φj,ϵ∥ = 1 and
that ⟨φj,ϵ, φℓ,ϵ⟩ = 0 for ℓ ≠ j. Moreover, since x is fixed and to avoid burden notation, let Υ (ϵ, α) = Υ (ϵ, α)− ρL(α).

Let k ≤ q and define the restrictions 9 : H → Rk as 9(α) = (Ψ0(α), . . . ,Ψk−1(α)) with Ψ0(α) = ∥α∥
2

− 1
and 9j(α) = ⟨α, φj,ϵ⟩, for 1 ≤ j ≤ k − 1, where we understand that when k = 1, 9(α) = Ψ0(α). As Appendix A.2,
it is easy to show that 9 is C1-Fréchet differentiable with respect to the ∥ · ∥ρ norm. Moreover, 9′

φk,ϵ
is onto Rk since

9′

φk,ϵ
= (Ψ ′

0,φk,ϵ
, . . .Ψ ′

k−1,φk,ϵ
)with Ψ ′

0,φk,ϵ
(α) = ⟨2φk,ϵ, α⟩, Ψ ′

j,φk,ϵ
= ⟨φj,ϵ, α⟩, for 1 ≤ j ≤ k − 1. We have that for any fixed

ϵ, φk,ϵ maximizes Υ (ϵ, α) = σ 2
r (Px,ϵ[α]) − ρL(α) over {α,9(α) = 0}, that is, Υx,ϵ = Υ (ϵ, ·) has a local maximum at φk,ϵ

subject to the condition 9(α) = 0. Besides, Υx,ϵ : H → R is a Hadamard differentiable function with respect to ∥ · ∥ρ , since
both Υ and L are Hadamard differentiable with respect to ∥ · ∥ρ .

DefineΛ : H → R asΛ(α) = Υ (ϵ, α), where we temporarily omit the dependence on ϵ andΛ(α) = Λ(α)−ρL(α). By
the Lagrange multipliers theorem for Hadamard differentiable functions, we get that there will exist γ0, . . . , γk−1 ∈ R (de-
pending on ϵ) such thatΛ′

φk,ϵ
= Λ′

φk,ϵ
−ρL′

φk,ϵ
=
k−1

j=0 γjΨ
′

j,φk,ϵ
. It is worth noting thatΛ′

φk,ϵ
= D2,θϵΥ with θϵ = (ϵ, φk,ϵ) ∈

[0, ϵ0] × H . Recall thatΛ′

φk,ϵ
: H → R is a linear and continuous operator, that is, an element of H⋆. Hence, there exists a

gradient, i.e., an element ∇Λφk,ϵ such thatΛ′

φk,ϵ
(α) = ⟨∇Λφk,ϵ , α⟩.

Define f : [0, ϵ0] → H as f (ϵ) = ∇Λφk,ϵ . The derivative of this element at 0 can be computed as in the proof of
Theorem 3.1 obtaining f ′

0 = ∇f0 = 2 0IF(x;φr,s,k, P)+ ∇k, with φk,0 = φr,s,k and

∇k = 2 IF


⟨φk,0, x⟩λk ; σ 2

r , F0


0φk,0 +λkDIF ⟨φk,0, x⟩λk ; σ 2

r , F0

x − ⟨x, φk,0⟩
0φk,0λkλk

 .
Thus, f ′

0(t) = t(20IF(x;φr,s,k, P)+ ∇k).
Define Φ : [0, ϵ0] → H⋆ as Φ(ϵ) = Λ′

φk,ϵ
, that is, we are considering the derivative instead of the gradient. Using the

previous computations for f , we get thatΦ ′

0 : R → H⋆ equals

Φ ′

0(t)

(α) = t⟨20IF(x;φr,s,k, P)+ ∇k, α⟩.

DefineΞ : [0, ϵ0] → H⋆ asΞ(t) = ρL′

φk,ϵ
. Recall that L′

φk,ϵ
(α) = 2⌈φk,ϵ, α⌉. A further derivation of this with respect to ϵ

will yield, using the chain rule, thatΞ ′

0(t)(α) = 2ρt⌈IF(x;φr,s,k, P), α⌉. If we defineΦ = Φ−ρ Ξ , we get thatΦ(ϵ) = Λ′

φk,ϵ
,

so thatΦ ′

0(t)(α) = Φ ′

0(t)(α)− Ξ ′

0(t)(α) = t⟨20IF(x;φr,s,k, P)+ ∇k, α⟩ − 2ρt⌈IF(x;φr,s,k, P), α⌉

= t

⟨2 0IF(x;φr,s,k, P)+ ∇k, α⟩ − 2ρ⌈IF(x;φr,s,k, P), α⌉


.

In particular, we have thatΦ ′

0(1)(α) = ⟨2 0 IF(x;φr,s,k, P)+ ∇k, α⟩ − 2ρ⌈IF(x;φr,s,k, P), α⌉. (A.18)

Let us denote by ξj = Φ ′

0(1)(φj,0) ∈ R, using (A.18), we get that for any j ≥ 1

ξj = Φ ′

0(1)(φj,0) = ⟨2 0 IF(x;φr,s,k, P)+ ∇k, φj,0⟩ − 2ρ⌈IF(x;φr,s,k, P), φj,0⌉. (A.19)

As in the previous section, will proceed now with an alternative way of computing Φ ′

0(1)(α). Define H : R → H⋆ as
H(ϵ) = Λ′

φk,ϵ
− ρL′

φk,ϵ
−
k−1

j=0 γjΨ
′

j,φk,ϵ
. We have that H(ϵ) = 0 for all ϵ < ϵ0. Using that Ψ ′

0,φk,ϵ
(α) = ⟨2φk,ϵ, α⟩ and

Ψ ′

j,φk,ϵ
= ⟨φj,ϵ, α⟩, for 1 ≤ j ≤ k − 1, we get that H(ϵ)(α) = Λ′

φk,ϵ
(α) − 2γ0⟨α, φk,ϵ⟩ +

k−1
j=1 γj⟨α, φj,ϵ⟩. This entails that,Λ′

φk,ϵ
(φk,ϵ) = 2γ0, while Λ′

φk,ϵ
(φj,ϵ) = γj for 1 ≤ j ≤ k − 1. This provides us the following alternative way of writing Λ′

φk,ϵ

as Λ′

φk,ϵ
(α) =

k
j=1
Λ′

φk,ϵ
(φj,ϵ)⟨α, φj,ϵ⟩. As in Appendix A.2, we want to link this expression to that for Φ ′

0 given in (A.18).

Therefore, we need to differentiate Λ′

φk,ϵ
with respect to ϵ at ϵ = 0. Write Λ′

φk,ϵ
(α) =

k
j=1 H1(ϵ, hj(ϵ))H2(α, hj(ϵ)), with

hj(ϵ) = φj,ϵ ,H1(ϵ, α) = Λ′

φk,ϵ
(α) andH2(α, β) = ⟨α, β⟩. Recall thatΦ(ϵ) = Λ′

φk,ϵ
.When differentiatingwith respect to ϵ =

0, note that (∇hj)0 = IF(x;φj,0, P), Φ ′

0(t) = tΦ ′

0(1), H2(α, hj(0)) = ⟨α, φj,0⟩, H1(0, hj(0)) = Λ′

φk,0
(φj,0) =

Φ(0) (φj,0), so
that we get easily that

Φ ′

0(1)(α) =

k
j=1

Φ ′

0(1)(φj,0)+
Φ(0) (IF(x;φr,s,k, P))


φj,0 + Φ(0)(φj,0)IF(x;φr,s,j, P), α


. (A.20)
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Using that Υ (0, α) = σ 2
r (P[α]) = ⟨α,0α⟩, we obtain thatΛ′

φk,0
(α) = D2,(0,φk,0)Υ (α) = 2⟨α,0φk,0⟩, soΦ(0)(α) = Λ′

φk,0
(α) = Λ′

φk,0
(α)− 2ρ⌈φk,0, α⌉ = 2⟨0φk,0, α⟩ − 2ρ⌈φk,0, α⌉,

which entails that Φ(0)(φj,0) = 2⟨0φk,0, φj,0⟩ − 2ρ⌈φk,0, φj,0⌉, for j ≤ k and Φ(0)(IF(x;φr,s,j, P)) =

2⟨0φk,0, IF(x;φr,s,j, P)⟩ − 2ρ⌈φk,0, IF(x;φr,s,j, P)⌉. Replacing in (A.20) and recalling that ξj = Φ ′

0(1)(φj,0) ∈ R, we get

Φ ′

0(1)(α) =

k
ℓ=1

⟨α, ξℓφℓ,0 + 2⟨0φk,0, IF(x;φr,s,ℓ, P)⟩φℓ,0 − 2ρ⌈φk,0, IF(x;φr,s,ℓ, P)⌉φℓ,0

+ 2⟨0φk,0, φℓ,0⟩IF(x;φr,s,ℓ, P)− 2ρ⌈φk,0, φℓ,0⌉IF(x;φr,s,ℓ, P)⟩. (A.21)

Using (A.21), the fact that ⟨φj,0, φℓ,0⟩ = 0, for ℓ ≠ j and the fact that ∥φj,ϵ∥
2

= 1 and ⟨φj,ϵ, φℓ,ϵ⟩ = 0, for ℓ ≠ j entail that
⟨IF(x;φr,s,j, P), φj,0⟩ = 0 and ⟨IF(x;φr,s,j, P), φℓ,0⟩ = −⟨IF(x;φr,s,ℓ, P), φj,0⟩, we get that for j ≥ 1,

ξj =

k
ℓ=1

⟨φj,0, ξℓφℓ,0 + 2⟨0φk,0, IF(x;φr,s,ℓ, P)⟩φℓ,0 − 2ρ⌈φk,0, IF(x;φr,s,ℓ, P)⌉φℓ,0

+ 2⟨0φk,0, φℓ,0⟩IF(x;φr,s,ℓ, P)− 2ρ⌈φk,0, φℓ,0⌉IF(x;φr,s,ℓ, P)⟩

so that for j > k, we get

ξj =

k
ℓ=1


2⟨0φk,0, φℓ,0⟩ − 2ρ⌈φk,0, φℓ,0⌉


⟨φj,0, IF(x;φr,s,ℓ, P)⟩

which together with (A.19), implies that for j > k,

2ρ⌈IF(x;φr,s,k, P), φj,0⌉ = ⟨2 0 IF(x;φr,s,k, P)+ ∇k, φj,0⟩

−

k
ℓ=1


2⟨0φk,0, φℓ,0⟩ − 2ρ⌈φk,0, φℓ,0⌉


⟨φj,0, IF(x;φr,s,ℓ, P)⟩.

On the other hand, for 1 ≤ j ≤ k

ξj = ξj + 2⟨0φk,0, IF(x;φr,s,j, P)⟩ − 2ρ⌈φk,0, IF(x;φr,s,j, P)⌉

+

k
ℓ=1,j≠ℓ


2⟨0φk,0, φℓ,0⟩ − 2ρ⌈φk,0, φℓ,0⌉


⟨φj,0, IF(x;φr,s,ℓ, P)⟩

which together with ⟨IF(x;φr,s,j, P), φℓ,0⟩ = −⟨IF(x;φr,s,ℓ, P), φj,0⟩ implies that for any j ≤ k

υk,j = 2ρ⌈φk,0, IF(x;φr,s,j, P)⌉ = 2⟨0φk,0, IF(x;φr,s,j, P)⟩

−

k
ℓ=1,j≠ℓ


2⟨0φk,0, φℓ,0⟩ − 2ρ⌈φk,0, φℓ,0⌉


⟨φℓ,0, IF(x;φr,s,j, P)⟩.

Using (A.21) we obtain the equalities

Φ ′

0(1)(α) =

k
ℓ=1

Φ ′

0(1)(φℓ,0)⟨α, φℓ,0⟩ + 2⟨0φk,0, IF(x;φr,s,ℓ, P)⟩⟨α, φℓ,0⟩ − 2ρ⌈φk,0, IF(x;φr,s,ℓ, P)⌉⟨α, φℓ,0⟩

+ 2⟨0φk,0, φℓ,0⟩⟨α, IF(x;φr,s,ℓ, P)⟩ − 2ρ⌈φk,0, φℓ,0⌉⟨α, IF(x;φr,s,ℓ, P)⟩

=


α,

k
ℓ=1

Φ ′

0(1)(φℓ,0)φℓ,0


+ 2

k
ℓ=1

⟨0φk,0, IF(x;φr,s,ℓ, P)⟩⟨α, φℓ,0⟩

− 2ρ
k
ℓ=1

⌈φk,0, IF(x;φr,s,ℓ, P)⌉⟨α, φℓ,0⟩

+

k
ℓ=1

2⟨0φk,0, φℓ,0⟩⟨α, IF(x;φr,s,ℓ, P)⟩ − 2
k
ℓ=1

ρ⌈φk,0, φℓ,0⌉⟨α, IF(x;φr,s,ℓ, P)⟩.

From this last equality and Eq. (A.18), we obtain that

⟨2 0 IF(x;φr,s,k, P)+ ∇k, α⟩ − 2ρ⌈IF(x;φr,s,k, P), α⌉

=


α,

k
ℓ=1

Φ ′

0(1)(φℓ,0)φℓ,0


+ 2

k
ℓ=1

⟨0φk,0, IF(x;φr,s,ℓ, P)⟩⟨α, φℓ,0⟩
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−

k
ℓ=1

2ρ⌈φk,0, IF(x;φr,s,ℓ, P)⌉⟨α, φℓ,0⟩ +

k
ℓ=1

2⟨0φk,0, φℓ,0⟩⟨α, IF(x;φr,s,ℓ, P)⟩

− 2
k
ℓ=1

ρ⌈φk,0, φℓ,0⌉⟨α, IF(x;φr,s,ℓ, P)⟩. (A.22)

Define Ak = 20 IF(x;φr,s,k, P)+ ∇k and IFk = IF(x, φr,s,k, P). Then, we can rewrite (A.19) as ξℓ = ⟨Ak, φℓ⟩ − 2ρ⌈IFk, φℓ⌉ =Φ ′

0(1)(φℓ,0) and also (A.22) as

⟨Ak, α⟩ − 2ρ⌈IFk, α⌉ =

k
ℓ=1

ξℓ⟨φℓ,0, α⟩ + 2
k
ℓ=1

⟨0φk,0, IFℓ⟩⟨α, φℓ,0⟩ − 2
k
ℓ=1

ρ⌈φk,0, IFℓ⌉⟨α, φℓ,0⟩

+

k
ℓ=1

2⟨0φk,0, φℓ,0⟩⟨α, IFℓ⟩ − 2
k
ℓ=1

ρ⌈φk,0, φℓ,0⌉⟨α, IFℓ⟩,

which leads to

⟨Ak, α⟩ − 2ρ⌈IFk, α⌉ −

k
ℓ=1

ξℓ⟨φℓ,0, α⟩ = 2λk⟨IFk, α⟩ + 2

l<k

⟨0φk,0, φℓ,0⟩⟨IFℓ, α⟩ + 2
k
ℓ=1

⟨0φk,0, IFℓ⟩⟨φℓ,0, α⟩

− 2ρ
k
ℓ=1

⌈IFℓ, φk,0⌉⟨φℓ,0, α⟩ − 2ρ
k
ℓ=1

⌈φk,0, φℓ,0⌉⟨IFℓ, α⟩. (A.23)

On the other hand, we have that
k
ℓ=1

ξℓ⟨φℓ,0, α⟩ =

k
ℓ=1

⟨Ak, φℓ,0⟩⟨φℓ,0, α⟩ − 2ρ
k
ℓ=1

⌈φk,0, φℓ,0⌉⟨IFℓ, α⟩

=

k
ℓ=1

⟨(φℓ,0 ⊗ φℓ,0)Ak, α⟩ − 2ρ
k
ℓ=1

⌈φk,0, φℓ,0⌉⟨IFℓ, α⟩. (A.24)

Define πk : H → H as the projection operator over the linear space orthogonal to that spanned by {φ1,0, . . . , φk,0}, that is,
π = IH −

k
i=1(φi,0 ⊗ φi,0). Using (A.24) and (A.23) we get that

⟨πkAk, α⟩ − 2ρ⌈IFk, α⌉ + 2ρ
k
ℓ=1

⌈IFk, φℓ,0⌉⟨φℓ,0, α⟩ = 2λk⟨IFk, α⟩ + 2

ℓ<k

⟨0φk,0, φℓ,0⟩⟨IFℓ, α⟩

+ 2
k
ℓ=1

⟨0φk,0, IFℓ⟩⟨φℓ,0, α⟩ − 2ρ
k
ℓ=1

⌈IFℓ, φk,0⌉⟨φℓ,0, α⟩ − 4ρ
k
ℓ=1

⌈φk,0, φℓ,0⌉⟨IFℓ, α⟩,

concluding the proof. �

A.4. Proof of (10)

Since that X ∼ E(0,0), without loss of generality, we can assume that σ(α) = ⟨α,0α⟩. Then, φ1,r,s = argmax∥α∥=1

⟨α,0α⟩ − ρ
 1
0 (α

′′(t))2dt . Denoting αi = ⟨α, φi⟩ we get that ⟨α,0α⟩ =


i≥1 αiλi, and ρ
 1
0 (α

′′(t))2dt =

ρ


i≥1 αi
 1
0 (φ

′′

i (t))
2dt = ρ


i≥1 αia4i π

4. Thus, we have that

φ1,r,s = argmax
∥α∥=1


i≥1

αiλi − ρ

i≥1

αia4i π
4.

Since λi are decreasing and ai are non-decreasing, it is easy to see that regardless of the value of ρ, the quantity


i≥1 αiλi −

ρ


i≥1 αia4i π
4 is maximized when α1 = 1 and αi = 0 for i ≥ 2. Therefore, we obtain that φ1,r,s = φ1. Similarly, we can

obtain that φk,r,s = φk, so thatλk = λk.
Using the closability of ⌈·, ·⌉, we can rewrite (9) as

⟨πkAk, α⟩ − 2ρ⟨D2IFk, α⟩ + 2ρ
k
ℓ=1

⟨D2IFk, φℓ⟩⟨φℓ, α⟩ = 2λk⟨IFk, α⟩ + 2

ℓ<k

⟨0φk, φℓ⟩⟨IFℓ, α⟩

+ 2
k
ℓ=1

⟨0φk, IFℓ⟩⟨φℓ, α⟩ − 2ρ
k
ℓ=1

⟨D2IFℓ, φk⟩⟨φℓ, α⟩ − 4ρ
k
ℓ=1

⟨Dφk,Dφℓ⟩⟨IFℓ, α⟩.
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Since this equality holds for all α, we obtain

πkAk − 2ρD2IFk + 2ρ
k
ℓ=1

⟨D2IFk, φℓ⟩φℓ = 2λkIFk + 2

ℓ<k

⟨0φk, φℓ⟩IFℓ + 2
k
ℓ=1

⟨0φk, IFℓ⟩φℓ

− 2ρ
k
ℓ=1

⟨D2IFℓ, φk⟩φℓ − 4ρ
k
ℓ=1

⟨Dφk,Dφℓ⟩IFℓ.

After some reordering, we have that

(πk0 − λkIH )IFk = −
1
2
πk∇k + ρD2IFk − ρ

k
ℓ=1

⟨D2IFk, φℓ⟩φℓ +


ℓ<k

⟨0φk, φℓ⟩IFℓ

− ρ

k
ℓ=1

⟨D2IFℓ, φk⟩φℓ − 2ρ
k
ℓ=1

⟨Dφk,Dφℓ⟩IFℓ

where πk is the projection onto the linear space orthogonal to that spanned by {φ1, . . . , φk}.
Let us compute IF1. We have

(π10 − λ1IH )IF1 = −
1
2
π1∇1 + ρD2IF1 − 2ρ⟨D2IF1, φ1⟩φ1 − 2ρ⟨Dφ1,Dφ1⟩IF1. (A.25)

Using that φi(t) = cos(aiπ t) or sin(aiπ t), where a1 = 0 if φ1 = 1, we get Dφ1 = −a21π
2φ1 and D2φ1 = a41π

4φ1. Thus, we
can rewrite (A.25) as (π10 − λ1IH )IF1 − ρD2IF1 + 2ρa41π

4(φ1 ⊗ φ1)IF1 + 2ρa41π
4IF1 = −π1∇1/2, so that

{π10 + 2ρa41π
4φ1 ⊗ φ1 − (λ1 − 2ρa41π

4)IH }IF1 = −
1
2
π1∇1 + ρD2IF1. (A.26)

Let T = π10+2ρa41π
4φ1⊗φ1−(λ1−2ρa41π

4)IH . Wewill strive to found a left-inverse of T . Note thatπ10 =


i≥2 λiφi⊗φi.
Therefore, T = (−λ1 + 2ρa41π

4)(φ1 ⊗ φ1)+


i≥2(λi − λ1 + 2ρa41π
4)φi ⊗ φi, so that

T−1
=

1
4ρa41π4 − λ1

(φ1 ⊗ φ1)+


i≥2

1
λi − λ1 + 2ρa41π4

φi ⊗ φi =


i≥1

viφi ⊗ φi.

Let us show that T−1 is well defined, that is, that T−1x ∈ H . We only have to see that ∥T−1x∥2 < ∞ which is equivalent to
show that

i≥2


1

λi − λ1 + 2ρa41π4

2

⟨φi, x⟩2 < ∞.

Notice that |λi − λ1 + 2ρa41π
4
| = |λ1 − λi − 2ρa41π

4
|, λ1 − λi − 2ρa41π

4 > λ1 − λ2 − 2ρa41π
4

≠ 0 for all i and also that
λ1 − 2ρa41π

4
= M ≠ 0.

Therefore, there exists i0 such that for i ≥ i0 we have that |λ1 − λi − 2ρa41π
4
| ≤ |M|/2. Thus,

i≥i0


1

λi − λ1 + 2ρa41π4

2

⟨φi, x⟩2 ≤
4
M2


i≥i0

⟨φi, x⟩2 ≤
4
M2

∥x∥2 < ∞

which entails that T−1 is well-defined.
Applying this inverse T−1 to (A.26) we obtain that

IF1 = T−1


−
1
2
π1∇1 + ρD2IF1


= −

1
2


i≥2

vi(φi ⊗ φi)π1∇1 + ρ

i≥1

vi⟨IF1, a4i π
4φi⟩φi,

where we have used that ⟨D2IF1, φi⟩ = ⟨IF1,D2φi⟩ = ⟨IF1, a4i π
4φi⟩.

For i ≥ 2, we have that φi ⊗ φiπ1 = φi ⊗ φi, hence, we get

IF1 = −
1
2


i≥2

vi⟨φi,∇1⟩φi + ρ

i≥1

vi⟨IF1, a4i π
4φi⟩φi. (A.27)

Writing, IF1 =


ℓ≥1⟨φℓ, IF1⟩φℓ =


ℓ≥1 νℓφℓ. From (A.27) we get that if ℓ = 1, ν1 = ⟨φ1, IF1⟩ = ρv1a41π
4ν1. Since all v1

and ρ are not zero, we conclude that ν1 = 0.
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Let us compute νℓ for ℓ > 1. We have that νℓ = ⟨φℓ, IF1⟩ = −vℓ⟨φℓ,∇1⟩/2 + ρvℓa4ℓπ
4νℓ, which entails that νℓ =

−vℓ⟨φℓ,∇1⟩/{2(1 − ρvℓa4ℓπ
4)}, so that

IF1 = −
1
2


ℓ≥2

vℓ⟨φℓ,∇1⟩

(1 − ρvℓa4ℓπ4)
φℓ. (A.28)

Using that aℓ → ∞, we obtain that vℓ → 0. Let us check that IF1 is well defined, that is, that ∥IF1∥2 < ∞. Since,

∥IF1∥2
=

1
4


ℓ≥2

v2ℓ ⟨φℓ,∇1⟩
2

(1 − ρvℓa4ℓπ4)2
=

1
4


ℓ≥2


1

λℓ−λ1+2ρa41π
4

2

1 −

ρa4
ℓ
π4

λℓ−λ1+2ρa41π
4

2 ⟨φℓ,∇1⟩
2

=
1
4


ℓ≥2


1

λℓ − λ1 + 2ρa41π4 − ρa4ℓπ4

2

⟨φℓ,∇1⟩
2

≤
M
4


ℓ≥2

⟨φℓ,∇1⟩
2

≤
M
4

∥∇1∥
2 < ∞,

where we have used again that since λℓ → 0 and aℓ → ∞, the terms |λℓ − λ1 + 2ρa41π
4
− ρa4ℓπ

4
| > λ1 − λ2 + 2ρa42π

4
−

ρa41π
4

= M−1. Thus, IF1 is well defined.
Recall that

∇1 = 2 IF


⟨φ1, x⟩
√
λ1

; σ 2
r , F0


λ1φ1 +


λ1DIF


⟨φ1, x⟩
√
λ1

; σ 2
r , F0


(x − ⟨x, φ1⟩φ1) .

Thus, (A.28) entails that

IF1 = −
1
2


ℓ≥2

vℓ


φℓ,

√
λ1DIF


⟨φ1,x⟩√
λ1

; σ 2
r , F0


x


(1 − ρvℓa4ℓπ4)
φℓ = −

1
2


ℓ≥2


λ1DIF


⟨φ1, x⟩
√
λ1

; σ 2
r , F0


vℓ⟨φℓ, x⟩

(1 − ρvℓa4ℓπ4)
φℓ.

Therefore,

IF1 = −
1
2


λ1DIF


⟨φ1, x⟩
√
λ1

; σ 2
r , F0


ℓ≥2

vℓ⟨φℓ, x⟩
(1 − ρvℓa4ℓπ4)

φℓ.

Using the definition of vℓ, and the fact that 2DIF(x, σr, F0) = 2DIF(x, σ 2
r , F0), we get that

IF1 = −


λ1DIF


⟨φ1, x⟩
√
λ1

; σr, F0


ℓ≥2

1
λℓ − λ1 + 2ρa41π4

⟨φℓ, x⟩
(1 − ρa4ℓπ4/(λℓ − 2λ1 + ρa41π4))

φℓ,

which implies that

IF1 = −


λ1DIF


⟨φ1, x⟩
√
λ1

; σr, F0


ℓ≥2

⟨φℓ, x⟩
λℓ − λ1 − ρ(a4ℓ − 2a41)π4

φℓ,

as was desired.
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