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Abstract

Two-point boundary value problems of Dirichlet type are investigated for a Ermakov-
Painlevé II equation which arises out of a reduction of a three-ion electrodiffusion
Nernst-Planck model system. In addition, it is shown how Ermakov invariants may
be employed to solve a hybrid Ermakov-Painlevé II triad in terms of a solution of the
single component integrable Ermakov-Painlevé II reduction. The latter is related to
the classical Painlevé II equation.

1. Introduction

The theory of multi-ion electrodiffusion has its origin in the liquid-junction theory of
Nernst [1] and Planck [2]. It provides a macroscopic description of the migration of charged
particles through material barriers and has applications notably in the modelling of biolog-
ical membranes [3–8] and in electrochemistry [9]. In this multi-ion transmission context,
Schlögl [10] observed that it is convenient to partition the ions into m classes characterized
by the same electric charge qj = q0νj , where q0 is the unit of change and νj is a nonzero
integral signed valency. The m-ion electrodiffusion model in steady régimes then reduces
to a nonlinear m+ 1-component coupled system, namely (Leuchtag [11])

dni
dx

= νinip− ci , i = 1, · · ·m

dp

dx
=

m∑
i=1

νini , (νi − νj)νini 6= 0 i 6= j ,

(1.1)

where x is a coordinate normal to the planar boundaries, p is the electric field and nj is the
number of ions with the same charge qj = q0νj . Here, the ci are constants each proportional
to
∑
Jij/uij where the Jij are the current densities and the uij are the ion mobilities (see

Leuchtag [11])

The two-ion case when ν1+ν2 = 0 was originally investigated by Grafov and Chernenko
[12] and independently by Bass [13]. An analogous system was subsequently derived, again
independently, in the context of semi-conductor theory by Kudryashov [14]. In both cases,
reduction to the integrable Painlevé II equation was obtained. This integrable connection
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has been subsequently exploited to apply Bäcklund transformations iteratively to generate
sequences of solutions of the two-ion system (Rogers et al [15], Bass et al [16]). Such
sequences have been shown by Bracken et al [17] to be characterized by quantized fluxes of
the two ionic species with associated quantization of the electric current density.

Boundary value problems for the classical Painlevé II equation and certain extensions
have been previously investigated in such diverse physical contexts as two-ion electrodiffu-
sion, the solitonic Korteweg-de Vries equation and superconductivity (see e.g. [18]– [30]).

In three-ion electrodiffusion, existence and solvability aspects of classes of two-point
boundary value problems have been investigated by Amster et al [31] via topological and
upper and lower solution methods. In [32], Conte et al undertook an ab initio Painlevé
analysis of the general m-ion system (1.1). Interestingly, it was established that in a pair
of three-ion cases with valency ratios ν1 : ν2 : ν3 = 1 : −2 : −1, reduction may be made to
a well-known integrable Painlevé-Gambier equation, namely (see e.g. Gromak [33])

vxx −
v2x
2v

+ xv + 2εv2 = −(α− ε/2)2

2v
,

(ε2 = 1)

(1.2)

where v is connected to the electric field p via a relation of the type

p ∼ vx/v . (1.3)

Remark 1.

In Conte et al [32], the three-ion case ν1 : ν2 : ν3 = 1 : 1 : 1 was not isolated as leading
to underlying integrable Painlevé structure in the Nernst-Planck system and is outside the
scope of the present investigation.

On setting v = µ2, it is seen that (1.2) adopts a hybrid Ermakov-Painlevé II form in µ,
namely

µxx + (x/2)µ+ εµ3 = −(α− ε/2)2

4µ3
. (1.4)

Here, we shall be concerned with existence and uniqueness properties of solutions to
Dirichlet boundary value problems for this kind of equation which also has recently been
shown to arise in the nonlinear elastodynamics of transverse wave propagation in generalised
Mooney-Rivlin [34].

It is recalled that (Gromak [33])

ω =
ε

2v
(α− ε

2
− dv

dx
) (1.5)

with v governed by (1.2), obeys the canonical Painlevé II equation

ωxx = 2ω3 + xω + α . (1.6)
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However, the avatar (1.4) of (1.6) has the advantage, that it makes connection with the hith-
erto unrelated subject of Ermakov-type systems (see e.g. [35–41] and works cited therein).
Thus, in particular, characteristic invariants of such systems have recently been exploited
in [34] to isolate integrable Ermakov-Painlevé II reductions of coupled systems of resonant
nonlinear Schrödinger type [42,43].

Thus, motivated by the genesis of the Ermakov-Painlevé II equation in a three-ion
electrodiffusion system, we here investigate a class of two-point boundary value problems
involving the Ermakov-Painlevé II type equation

µxx = aµ3 + bxµ+
c

µ3
, 0 < x < 1 (1.7)

under Dirichlet boundary conditions

µ(0) = µ0, µ(1) = µ1 (1.8)

with µ0, µ1 > 0. An existence and uniqueness result is established for the class of boundary
value problems with c < 0 when a > 0. Moreover, a sufficient condition for the existence of
solutions is obtained for the case with c < 0 and a ≤ 0. Interestingly, in the repulsive case
with c > 0 and a < 0 the results differ markedly from the attractive case c < 0 wherein the
Ermakov-Painlevé II equation may be linked via a relation of the type (1.5) to the classical
integrable Painlevé II equation. Thus, in the repulsive case with a < 0 a winding number
argument is adduced to establish a non-uniqueness result.

In the Appendix, a novel coupled nonlinear integrable triad is introduced which is shown,
via its admitted Ermakov invariants, to possess a key Ermakov-Painlevé II component. The
present results concerning Dirichlet boundary value problems apply mutatis mutandis and
have potential application to the overlying triad with appropriate side conditions.

2 The Dirichlet problem

In this section, we shall prove various existence and uniqueness/multiplicity results for the
boundary value problem encapsulated in (1.7)−(1.8). The non-singular case c = 0 has been
intensively studied; thus, in the sequel we shall focus only on the case c 6= 0. According to
the standard terminology in singular problems, the case c > 0 shall be called repulsive and
the case c < 0 shall be called attractive. Note that (1.4) corresponds to this latter case,
with a = −ε, b = −1/2 and c = −(α−ε/2)2/4. Moreover, in the search of classical solutions
which are smooth and non-vanishing in (0, 1), we may assume without loss of generality,
that µ0, µ1 ≥ 0. This is due to the fact that the right-hand side of (1.7) is an odd function
of µ.

2.1 Non-vanishing solutions

In this section we shall assume µ0, µ1 > 0, and study the existence of strictly positive
solutions. For convenience, the repulsive and attractive cases shall be analyzed separately.
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2.1.1 Repulsive case

Throughout this section, we shall assume that c > 0.

Let us firstly consider the case a > 0 and define, for convenience, for A > w∗ > 0:

J(w∗, A) :=

∫ A

w∗

dw√(
a
2 (w + w∗)w + b+w + c

w∗

)
(w − w∗)

where, as usual, b+ := max{b, 0}. Observe that

J(w∗, A) ≤ 2
√
A− w∗√

aw2
∗ + b+w∗ + c

w∗

;

thus, we may extend J continuously by setting J(w∗, w∗) := 0. for w∗ > 0.

Theorem 1 Let a, c > 0. If there exists a positive w∗ ≤ µ20, µ21 such that

J(w∗, µ
2
0) + J(w∗, µ

2
1) ≥ 2,

then (1.7)-(1.8) has at least one positive solution.

Proof. In the first place, observe that if v is a large positive constant then v′′(x) =
0 ≤ av3 + bxv + cv−3 for all x ∈ [0, 1]. If moreover v ≥ µ0, µ1, it follows that v is an upper
solution of the problem. Thus, it suffices to prove that the problem

u′′(x) = au(x)3 + b+u(x) +
c

u(x)3
(2.9)

u(0) = u0, u(1) = u1 (2.10)

admits a positive solution u for some uj ∈ (0, µj ], j = 0, 1. Indeed, in this case

u′′(x) ≥ au(x)3 + bxu(x) +
c

u(x)3
, u(0) ≤ µ0, u(1) ≤ µ1

and hence u serves as a lower solution of the original problem. By standard results (see
e.g. [44, II.4]), existence of a solution µ with u ≤ µ ≤ v is deduced.

We shall now prove that the assumption of Theorem 1, in fact, is necessary and sufficient
for the existence of such a lower solution. For simplicity, from now on we may assume,
without loss of generality, that b ≥ 0. Multiply (2.9) by u′(x) and integrate to obtain

u′(x)2 =
a

2
u(x)4 + bu(x)2 − c

u(x)2
+ d

for some constant d. Setting w := u2,

w′(x)2 = 2aw(x)3 + 4bw(x)2 − 4c+ 4dw(x).
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Remark 2.

It is observed that the latter may be reduced to the canonical Weierstrass elliptic func-
tion ℘ equation

(℘′)2 = 4℘3 − g2℘− g3,

under a Möbius transformation

w =
r1℘+ r3
r2℘+ r4

r1r4 − r2r3 6= 0

for appropriate constants ri, i = 1, . . . , 4. In the above, g2 and g3 are the classical Weier-
strass invariants.

Suppose that u is a classical solution of (2.9)-(2.10). Since the right-hand side of the
equation is positive, it follows that u (and consequently w) is strictly convex. Thus, w
achieves its (unique) absolute minimum w∗ > 0 at some x∗ ∈ [0, 1].

Assume firstly that x∗ ∈ (0, 1), then using the fact that w′(x∗) = 0 we may write the
constant d as

d = d(w∗) := −a
2
w2
∗ − bw∗ +

c

w∗

and hence

w′(x)2 =

(
2aw(x)(w(x) + w∗) + 4bw(x) +

4c

w∗

)
(w(x)− w∗),

that is
w′(x) = −2S(x) for x ≤ x∗

and
w′(x) = 2S(x) for x ≥ x∗,

where

S(x) :=

√(
a

2
(w(x) + w∗)w(x) + bw(x) +

c

w∗

)
(w(x)− w∗).

This implies that

J(w∗, u
2
0) = −

∫ x∗

0

w′(x)

S(x)
dx = 2x∗,

J(w∗, u
2
1) =

∫ 1

x∗

w′(x)

S(x)
dx = 2(1− x∗)

and hence
J(w∗, u

2
0) + J(w∗, u

2
1) = 2.

Conversely, if the latter equality holds for some w∗ < u20, u
2
1, then let x∗ :=

J(w∗,u20)
2 ∈ (0, 1),

and let a function w be implicitly defined by the equations

J(w∗, w(x)) = 2x x ≤ x∗
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J(w∗, w(x)) = 2(1− x) x ≥ x∗.
Observe that w is non-increasing in [0, x∗] and non-decreasing in [x∗, 1]; thus, by standard
arguments it is deduced that w is smooth and u(x) :=

√
w(x) is a solution of (2.9)-(2.10).

Finally, observe that

J(w∗, A) ≤ 2

√
w∗
c

√
A− w∗ → 0 as w∗ → 0

and, moreover, for each fixed A the function J(·, A) is continuous. Consequently, if the
hypothesis of the theorem holds for some w∗ < µ20, µ

2
1, then making w∗ smaller if necessary

we obtain
J(w∗, µ

2
0) + J(w∗, µ

2
1) = 2

and the result follows.

Now assume that x∗ = 0 or x∗ = 1: in other words, w is monotone and w∗ =
min{u20, u21}. For convenience, let us denote M := max{u20, u21} = maxx∈[0,1]w(x). As
before, from the equality

w′(x)2 = 2aw(x)3 + 4bw(x)2 − 4c+ 4dw(x)

we deduce that ∫ w(x)

w∗

dw√
a
2w

3 + bw2 + dw − c
= 2x

and, conversely, if w is smooth and satisfies this latter equality for all x then u :=
√
w is a

solution of the problem. Set

J̃(d) :=

∫ M

w∗

dw√
a
2w

3 + bw2 + dw − c
,

then:

• J̃ is nonincreasing.

• J̃(d)→ 0 as d→ +∞.

We deduce that the problem has a solution if J̃(d∗) ≥ 2, where d∗ is the smallest possible
value of d verifying

a

2
w3 + bw2 + dw − c ≥ 0

for all w ∈ [w∗,M ], that is:

d∗ :=
c

w∗
− a

2
w2
∗ − bw∗.

Thus, the result follows since

J̃(d∗) = J(w∗,M) = J(w∗, u
2
0) + J(w∗, u

2
1).

Remark 3.
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1. Observe that

J(w∗, A) ≥
∫ A

w∗

dw√(
a
2 (A+ w∗)A+ bA+ c

w∗

)
(w − w∗)

= 2

√
A− w∗

a
2 (A+ w∗)A+ bA+ c

w∗

.

Thus, a sufficient condition for the existence of solutions is√
µ20 − w∗

a
2 (µ20 + w∗)µ20 + bµ20 + c

w∗

+

√
µ21 − w∗

a
2 (µ21 + w∗)µ21 + bµ21 + c

w∗

≥ 1

for some w∗ ≤ µ20, µ21.

2. The previous result is still valid when a = 0, provided that b > 0. In this case, an
explicit expression for J(w∗, A) is readily obtained.

Next, we shall introduce a different approach for the case a < 0.

Theorem 2 Let a < 0 < c. Then problem (1.7)-(1.8) has infinitely many positive solutions.
More precisely, for each N ∈ N large enough there exist at least two positive solutions that
take the values µ0 and µ1 exactly N or N + 1 times.

Proof. We shall apply a shooting type argument. Consider problem (1.7) with the
initial condition

µ(0) = µ0, µ′(0) = λ (2.11)

and integrate to obtain

µ′(x)2 − a

2
µ(x)4 +

c

µ(x)2
= d+ bxµ(x)2 − b

∫ x

0
µ(s)2 ds (2.12)

where
d = λ2 +

c

µ20
− a

2
µ40.

It is seen from (2.12) that µ cannot take arbitrarily large values and, consequently, µ′ and
µ−1 are also bounded. In other words, there exist 0 < δ(λ) < R(λ) such that

δ ≤ µ(x) ≤ R, |µ′(x)| ≤ R

for all x. In particular, µ is defined on [0, 1], so it suffices to search for those values of λ
such that µ(1) = µ1. Also from (2.12), observe that if M := maxx∈[0,1] µ(x) and |λ| � 0,
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then M cannot be larger than O(|λ|1/2). Moreover, if xc ∈ (0, 1) is a critical point of µ,
then

−a
2
µ(xc)

4 +
c

µ(xc)2
= d+ bxcµ(xc)

2 − b
∫ xc

0
µ(s)2 ds = O(λ2).

This implies, when |λ| is large, that either µ(xc) = O(|λ|1/2) and µ achieves a maximum
at xc or µ(xc) = O(|λ|−1/2) and µ achieves a minimum at xc. In particular we deduce
that between two consecutive critical points the solution takes the values µ0 and µ1 exactly
once.

Next, we shall prove that µ cannot be monotone over large intervals. To this end,
observe that if |λ| is large enough then

µ′(x)2 − a

2
µ(x)4 ≥ λ2

2
for all x.

Now suppose that µ increases over an interval [x1, x2], then set θ := supA, where

A := {x ∈ [x1, x2] : λ2 + aµ(x)4 ≥ 0}.

Since µ′(x) ≥
√

λ2+aµ(x)4

2 for x ∈ A, it is readily seen that∫ µ(θ)

µ(x1)

du√
λ2 + au4

≥
√

2

2
(θ − x1)

and hence θ − x1 = O(|λ|−1/2). Moreover, on [θ, x2] we have that µ(x) ≥
(
λ2

−a

)1/4
and

hence

µ′(θ) = µ′(x2)−
∫ x2

θ
µ′′(s) ds ≥ (−a)1/4

2
|λ|3/2(x2 − θ)

if |λ| is large. As ‖µ′‖∞ = O(|λ|), we conclude that x2 − θ = O(|λ|−1/2).

Next observe that, when |λ| is large,

µ′(x)2 +
c

µ(x)2
≥ λ2

2
for all x

and assume now that µ decreases over [x1, x2]. Set θ := supA, where

A := {x ∈ [x1, x2] : λ2µ(x)2 ≥ 2c}.

In this case, the fact that −
√

2µ(x)µ′(x) ≥
√
λ2µ(x)2 − 2c implies, by substitution,∫ µ2(x1)

µ2(θ)

dw√
λ2w − 2c

≥
√

2(θ − x1)

and hence θ− x1 = O(|λ|−1/2). On the other hand, enlarging |λ| if necessary we may write

µ′(θ) = µ′(x2)−
∫ x2

θ
µ′′(s) ds ≤ −(x2 − θ)

λ2

4
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and consequently x2 − θ = O(|λ|−1).

As a final step, consider the curve γ : [0, 1] → C given by γ(x) := µ′(x) + iµ(x). The
number

I = I(λ) := Re

(
1

2πi

∫
γ

dz

z − iµ1

)
counts the (net) number of turns that γ performs around the point iµ1 ∈ C. Recall that

γ(0) = λ+iµ0; thus, µ(1) = µ1 if and only if I(λ)+ r(λ)
2π ∈

1
2Z, where r(λ) ∈

(
−π

2 ,
π
2

)
∪
(
π
2 ,

3π
2

)
denotes the argument of the complex number λ + i(µ0 − µ1). Clearly, r(λ) → 0 or π as
λ→ +∞ or −∞ respectively. A simple computation shows that

I(λ) =
1

2π

∫ 1

0

µ′(x)2 − µ(x)µ′′(x)

µ′(x)2 + (µ(x)− µ1)2
dx.

From the previous analysis we know that if x1 and x2 are two consecutive critical points of
µ, then ∫ x2

x1

µ′(x)2 − µ(x)µ′′(x)

µ′(x)2 + (µ(x)− µ1)2
dx = π

and, moreover, the number of critical points of µ tends to +∞ as |λ| → ∞. We conclude
that I(λ)→ +∞ as |λ| → ∞. Finally, observe that I is continuous, so for each n ∈ N large

enough there exist a positive and a negative values of λ such that I(λ) + r(λ)
2π = n

2 . Observe
that before the first critical point, µ takes the value µ0 (and possibly the value µ1) exactly
once. An analogous situation occurs after the last critical point of µ, with the roles of µ0
and µ1 reversed and so the proof is complete.

2.1.2 Attractive case

Throughout this section, we assume c < 0.

Theorem 3 If a > 0 > c, then problem (1.7)-(1.8) admits at least one positive solution. If
moreover b ≥ −π2, then the solution is unique. In particular, (1.4)-(1.8) with ε = −1 has
a unique solution.

Proof. Since a > 0, any large enough constant v is an upper solution of the problem.
On the other hand, au3 + bxu + cu−3 < 0 for any small enough positive constant u. If
moreover u ≤ µ0, µ1, then u is a lower solution and existence of a solution µ such that
u ≤ µ ≤ v follows.

In order to prove uniqueness, assume that b ≥ −π2 and suppose that µ and ν are
solutions. Let y := µ− ν, then

y′′(x) = θ(x)y(x), y(0) = y(1) = 0
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with θ(x) > bx for all x. If y 6≡ 0, then∫ 1

0
y′(x)2 dx = −

∫ 1

0
y′′(x)y(x) dx = −

∫ 1

0
θ(x)y(x)2 dx < −b

∫ 1

0
xy2(x) dx.

Thus, a contradiction is obtained since

∫ 1

0
xy2(x) dx <

∫ 1

0
y2(x) dx ≤ 1

π2

∫ 1

0
y′(x)2 dx.

Before establishing the next result, we introduce the following notation for a ≤ 0 and
M > v > 0:

I(v,M) :=

∫ M

v

dw√(
−a

2 (w +M)w + b−w − c
M

)
(M − w)

with b− := max{−b, 0}. As before, I can be extended continuously by I(v, v) := 0 for
v > 0.

Theorem 4 Let a ≤ 0 and c < 0. If there exists M ≥ µ20, µ21 such that

I(µ20,M) + I(µ21,M) ≥ 2, (2.13)

then (1.7)-(1.8) has at least one solution.

Proof. The proof follows the general outline of that in the preceding section. Since
c < 0, any small enough constant u > 0 is a lower solution of the problem. Moreover, if
v(x) > 0 and x ∈ [0, 1] then −b−v(x) ≤ bxv(x); hence, it suffices to prove that the problem

v′′(x) = av(x)3 − b−v(x) +
c

v(x)3

has a solution such that v(0) = v0 ≥ µ0, v(1) = v1 ≥ µ1. Set w = v2 as before, then

w′(x)2 = 2aw(x)3 − 4b−w(x)2 + 4dw(x)− 4c.

There are two possible cases:

1. w increases up to some x∗ ∈ (0, 1) and then decreases. In this case, one gets

d = −a
2
M3 + b−M2 +

c

M

and
I(v20,M) = 2x∗, I(v21,M) = 2(1− x∗).

In a similar manner to that of the previous section, it is seen that the condition
I(v20,M) + I(v21,M) = 2 for some M > v20, v

2
1 allows to define implicitly a solution of

the problem, and the conclusion follows from the properties of I.

10



2. w is monotone. In this case, set M := max{v20, v21} and w∗ := min{v20, v21}. A sufficient
condition is that Ĩ(d) = 2 for some d, where

Ĩ(d) :=

∫ M

w∗

dw√
a
2w

3 − b−w2 + dw − c
.

As before, the function Ĩ is nonincreasing and I(d) → 0 as d → +∞. Thus, a
sufficient condition is Ĩ(d∗) ≥ 2, where d∗ is the minimum possible value of d, namely
d∗ := −a

2M
2 + b−M + c

M . A simple computation shows that this latter condition is
equivalent to 2 ≤ I(w∗,M) = I(v20,M) + I(v21,M) and the result follows from the
properties of I.

Remark 4. An alternative proof can be obtained by the shooting method. Indeed, it
is verified that the problem has a solution if and only if the initial value problem for (1.7)
with initial data (2.11) has, for some λ, a solution µ defined on [0, 1] such that µ(1) ≥ µ1.
In fact, this is a somewhat stronger result, although the latter condition is not explicit and
hence not readily verified. Instead, one may seek an upper solution as previously: in this
case, a shooting argument shows that the existence of such an upper solution is equivalent
to (2.13).

2.2 Solutions vanishing at the boundary

In this section, we investigate the existence of solutions µ > 0 in (0, 1) such that µ(0) =
µ(1) = 0. The analysis of other situations with solutions vanishing only at one end, or with
non-classical solutions vanishing inside the interval may be similarly undertaken.

To begin, let us observe that vanishing solutions can exist only for the attractive case
c < 0. Indeed, if c > 0 and µ is a solution, then

µ′(x)2 =
a

2
µ(x)4 + b

(
xµ(x)2 − µ(1/2)2

2

)
− b

∫ x

1/2
µ(s)2 ds− c

µ(x)2
+ d

for some constant d. The right-hand side term tends to −∞ as µ(x)→ 0, a contradiction.

From now on, we shall assume c < 0. For simplicity, only the case a > 0 and b ≥ 0 shall
be considered, although the argument may be traced in order to cover the more general
situation.

Remark 5.

In view of Theorem 3, it might be interesting to investigate whether it is possible or not
to obtain a solution as a limit of a sequence of solutions of (1.7)-(1.8) with µ0 = µ1 → 0.
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However, there are no a priori bounds for µ′ in the attractive case, so the existence of a
convergent sequence cannot be ensured.

Under the previous conditions a > 0 > c and b ≥ 0, the integral

T (M) :=

∫ M

0

dw√(
−a

2 (w +M)w − bw − c
M

)
(M − w)

is defined for any positive M ≤ M̃ , where M̃ > 0 is the unique root of the polynomial
P (M) := aM3 + bM2 + c. Furthermore, a simple computation shows that T (M) → 0 as
M → 0, and that T is strictly increasing in (0, M̃ ].

Theorem 5 Let a > 0 > c and b ≥ 0. If T (M̃) ≥ 1, then (1.7)-(1.8) with µ0 = µ1 = 0
has at least one solution µ such that µ(x) > 0 for all x ∈ (0, 1). In particular, the problem
admits a solution if

a
√
−c

2
+ b ≤ 4.

Proof. As before, we shall firstly prove that the autonomous problem (2.9) has a
positive solution u such that u(0) = u(1) = 0, which will serve as a lower solution of the
original problem. With this aim, observe that if u is such a solution and w := u2 achieves
its absolute maximum M at some x∗ ∈ (0, 1), then u also achieves its maximum at x∗, and
hence u′′(x∗) ≤ 0. This implies

aM3/2 + bM1/2 + cM−3/2 ≤ 0

or, equivalently, P (M) ≤ 0.

Furthermore, the right-hand side of the equation is an increasing function of u, so
u′′(x) < 0 for u(x) < M and hence the solution cannot achieve any local minima in
(0, 1). We deduce that w is strictly increasing in (0, x∗) and strictly decreasing in (x∗, 1).
Integration yields

w′(x)2 = 2aw(x)3 + 4bw(x)2 + 4dw(x)− 4c,

with
d = −a

2
M2 − bM +

c

M
.

Hence,
w′(x) = 2

√
(M − w(x))C(w(x)) 0 < x < x∗

and
w′(x) = −2

√
(M − w(x))C(w(x)) x∗ < x < 1

where C(w) := −
[
c
M + bw + a

2w(w +M)
]
. It follows that∫ w(x)

0

dw√
(M − w)C(w)

= 2x x ≤ x∗
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and ∫ w(x)

0

dw√
(M − w)C(w)

= 2(1− x) x ≥ x∗.

In particular, it is seen that x∗ = 1
2 and w is symmetric, namely w(x) = w(1 − x). Con-

versely, if

T (M) =

∫ M

0

dw√
(M − w)C(w)

= 1

for some positive M such that P (M) ≤ 0, then a solution u :=
√
w of (2.9) with u(0) =

u(1) = 0 is implicitly defined. Since P and T are increasing functions and T (M) → 0 for
M → 0, it is seen that the inequality T (M̃) ≥ 1 implies that T (M) = 1 for some M ∈ (0, M̃ ]
satisfying P (M) ≤ 0.

For the particular case a
√
−c
2 + b ≤ 4, observing that C(w) ≤ C(0) for 0 ≤ w ≤ M one

then has

T (M) ≥
∫ M

0

dw√
(M − w)C(0)

=
2M√
−c

.

Thus, the existence of solutions is guaranteed if 2M̃√
−c ≥ 1, that is, M̃ ≥

√
−c
2 . Equivalently,

a

(√
−c
2

)3

+ b

(√
−c
2

)2

+ c ≤ 0.

The latter inequality is fulfilled if and only if a
√
−c
2 + b ≤ 4.

For the moment, we have proven that the assumptions of the theorem yield the existence
of a lower solution u of (1.7)-(1.8) with µ0 = µ1 = 0. On the other hand, we know as before
that any large enough constant v is an upper solution of the problem. Thus, the result
follows from Lemma 1 below.

To conclude the proof of Theorem 5, we need to adapt the method of upper and lower
solutions to this singular case. The following result does not hold for arbitrary singular
problems, but can be extended to a considerable number of situations.

Lemma 1 Let u ≤ v satisfy

u′′ ≥ au3 + bu+
c

u3
, v′′ ≤ av3 + bv +

c

v3

u(0) = u(1) = 0, v(0), v(1) ≥ 0.

Then (1.7)-(1.8) with µ0 = µ1 = 0 has at least one solution µ such that u ≤ µ ≤ v.

Proof.

13



Let
C := {y ∈ C([0, 1]) : u(x) ≤ y(x) ≤ v(x) for all x}

and observe that, if y ∈ C, then the function ϕy defined by

ϕy(x) :=

∫ x

1/2
ay(s)3 + bsy(s) +

c

y(s)3
ds

belongs to L1(0, 1), since −c
y(x)3

≤ −c
u(x)3

= −u′′(x) + au(x)3 + bu(x) for all x ∈ (0, 1). Thus,

the claim follows from the fact that
∫ x
1/2 u

′′(s) ds = u′(x), which is an integrable function.
Next, define

P (x, y) :=


y if u(x) ≤ y ≤ v(x)

u(x) if y < u(x)
v(x) if y > v(x)

and consider the problem

µ′′(x) = aP (x, µ(x))3 + bxP (x, µ(x)) +
c

P (x, µ(x))3
(2.14)

under the Dirichlet condition (1.8) with µ0 = µ1 = 0. If µ is a solution, then u ≤ µ ≤ v
and hence µ solves the original problem. Indeed, if for example µ 6≥ u then we may fix θ
such that µ(θ)− u(θ) = minx∈[0,1] µ(x)− u(x) < 0. It is seen that θ ∈ (0, 1) and

0 ≤ µ′′(θ)− u′′(θ) = au(θ)3 + bθu(θ) +
c

u(θ)3
− u′′(θ) = b(θ − 1)u(θ) < 0

a contradiction. The remaining inequality is proven in an analogous manner. Thus, it
suffices to show that (2.14)-(1.8) with µ0 = µ1 = 0 has at least one solution. To this end,
for y ∈ C([0, 1]) let Ty := µ be defined as the unique solution of the problem

µ′′(x) = aP (x, y(x))3 + bxP (x, y(x)) +
c

P (x, y(x))3

satisfying the Dirichlet condition. It is easily verified that

Ty(x) =

∫ x

0
ϕŷ(s) ds− x

∫ 1

0
ϕŷ(s) ds,

where ŷ := P (·, y). Thus, Ty ∈W 1,1(0, 1) ↪→ C([0, 1]) and, moreover,

‖Ty‖∞ ≤ ‖(Ty)′‖L1 ≤ 2‖ϕŷ‖L1 ≤ a‖v‖3∞ + b‖v‖∞ + 4v(1/2).

This proves that T : C([0, 1])→ C([0, 1]) is a compact operator and, furthermore, that its
range is bounded; hence, the conclusion follows from Schauder’s Theorem.
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the Painlevé II equation in two-ion electro-diffusion, Nonlinear Analysis 74, 2897–2907
(2011).

[22] P. Amster, M.K. Kwong and C. Rogers, A Painlevé II model in two-ion electrodiffusion
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in The Painlevé Property. One Century Later, (Ed. R. Conte) CRM Series in Mathe-
matical Physics, Springer Verlag, New York pp. 687–734 (1999).
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Appendix
A Multi-Component Ermakov-Painlevé II System

Here, the importance of the Ermakov-Painlevé II equation of the type (1.4) as a
canonical form is emphasied by establishing its key role in the construction of solutions of an
over-arching coupled Ermakov-Painlevé II system. Importantly, systems of the latter type
have recently been obtained as symmetry reductions of N+1-dimensional coupled nonlinear
Schrödinger systems incorporating de Broglie-Bohm quantum potential terms (Rogers [34]).

Thus, a hybrid coupled Ermakov-Painlevé II triad is introduced, namely

uxx +
1

2
xu+ ε[ u2 + v2 + w2 ]u =

I
u3

,

vxx +
1

2
xv + ε[ u2 + v2 + w2 ]v =

J
v3

,

wxx +
1

2
xw + ε[ u2 + v2 + w2 ]w =

K
w3

.

(ε2 = 1)

(A.1)

This constitutes a particular three-component Ermakov-Ray-Reid system and accordingly
admits associated characteristic Ermakov invariants (see e.g. [39]). Thus, (A.1)1,2 combine
to produce the Ermakov invariant

(uxv − vxu)2 + J
(u
v

)2
+ I

(v
u

)2
= EI , (A.2)

while, similarly, (A.1)2,3 and (A.1)3,1 lead, in turn, to the Ermakov invariants

(vxw − wxv)2 +K
( v
w

)2
+ J

(w
v

)2
= EII , (A.3)

and

(wxu− uxw)2 + I
(w
u

)2
+ K

( u
w

)2
= EIII . (A.4)

We now seek to determine the quantity

Σ = u2 + v2 + w2 (A.5)

so that the constituent equations in the Ermakov triad (A.1) become determinate. In this
connection, the system is seen to admit the (non-local) Hamiltonian

u2x + v2x + w2
x +

1

2

∫
xdΣ +

ε

2
Σ2 +

I
u2

+
J
v2

+
K
w2

= 2H . (A.6)

On use of the identity

(u2 + v2 + w2)(u2x + v2x + w2
x)− [ (uxv − vxu)2 + (vxw − wxv)2 + (wxu− uxw)2 ]

≡ (uux + vvx + wwx)2
(A.7)
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the Ermakov invariant relations (A.2)−(A.4) together with the ‘Hamiltonian’ (A.6) show
that

Σ[ 2H− 1

2

∫
xdΣ− ε

2
Σ2 − (

I
u2

+
J
v2

+
K
w2

) ]

− [ EI + EII + EIII − {J
(u
v

)2
+ I

(v
u

)2
+K

( v
w

)2
+ J

(w
v

)2
+ I

(w
u

)2
+K

( u
w

)2
} ]

=
1

4
Σ2
x (A.8)

which reduces to

Σ[ 2H− 1

2

∫
xdΣ− ε

2
Σ2 ]− ( EI + EII + EIII + I + J +K ) =

1

4
Σ2
x . (A.9)

The latter, in turn, shows that

Σxx −
1

2Σ
(Σx)2 + xΣ + 2εΣ2 =

2E
Σ

(A.10)

where
E = ( EI + EII + EIII + I + J +K )/2 . (A.11)

Thus, Σ as given by (A.10) is governed by a Painlevé-Gambier type equation (c.f. (1.2))
while Ω =

√
Σ is governed by a Ermakov-Painlevé II equation

Ωxx +
x

2
Ω + ε Ω3 =

E
Ω3

(A.12)

which, in turn, may be connected to the classical integrable Painlevé II equation (1.6) if
E = −(α− ε/2)2/4. Thus, here it is required that E < 0.

The nonlinear pair consisting of (A.12) together with (A.1)1, namely

uxx +
x

2
u+ ε Ω2u =

I
u3

(A.13)

constitutes a particular Ermakov-Ray-Reid system with characteristic invariant

(uxΩ− u Ωx)2 + E
( u

Ω

)2
+ I

(
Ω

u

)2

= RI , (A.14)

so that

[ Ω2 d

dx

( u
Ω

)2
] + E

( u
Ω

)2
+ I

(
Ω

u

)2

= RI (A.15)

where
Ω2 = ωx − ε ω2 + ε x (A.16)

with ω being a solution of the canonical Painlevé II equation (1.6).

On introduction of the new variables ξ̄, U according to

dx̄ = Ω−2dx , (A.17)
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and

U =
( u

Ω

)2
(A.18)

the invariant relation (A.15), on integration yields

U =
1

2E
[ RI −

√
R2
I − 4EI cosh(2x̄(−E)1/2 + KI) ] (A.19)

where, in addition to E < 0, here we require that I > 0 whence the condition U > 0 is met:
in the above, KI is an arbitrary constant of integration. In a similar manner, the nonlinear
pair consisting of (A.12) together with (A.1)2 admits the Ermakov invariant

( vxΩ− vΩx)2 + E
( v

Ω

)2
+ J

(
Ω

v

)2

= RII (A.20)

so that if

V =
( v

Ω

)2
(A.21)

then, in analogy with (A.19),

V =
1

2E
[ RII −

√
R2
II − 4EJ cosh(2x̄(−E)1/2 + KII) ] (A.22)

where, it is assumed that J > 0, while KII is an arbitrary constant of integration. Lastly,
the pair (A.12), (A.1)3 admit a Ermakov invariant

( wxΩ− wΩx)2 + E
(w

Ω

)2
+K

(
Ω

w

)2

= RIII , (A.23)

where it is assumed that K > 0. However, the invariant relation (A.23) is not necessary in

the calculation of W =
(w

Ω

)2
since the latter is determined via the relation

U2 + V 2 +W 2 = 1 (A.24)

in terms of U, V given by (A.19) and (A.22) respectively. In conclusion, it is noted that
application of the identity (A.7) together with the Ermakov-type constants of motion es-
tablishes an interesting relation between invariants, namely

E = RI + RII + RIII − [ EI + EII + EIII + I + J +K ] =
1

3
[ RI + RII + RIII ] (A.25)

on use of (A.11).

Thus, in summary, solution of the original Ermakov-Painlevé II triad (A.1) is given in
terms of a seed solution Ω of the canonical Ermakov-Painlevé II equation (A.12) via the
relations

u = ±Ω U1/2 , v = ±Ω V 1/2 , w = ±Ω W 1/2 . (A.26)

where x̄ is determined by integration of the relation (A.17).

It is emphasised, that the above procedure may be readily extended to N-component
Ermakov-Painlevé II systems which admit Ermakov invariants.
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