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a b s t r a c t

We establish geometric properties of Stiefel and Grassmann manifolds which arise in
relation to Slater type variational spaces inmany-particle Hartree–Fock theory and beyond.
In particular, we prove that they are analytic homogeneous spaces and submanifolds of the
space of bounded operators on the single-particle Hilbert space. As a by-product we obtain
that they are complete Finsler manifolds. These geometric properties underpin state-of-
the-art results on the existence of solutions to Hartree–Fock type equations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Stiefel manifold in quantum chemistry is defined by

CN :=

(φ1, . . . , φN) ∈ (H1(R3))N : ⟨φi, φj⟩L2(R3) = δij, 1 ≤ i, j ≤ N


, (1.1)

where N ∈ N (typically the number of electrons) is fixed and H1
= H1(R3) is the Sobolev space of order one (the single-

particle Hilbert space). Let U(CN) be the unitary group of n × n matrices. The Grassmann manifold in quantum chemistry,
denoted by GN , is defined to be the quotient of the Stiefel manifold under the equivalence relation

(φ1, . . . , φN) ∼ (ψ1, . . . , ψN) if
N
i=1

Uij φi = ψj, j = 1, . . . ,N, for some U ∈ U(CN).

Motivated by state-of-the-art existence results on Hartree–Fock type equations, based on abstract critical point theory, the
aim of this paper is to establish the fundamental geometric properties and structures of manifolds of this type by means of
operator theoretical methods.

Let H,L be two Hilbert spaces such that H ⊆ L and the inclusion H ↩→ L is continuous with dense range. To simplify
some estimates, we will assume in addition that the inclusion map is a contraction. For instance, we may take H = H1 and
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L = L2(R3). This particular case is the motivation of the present work, though the specific nature of these function spaces
will play no role in the geometric properties studied here. For this reason, we prefer to state and prove all the results in the
more general setting given by these type of pairs of Hilbert spaces.

Note that the definition of CN and GN may be extended in an obvious way to the setting of pairs of Hilbert spaces. It turns
out that CN may be regarded as the subset of the algebra of bounded operators B(H) consisting of partial isometries with
respect to the L inner product that have a fixed N-dimensional initial space. On the other hand, GN may be identified with
the set of rank N projections in B(H)which are orthogonal with respect to the L inner product. Our results include:

• CN and GN are analytic homogeneous spaces of a Banach–Lie group U–for U, see (2.1);
• CN and GN are analytic submanifolds of B(H);
• CN and GN are complete Finsler manifolds.

In 1977 Lieb and Simon [1] proved the existence of a ground state for the non-relativistic Hartree–Fock minimisation
problem by a variational approach. The set of admissible states in Hartree–Fock theory consists of the Slater determinants

SN =


Ψe ∈ He : ∃Φ = {φn}1≤n≤N ∈ CN ,Ψe =

1
√
N!

det (φn(xm))


where CN is the Stiefel manifold in (1.1) and He =
N H1(R3

; C2), i.e., the N-particle Hilbert space consisting of
antisymmetric spinor-valued functions; SN does not form a vector space. The components of the minimiser satisfy the
associated Hartree–Fock equations (i.e., the associated Euler–Lagrange equations). Prior to [1], the Hartree–Fock equations
were studied by more direct approaches, yielding less general results. The Hartree–Fock problem is hard because electrons
may escape to infinity (ionisation) which, mathematically, corresponds to a loss of compactness. Subsequently, Lions [2]
came up with a new approach which enabled him to prove the existence of infinitely many solutions to the non-relativistic
Hartree–Fock equations, including a minimiser. The aforementioned loss of compactness can be expressed by saying that
the Hartree–Fock functional does not satisfy the Palais–Smale condition, as first noticed by Lions [2]. He developed a new
strategy based upon constructing ‘‘approximate critical points’’ with some information on the Hessian at these points. Lions’
method for recovering compactness from second order information was later pursued in its full generality by Fang and
Ghoussoub [3,4], in particular leading to streamlined versions of Lions’s work. The Lions–Fang–Ghoussoub approach has
been implemented for various Hartree–Fock type variational problems. For the non-relativistic Hartree–Fock setting, it was
applied by Fang and Ghoussoub in [3]. For the quasi-relativistic Hartree–Fock problem, wherein one replaces the kinetic
energy operator −∆ (the negative Laplacian) by its quasi-relativistic analogue,

√
−α−2∆+ α−4 − α−2 (α being the fine-

structure constant), it was implemented by Enstedt andMelgaard [5]. In the presence of an externalmagnetic field, existence
of infinitelymany distinct solutions to themagnetic Hartree–Fock equations, including aminimiser associatedwith a ground
state, was established by Enstedt and Melgaard [6] in a general framework which, in particular, includes the following
three examples of external fields: a constant magnetic field, a decreasing magnetic field, and a ‘‘physically measurable’’
magnetic field. Going beyond the standard Hartree–Fock problem, by replacing single Slater determinants by finite linear
combinations of the former, Lewin implemented the approach in the non-relativistic multi-configurative case [7], inspired
by Esteban and Séré [8] who provided the first rigorous results on the Dirac–Fock equations. Recently, Argaez andMelgaard
have established results similar to Lewin’s for the quasi-relativistic multi-configurative Hartree–Fock equations [9].

The abstract critical point theoretical result, which lies at the heart of the Fang-Ghoussoub approach to multiple
solutions [3, Theorem 1.7], requires that the underlying manifold, i.e. CN in the non-relativistic setting, is a complete,
C2 Riemannian manifold. The streamlined approach to the existence of a ground state applies the perturbed variational
principle by Borwein-Preiss [10, Theorem 2.6] which demands that CN is a complete metric space. We shall verify these
requirements but, in fact, we shall establish stronger results.

Despite the fundamental importance of these variational spaces, there seem to be few results on their geometry. On the
level of theoretical physics, algebraic properties of variational spaces for electronic calculations are studied in [11] and, in
particular, the finite-dimensional Grassmannmanifold is discussed in [12]. Other related papers, using techniques similar to
the ones in the present work, lie in the area of differential geometry of operators, and have no direct relevance for quantum
chemistry. For instance, see [13,14] for unitary orbits of partial isometries, [15–17] for unitary orbits of projections and the
references given in each of these articles. For the various infinite-dimensional manifolds found in the later works, ad hoc
proofs are needed in each particular example. In our case, it is interesting to remark that we make use of standard facts of
the theory of Hilbert spaces with two norms, which was independently developed by Krein [18,19] and Lax [20].

This paper is organised as follows. In Section 2 we introduce the group U, which acts transitively on the Stiefel and
Grassmann manifolds in quantum chemistry. Then we show some basic facts on U, including that U is a Banach–Lie
group endowed with the norm topology of B(H). Section 3 contains the main results on the differential structure of the
Stiefel manifold, namely that CN is a real analytic homogeneous space of U and a real analytic submanifold of B(H). In
Section 4 we prove the corresponding results on the differential structure of the Grassmann manifold, which now follows
as a consequence of the fact that GN is a quotient space of CN . In Section 5, as an application of the preceding results, we
show that CN and GN are complete Finsler manifolds.
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2. A Banach–Lie group

Let H,L be two Hilbert spaces such that H ⊆ L and the inclusion H ↩→ L is continuous with dense range. Moreover,
we assume that ∥ · ∥L ≤ ∥ · ∥H .

Notation 2.1. Let B(H) (resp. B(L)) denote the algebra of bounded linear operators on H (resp. L). The symbol ∥ · ∥

denotes the usual operator norm on H ; meanwhile ∥ · ∥B(L) denote the usual operator norm on L.

Remark 2.2. We need some basics facts on two well-known Banach–Lie groups, which are the groups of invertible and
unitary operators on a Hilbert space K (see [21,22]). Actually, we will be concerned with only two special examples:

(1) The group Gl(K) of invertible operators on K is a Banach–Lie group with the topology defined by the operator norm.
Its Lie algebra is equal to algebra of bounded operators on K endowed with the bracket [X, Y ] = XY − YX . Moreover,
the exponential map is the usual exponential of operators.

(2) The unitary group U(K) is a real Banach–Lie group in the norm topology and its Lie algebra is given by the skew-
hermitian operators on K . Again the exponential map is the usual exponential of operators.

We would like to find a Banach–Lie group that acts transitively on the Stiefel and Grassmann manifolds in quantum
chemistry. This job seems to be done by the following group

U := {U ∈ Gl(H) : ∥Uφ∥L = ∥φ∥L, ∀φ ∈ H}. (2.1)

Since we could not find references to this group in the literature, we shall prove some basic facts on its differential structure.
The next lemma provides different characterisations of U.

Lemma 2.3. The following conditions are equivalent:

(i) U ∈ U.
(ii) U ∈ Gl(H) and ⟨Uφ,Uψ⟩L = ⟨φ,ψ⟩L for all φ,ψ ∈ H .
(iii) There exists W ∈ U(L) such that W (H) = H and W |H = U.
(iv) U ∈ Gl(H) and ⟨Uφ,ψ⟩L =


φ,U−1ψ


L
for all φ,ψ ∈ H .

Proof. (i) ⇔ (ii) The proof is analogous to the characterisation of unitary operators (or isometries) in Hilbert spaces. Let
φ,ψ ∈ H and c ∈ C, then we have that ∥U(φ + cψ)∥L = ∥φ + cψ∥L. We can use the polar identity in L to conclude that
⟨Uφ,Uψ⟩L = ⟨φ,ψ⟩L. The converse is trivial.

(ii) ⇒ (iii) Since ∥Uφ∥L = ∥φ∥L and H is dense in L, the operator U extends uniquely to a bounded operator W on L.
Moreover,W is unitary since it satisfies ⟨Wφ,Wψ⟩L = ⟨φ,ψ⟩L.

(iii) ⇒ (ii) First we show that U ∈ B(H). To see this, let (φn)n be a sequence in H such that ∥φn∥H → 0 and
∥Uφn − ψ∥H → 0. Then, φn → 0 in the topology of L and Uφn = Wφn → 0 in the topology of L. Hence we have
ψ = 0, and U ∈ B(H) by the closed graph theorem.

Now we claim that U ∈ Gl(H). Indeed, since U is a restriction of W , it is apparent that U is injective. By assumption we
have that U is surjective. Thus we can use the open mapping theorem to prove our claim.

Finally, we notice that ⟨Uφ,Uψ⟩L = ⟨φ,ψ⟩L is a consequence of U being a restriction of the unitary operatorW .
(iii) ⇒ (iv) Under the same assumption, we have just proved that U ∈ U. Then, we have U−1

∈ U. In particular, there
exists V ∈ U(L) such that V (H) = H and V |H = U−1. Notice that VWφ = VUφ = U−1Uφ = φ, for all φ ∈ H . Then we
get VW = I , and in a similar way,WV = I . Thus we obtain V = W ∗, and it follows that U−1

= W ∗
|H . Let φ,ψ ∈ H , then

⟨Uφ,ψ⟩L = ⟨Wφ,ψ⟩L =

φ,W ∗ψ


L

=

φ,U−1ψ


L
.

(iv) ⇒ (i) We choose ψ = Uφ, then ∥Uφ∥
2
L =


φ,U−1Uφ


L

= ∥φ∥
2
L. �

Remark 2.4. We claim that U is a closed subgroup of Gl(H). In fact, it is clear that U is a subgroup of Gl(H). Suppose that
(Un)n is a sequence in U satisfying ∥Un − U∥ → 0, where U ∈ Gl(H). For any φ ∈ H , we see that

∥(Un − U)φ∥L ≤ ∥(Un − U)φ∥H ≤ ∥Un − U∥∥φ∥H → 0.

Hence we obtain ∥Uφ∥L = lim ∥Unφ∥L = ∥φ∥L, and our claim is proved.
It follows from a well known result on Banach–Lie groups (see [22, Corollary 7.8]) that there exist on U a Hausdorff

topology and an analytic structure compatible with this topology making U a real Banach–Lie group with Lie algebra

u := {X ∈ B(H) : etX ∈ U, ∀ t ∈ R}.

Moreover, the inclusion map U ↩→ Gl(H) is analytic, its derivative at the identity is the inclusion map u ↩→ B(H) and
expU(X) = eX for all X ∈ u.

The following result is the infinitesimal counterpart of Lemma 2.3. In particular, it is worth pointing out that iu, where i
is the complex number, is a well-studied class of operators usually known as symmetrisable operators (see [19,20]).
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Lemma 2.5. The following assertions are equivalent:

(i) X ∈ u.
(ii) X ∈ B(H) and ⟨Xφ,ψ⟩L = −⟨φ, Xψ⟩L for all φ,ψ ∈ H .
(iii) There exists Z ∈ B(L) such that Z∗

= −Z, Z(H) ⊆ H and Z |H = X.

Proof. (i)⇒ (ii) By our assumption the curve γ (t) = etX , t ∈ R, is contained inU. Using Lemma 2.3 we can rewrite this fact
as

etXφ,ψ


L

=

φ, e−tXψ


L
, for any φ,ψ ∈ H . Taking the derivative of γ at t = 0 we find that ⟨Xφ,ψ⟩L = −⟨φ, Xψ⟩L.

(ii) ⇒ (i) Suppose that X ∈ B(H) and ⟨Xφ,ψ⟩L = −⟨φ, Xψ⟩L for all φ,ψ ∈ H . It is easily seen that


(tX)nφ,ψ


L

=


−

φ, (tX)nψ


L

if n is odd,
φ, (tX)nψ


L

if n is even.

Therefore
I + tX +

(tX)2

2
+ · · · +

(tX)n

n!


φ,ψ


L

=


φ,


I − tX +

(tX)2

2
+ · · · + (−1)n

(tX)n

n!


ψ


L

.

Letting n → ∞, we have

etXφ,ψ


L

=

φ, e−tXψ


L
. By Lemma 2.3 we conclude that etX ∈ U for all t ∈ R, so X ∈ u.

(iii) ⇒ (ii) We will use the closed graph theorem to show that X ∈ B(H). Let (φn)n be a sequence in H such that
∥φn∥H → 0 and ∥Xφn − ψ∥H → 0. Then, we have that ∥φn∥L → 0 and so Xφn = Zφn → 0 = ψ in the L topology. We
thus get X ∈ B(H).

To complete the proof notice that ⟨Xφ,ψ⟩L = ⟨Zφ,ψ⟩L = −⟨φ, Zψ⟩L = −⟨φ, Xψ⟩L for all φ,ψ ∈ H .
(ii) ⇒ (iii) The crucial point is to prove that X is bounded with respect to the L-norm, which can be deduced

from [19, Theorem I]. In fact, the operator iX is symmetric with respect to the L inner product. Thus the operator X has
a bounded extension Z to all of L, and it is not difficult to check that Z∗

= −Z . �

As we stated in Remark 2.4, U is a Banach–Lie group endowed with a topology that in general is stronger than the one
defined by the norm of B(H). Actually, we have that both topologies coincide in this group because U is an algebraic
subgroup of Gl(H) in the sense of [23].

Theorem 2.6. The group U is an algebraic subgroup of Gl(H). In particular, U is a real Banach–Lie group endowed with the
norm topology of B(H), and its Lie algebra is given by

u = {X ∈ B(H) : ⟨Xφ,ψ⟩L = −⟨φ, Xψ⟩L , ∀φ,ψ ∈ H}.

Proof. We first prove that U is an algebraic subgroup of Gl(H) of degree ≤ 2. To see this, we define a family of complex-
valued polynomials on B(H)× B(H) by

Pφ((X, Y )) = ⟨YXφ, φ⟩L − ∥φ∥
2
L, φ ∈ H .

Then, we have

U = {U ∈ Gl(H) : Pφ((U,U−1)) = 0,∀φ ∈ H}.

Thus the assertion concerning the topology ofU follows from [23, Theorem 1]. Finally, the characterisation of the Lie algebra
has already been proved in Lemma 2.5 (ii). �

Remark 2.7. According to Lemma 2.3, we have a unique unitary extension W to L of each operator U ∈ U. Therefore
operators in U are in bijective correspondence with

Ũ := {W ∈ U(L) : W (H) = H}.

However, it turns out that Ũ is not closed in U(L). Let (φn)n be a sequence on H such that ∥φn∥L = 1 and ∥φn −φ∥L → 0,
for some φ ∈ L \ H . Now consider the rank one L-orthogonal projections Pn := ⟨·, φn⟩L φn and P := ⟨·, φ⟩L φ, and set

Wn := eiPn = I + (ei − 1)Pn.

Note that we haveWn ∈ Ũ . Using that ∥φn −φ∥L → 0, it follows that ∥Wn −W∥B(L) → 0, whereW := eiP = I + (ei −1)P .
ButW (H) ≠ H , by our choice of the function φ.
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3. Stiefel manifold in quantum chemistry

Let N ∈ N. The Stiefel manifold in quantum chemistry is defined by

CN := {(φ1, . . . , φN) ∈ HN
:

φi, φj


L

= δij, 1 ≤ i, j ≤ N}. (3.1)

We consider the subspace topology on CN ⊂ HN , which may be defined by

dCN (Φ,Ψ ) =


N
i=1

∥φi − ψi∥
2
H

1/2

,

whereΦ = (φ1, . . . , φN) and Ψ = (ψ1, . . . , ψN) belong to CN .
Wewill identifyCN with a subset ofB(H). Let S be a subspace ofH such that dim S = N . We define the following Stiefel

type manifold:

St(S) := {V ∈ B(H) : Ker (V )⊥L = S, ∥Vξ∥L = ∥ξ∥L, ∀ ξ ∈ S},

where ⊥L denotes the orthogonal complement with respect to the inner product of L. We consider St(S) endowed with
the usual operator topology inherited from B(H).

Remark 3.1. Let ξ1, . . . , ξN be a basis of S such that

ξi, ξj


L

= δij. We can rewrite

St(S) =


N
i=1

⟨·, ξi⟩L φi : (φ1, . . . , φN) ∈ CN


.

Indeed, any operator of the form VΦ =
N

i=1 ⟨·, ξi⟩L φi satisfies Ker (VΦ) = S⊥L ∩H and is isometric on S. Conversely, each
V ∈ St(S) can be expressed in this form, where φi = Vξi for i = 1, . . . ,N .

Lemma 3.2. CN and St(S) are homomorphic.

Proof. Let {ξ1, . . . , ξN} be a basis of S satisfying

ξi, ξj


L

= δij. For each elementΦ = (φ1, . . . , φN) ∈ CN , we set

VΦξ =

N
i=1

⟨ξ, ξi⟩L φi,

for all ξ ∈ H . Then we have VΦ ∈ St(S), and the map CN −→ St(S), Φ → VΦ , is a bijection. Moreover, this map is a
homomorphism. In fact, note that

∥φi − ψi∥H = ∥VΦξi − VΨ ξi∥H ≤ ∥VΦ − VΨ ∥∥ξi∥H .

Then, we have

dCN (Φ,Ψ ) ≤
√
N max

1≤i≤N
∥ξi∥H∥VΦ − VΨ ∥.

On the other hand, let ξ ∈ H such that ∥ξ∥H = 1. Then we get

∥(VΦ − VΨ )ξ∥ =

 N
i=1

⟨ξ, φi⟩L (φi − ψi)


H

≤

N
i=1

∥ξ∥L∥ξi∥L∥φi − ψi∥H

≤

N
i=1

∥φi − ψi∥H ≤
√
N dCN (Φ,Ψ ),

and hence we obtain ∥VΦ − VΨ ∥ ≤
√
N dCN (Φ,Ψ ). �

Notation 3.3. Bearing inmind the above identification, throughout the remainder of the paperwewill only use the notation
CN to indicate indistinctly the N-tuple or the operator presentation of the Stiefel manifold in quantum chemistry.

Lemma 3.4. The map

U × CN −→ CN , U · V = UV ,

is a transitive action of the Banach–Lie group U on CN .
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Proof. Let S be an N-dimensional subspace of H . Let V ∈ B(H) such that Ker (V )⊥2 = S and ∥Vξ∥L = ∥ξ∥L for all ξ ∈ S.
It follows that ∥UVξ∥L = ∥Vξ∥L = ∥ξ∥L for all ξ ∈ S and U ∈ U, and also that Ker (V )⊥2 = S. This shows that UV ∈ CN ,
whenever U ∈ U and V ∈ CN , so the action is well-defined.

Let V0, V1 ∈ CN . We need to find an U ∈ U such that UV0 = V1. Let ξ1, . . . , ξN be a basis of S such that

ξi, ξj


L

= δij.
Then S0 = span {V0ξ1, . . . , V0ξN , V1ξ1, . . . , V1ξN} ⊆ H has finite dimension, say R, with N ≤ R ≤ 2N . Then we can
construct two orthonormal basis of S0 with respect to the inner product of L, namely V0ξ1, . . . , V0ξN , αN+1, αN+2, . . . , αR
and V1ξ1, . . . , V1ξN , βN+1, βN+2, . . . , βR.

Note that H = S0 ⊕ (S⊥L
0 ∩ H), where the sum is direct and both subspaces are closed in H . Therefore we can define

the required operator by

Uξ :=


N
i=1

ciV1ξi +

R
i=N+1

ciβi if ξ =

N
i=1

ciV0ξi +

R
i=N+1

ciαi ∈ S0,

ξ if ξ ∈ S⊥L
0 ∩ H .

We point out that U leaves invariant S0 and S⊥L
0 ∩ H . It is apparent that U ∈ Gl(H). Also notice that for any ξ ∈ H we can

write

ξ =

N
i=1

ciV0ξi +

R
i=N+1

ciαi + ξ0,

for some ci ∈ C and ξ0 ∈ S⊥L
0 ∩ H . Then,

∥Uξ∥2
L =

 N
i=1

ciV1ξi +

R
i=N+1

ciβi


2

L

+ ∥ξ0∥
2
L =

R
i=1

|ci|2 + ∥ξ0∥
2
L = ∥ξ∥2

L.

We thus get U ∈ U. Moreover, it is clear that UV0 = V1. �

3.1. Construction of continuous local cross sections

Let V ∈ CN . In this section we prove that the map πV : U −→ CN , πV (U) = UV has local continuous cross sections.
We will use this result in the next section to show that CN is a real analytic homogeneous space of U and a submanifold of
B(H).

We begin by establishing the continuity of several maps.

Remark 3.5. Let P,Q ∈ B(H) be two projections of rank N such that P = P∗ and Q = Q ∗, where the adjoint is taken with
respect to the L inner product. Since the rank is finite, we may view P and Q as (continuous) orthogonal projections on L.
We set A := (I − P)(I − Q )(I − P). Clearly it satisfies 0 ≤ A ≤ I , when one considers the order given by the cone of positive
operators in B(L). An easy computation shows that

A = I − P − Q + QP + PQ − PQP.

Therefore A = I + B, where B is a finite rank L-self-adjoint operator. Moreover, note that −I ≤ B ≤ 0 and its range satisfies
Ran (B) ⊆ H . We claim that the square root of A satisfies A1/2(H) ⊆ H . Here A1/2 is defined as usual by the continuous
functional calculus in B(L). To prove our claim we shall need a result on the convergence of the binomial series: the series

(1 + z)α = 1 +

∞
k=1

ckzk, ck =

α
k


=
α(α − 1)(α − 2) · · · (α − k + 1)

k!
,

converges absolutely for |z| ≤ 1 whenever Re (α) > 0 (see for instance [24, Theorem 247]). In particular, for α = 1/2 the
power series converges uniformly on |z| ≤ 1. Then we can define the square root of A using the series, i.e.

A1/2
= (I + B)1/2 = I +

∞
k=1

ckBk.

This operator series is convergent in the norm of B(L). Moreover, this definition coincides with the continuous functional
calculus since the power series is uniformly convergent on |z| ≤ 1 and the spectrum σ(B|L) of B on L is contained in
[−1, 0].

Now we can prove that A1/2(H) ⊆ H . Let ξ ∈ H , then

A1/2ξ = ξ + B


∞
k=1

ckBk−1


ξ .

As a consequence of the fact that Ran (B) ⊆ H , we can conclude A1/2ξ ∈ H , and our claim is proved.
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Lemma 3.6. Let V ∈ CN . Then the map

F : CN ⊆ B(H) −→ B(H), F(W ) = ((I − VV ∗)(I − WW ∗)(I − VV ∗))1/2|H

is continuous, when the adjoint and the square root are with respect to the L inner product.

Proof. We first notice that according to Remark 3.5 the domain of F(W ) can be restricted to H in order to obtain a bounded
operator on H .

Let (Vn)n be a sequence in CN such that ∥Vn − V0∥ → 0. We set P = VV ∗ and Qn = VnV ∗
n , for n ≥ 0. As in the Remark 3.5

we use the notation

Bn = −P − Qn + PQn + QnP − PQnP,

where (I−P)(I−Qn)(I−P) = I+Bn. Notice that Bn has finite rank, it isL self-adjoint and σ(Bn|L) ⊆ [−1, 0]. In particular,
it follows that ∥Bn∥B(L) ≤ 1.

On the other hand, it is worth noting that for each n ≥ 0 the series

∞
k=1

ckBk
n = c1Bn + Bn


∞
k=2

ckBk−2
n


Bn

converges in the normofB(H). In fact, the series converges inB(L), and since Bn has finite rank, it is forced to be convergent
in B(H). Moreover, we must have that F(Vn) = I +


∞

k=1 ckB
k
n.

Beside these remarks, we can now focus on the proof of the continuity of F . Fix ϵ > 0. Let s ∈ N, then

∥F(Vn)− F(V0)∥ =

 ∞
k=1

ck(Bk
n − Bk

0)


≤

s
k=1

|ck|∥Bk
n − Bk

0∥ +

 ∞
k=s+1

ckBk
n

+

 ∞
k=s+1

ckBk
0

 . (3.2)

By the definition of Bn we see that the first term on the right tends to zero for any fixed s. As we remarked in the previous
paragraph, the series


∞

k=1 ckB
k
0 is convergent in the norm of B(H), so the third term can be made as small as we need.

What is left is to show that the second term can be smaller than ϵ for s large enough. This is the main point because the
convergence in B(H) of these series depends on each n ≥ 1. Since the norm in B(L) of each Bn is never greater than the
norm in B(H) (see [19, Theorem I]), we cannot ensure that each series be absolutely convergent in B(H).

In order to bound the second term we need to use that Vn, V ∈ CN . Let S be an N-dimensional subspace of H as in
Remark 3.1. Let ξ1, . . . , ξN be a basis of S such that


ξi, ξj


L

= δij. Recall that Bn = P(−I + Qn − QnP)+ Qn(−I + P), then ∞
k=s+1

ckBk
n

 ≤

P(−I + Qn − QnP)
∞

k=s+1

ckBk−1
n

+

Qn(−I + P)
∞

k=s+1

ckBk−1
n

 . (3.3)

An easy computation shows that P =
N

i=1 ⟨·, Vξi⟩L Vξi. We write Xn = −I + Qn − QnP in short. Notice that ∥Xn∥B(L) ≤ 3.
Then the first term in (3.3) can be bounded as follows: for ξ ∈ H, ∥ξ∥H = 1,PXn

∞
k=s+1

ckBk−1
n ξ


H

=

 N
i=1


Xn

∞
k=s+1

ckBk−1
n ξ, Vξi


L

Vξi


H

≤

N
i=1



Xn

∞
k=s+1

ckBk−1
n ξ, Vξi


L

 ∥Vξ∥H

≤

N
i=1

∥Xn∥B(L)

 ∞
k=s+1

ckBk−1
n ξ


L

∥Vξi∥L∥V∥

≤ 3N


∞

k=s+1

|ck|∥Bn∥
k−1
B(L)


∥V∥ ≤ 3N∥V∥

∞
k=s+1

|ck|.

Thus we haveP(−I + Qn − QnP)
∞

k=s+1

ckBk−1
n

 ≤ 3N∥V∥

∞
k=s+1

|ck|. (3.4)
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The second term on the right in (3.3) can be bounded in a similar fashion, namelyQn(−I + P)
∞

k=s+1

ckBk−1
n ξ

 ≤

N
i=1



(−I + P)

∞
k=s+1

ckBk−1
n ξ, Vnξi


L

 ∥Vnξ∥H

≤

N
i=1

 ∞
k=s+1

ckBk−1
n


B(L)

∥Vn∥

≤ N∥Vn∥

∞
k=s+1

|ck|.

Since (Vn)n is convergent, then there exists K > 0 such that ∥Vn∥ ≤ K , for all n ≥ 1. Therefore we haveQn(−I + P)
∞

k=s+1

ckBk−1
n

 ≤ NK
∞

k=s+1

|ck|. (3.5)

Inserting (3.4) and (3.5) into (3.3) we get ∞
k=s+1

ckBk
n

 ≤ N(3∥V∥ + K)
∞

k=s+1

|ck|.

Finally, let s be large enough to guarantee that

1.
∞

k=s+1 ckB
k
0

 ≤ ϵ,
2.


∞

k=s+1 |ck| ≤
ϵ

N(3∥V∥+K) .

Using the estimates in (3.2), we arrive at

lim
n→∞

∥F(Vn)− F(V0)∥ ≤ lim
n→∞

s
k=1

|ck|∥Bk
n − Bk

0∥ + 2ϵ = 2ϵ.

Since ϵ > 0 is arbitrary, our lemma follows. �

Lemma 3.7. The map CN ⊆ B(H) → B(H),W → WW ∗, is continuous, where the adjoint is with respect to the L inner
product.

Proof. Let V1, V2 ∈ CN . Let S be an N-dimensional subspace contained in H such that ∥Vjξ∥L = ∥ξ∥L, for j = 1, 2. Let
ξ1, . . . , ξN be a basis of S such that


ξi, ξj


L

= δij. Set C := max1≤i≤N ∥ξi∥H . For any ξ ∈ H ,

∥(V1V ∗

1 − V2V ∗

2 )ξ∥H =

 N
i=1

⟨ξ, V1ξi⟩L V1ξi −

N
i=1

⟨ξ, V1ξi⟩L V1ξi


H

≤

N
i=1

| ⟨ξ, (V1 − V2)ξi⟩L |∥V1ξi∥H + | ⟨ξ, V2ξi⟩L |∥(V1 − V2)ξi∥H

≤ NC(C∥V1∥ + 1)∥V1 − V2∥,

so we have ∥V1V ∗

1 − V2V ∗

2 ∥ ≤ NC(C∥V1∥ + 1)∥V1 − V2∥, and the stated continuity now follows. �

It is worth pointing out that the following construction of a continuous local cross section is adapted from [13]. In this
article, the authors gave a continuous local cross section for a transitive action on each connected component of the set of
partial isometries in a C∗-algebra. The continuity of the square root stated in Lemma 3.6 provides the technical tool to adapt
the construction to our setting.

Proposition 3.8. Let V ∈ CN . Then the map

πV : U −→ CN , πV (U) = UV ,

has continuous local cross sections. In particular, it is a locally trivial fibre bundle.

Proof. Let S be an N-dimensional subspace of H such that ∥Vξ∥L = ∥ξ∥L. Let ξ1, . . . , ξN be a basis of S such that
ξi, ξj


L

= δij. Our estimates will involve the constant:

C := max
1≤i≤N

∥ξi∥H .
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We first prove that πV has a continuous local cross section in a neighbourhood of V . We set

rV := min


1,

1
C2N2(1 + ∥V∥)(1 + CN + CN∥V∥)2


.

Then consider the following open set

W = {V1 ∈ CN : ∥V1 − V∥ < rV }.

Let VV ∗
= P and V1V ∗

1 = P1, where the adjoint is takenwith respect to theL inner product. Then P and P1 areL-orthogonal
projections of rank N . If V1 ∈ W , we claim that

∥P − PP1P∥ < 1.

In fact, we have

∥P − PP1P∥ ≤ ∥P∥∥P − P1P∥ ≤ ∥V∥∥V ∗
∥
2
∥V − V1V ∗

1 V∥

= ∥V∥∥V ∗
∥
2
∥(I − V1V ∗

1 )(V − V1)∥

≤ ∥V∥∥V ∗
∥
2
∥I − V1V ∗

1 ∥∥V − V1∥. (3.6)

The task is now to estimate each of these factors. Notice that for any ξ ∈ H, ∥ξ∥H = 1, we obtain

∥V ∗ξ∥H =

 N
i=1

⟨ξ, Vξi⟩L ξi


H

≤

N
i=1

| ⟨ξ, Vξi⟩L |∥ξi∥H

≤

N
i=1

∥ξ∥L∥Vξi∥L∥ξi∥H ≤

N
i=1

∥ξi∥H ≤ CN.

We thus get

∥V ∗
∥ ≤ CN. (3.7)

The third factor in (3.6) can be bounded as follows

∥I − V1V ∗

1 ∥ ≤ 1 + ∥V1∥∥V ∗

1 ∥ ≤ 1 + CN∥V1∥

≤ 1 + CN(rV + ∥V∥) ≤ 1 + CN + CN∥V∥, (3.8)

where we use that rV ≤ 1. Inserting (3.7) and (3.8) into (3.6), our claim follows. Therefore the operator PP1P is invertible
on Ran (P). Notice that PP1P and its inverse (PP1P)−1 on Ran (P) are bounded in the L norm due to the fact that P has
finite rank. Thus the square root with respect to L of the positive operator (PP1P)−1 is well defined and bounded on L. Set
T1 = P1(PP1P)−1/2, and then notice that

T ∗

1 T1 = (PP1P)−1/2P1(PP1P)−1/2
= (PP1P)−1/2(PP1P)(PP1P)−1/2

= P,

where the adjoint of T1 is considered with respect to L. Our next step is to prove that T1T ∗

1 = P1. To this end we check that
P1P = T1|P1P| is actually the polar decomposition. By the uniqueness of this decomposition, it is enough to show that

T1|P1P| = P1|P1P|
−1

|P1P| = P1P,

and

Ran (P) = Ran (PP1P) ⊆ Ran (PP1) ⊆ Ran (P), (3.9)

so we have Ker (T1) = Ker (P) = Ran (P)⊥2 = Ran (PP1)⊥2 = Ker (P1P). Hence T1 is the L-partial isometry given by the
polar decomposition, and consequently, we get that Ran (T1T ∗

1 ) = Ran (P1P).
On the other hand, in the same manner as (3.6) we have

∥P1 − P1PP1∥ ≤ ∥V1∥∥V ∗

1 ∥
2
∥I − VV ∗

∥∥V − V1∥

≤ (rV + ∥V∥)C2N2(1 + CN∥V∥)∥V − V1∥

≤ (1 + ∥V∥)C2N2(1 + CN∥V∥)∥V − V1∥ < 1.

According to the preceding inequality, P1 − P1PP1 is invertible on Ran (P1). Then we can prove that Ran (P1P) = Ran (P1) in
the same way as in (3.9) interchanging the roles of P and P1. From this latter fact, we deduce that T1T ∗

1 = P1.
In order to construct another partial isometry T2 on L such that T ∗

2 T2 = I − P and T2T ∗

2 = I − P1 we repeat the above
argument with the projections I − P and I − P1. In fact, notice that

∥(I − P)− (I − P)(I − P1)(I − P)∥ = ∥(P1 − PP1)(I − P)∥
≤ ∥V ∗

1 ∥∥I − VV ∗
∥
2
∥V − V1∥ < 1.
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In a similar fashion we can find that ∥(I − P1) − (I − P1)(I − P)(I − P1)∥ < 1. Then we have that T2 = (I − P1)((I −

P)(I − P1)(I − P))−1/2 is the required L-partial isometry implementing equivalence between I − P and I − P1. Actually, the
definition of T2 needs the following remarks:

1. Note that the finite rank projections P, P1 can be extended to L, then the operator A := (I − P)(I − P1)(I − P) can
also be extended to L. Apparently, A is positive with respect to the L inner product, then A1/2 is well defined using the
continuous functional calculus in B(L).

2. Recall that A is invertible on (I − P)(H). It follows from [19, Theorem II] that σ(A|(I − P)(L)) ⊆ σ(A|(I − P)(H)), and
consequently, the extension of A to (I − P)(L) is invertible. Then A1/2((I − P)(L)) = (I − P)(L), and by Remark 3.5 we
have A1/2((I − P)(H)) = A1/2(H) ⊆ H , so we find that A1/2((I − P)(H)) ⊆ (I − P)(H).

3. According to our last remark, it is possible to restrict the domain of A1/2, and the resulting operator A1/2
|(I−P)(H) :

(I − P)(H) −→ (I − P)(H) is bounded with respect to the inner product of H . Moreover, C := A−1
|(I−P)(H)A1/2

|(I−P)(H),
which is also continuous with respect to the topology of H , turns out to be the inverse of A1/2

|(I−P)(H).
4. Observe that T2((I − P)(H)) ⊆ (I − P1)(H) and T ∗

2 ((I − P1)(H)) ⊆ (I − P)(H). Since T2 is an L-partial isometry from
(I − P)(L) onto (I − P1)(L), then we find that T2((I − P)(H)) = (I − P1)(H).

We define T := T1 + T2, which is clearly a unitary operator in B(L). Then we note that T (P(H)) = T1(P(H)) = P1(H)
and T ((I − P)(H)) = T2((I − P)(H)) = (I − P1)(H), so we have that T (H) = H . By Lemma 2.3 we get T |H ∈ U.

On the other hand, we set W = V1V ∗T ∗
+ I − P1. Clearly, W is a unitary on L such that W (H) ⊆ H . Moreover,

W ∗
= TVV ∗

1 + I − P1 also satisfiesW ∗(H) ⊆ H . Therefore we haveW (H) = H , and consequently,W |H ∈ U.
Now we give the continuous local cross section of πV , namely

σ : W −→ U, σ (V1) = W |H T |H .

Note that for V1 ∈ W ,

σ(V1)V = V1V ∗T ∗TV + (I − P1)TV = V1V ∗PV = V1V ∗V = V1V ∗

1 V1 = V1,

which shows that σ is a section for πV . The continuity of σ can be deduced from the following facts:

1. According to Lemma 3.7 the map CN → B(H), V1 → V1V ∗

1 , is continuous in B(H).
2. The map V1 → (PV1V ∗

1 P)
1/2 is clearly continuous in B(H) since P is a finite rank operator and the square root is

continuous in B(L). Then the map given by T1(V1) = V1V ∗

1 (PV1V ∗

1 P)
−1/2 is continuous because taking inverses on P(H)

is continuous.
3. From Lemma 3.6 we have that A(V1) = ((I −VV ∗)(I −V1V ∗

1 )(I −VV ∗))1/2|H is continuous in B(H). By the third remark
after the definition of T2, we know that A(V1) is invertible on (I−P)(H). Since taking inverses on (I−P)(H) is continuous,
we can conclude that T2(V1) = (I − V1V ∗

1 )A(V1)
−1 is continuous with respect to the norm of B(H).

4. Now the continuity of T (V1) = T1(V1)+T2(V1) is a straightforward consequence of the previous facts. On the other hand,
W (V1) = V1V ∗T (V1)

∗
+ I − V1V ∗

1 is continuous in B(H) since T (V1) ∈ U, which implies that T (V1)
∗
|H = T (V1)

−1, and
hence the desired continuity can be deduced again of the continuity of taking inverses.

It only remains to show how one can construct a continuous section for πV in a neighbourhood of V0 ∈ CN . Let U ∈ U such
that UV = V0. Then the required section is given by σ̃ : W̃ −→ U, σ̃ (V1) = Uσ(U−1V1), where

W̃ =


V1 ∈ CN : ∥V1 − V0∥ <

rV
∥U−1∥


.

This finishes the proof; the detailed verification of this latter fact is straightforward. �

3.2. Differential structure of CN

The following result is a consequence of the implicit function theorem in Banach spaces, and it can be found
in [25, Proposition 1.5].

Lemma 3.9. Let G be a Banach–Lie group acting smoothly on a Banach space X. For a fixed x0 ∈ X, denote by πx0 : G −→ X
the smooth map πx0(g) = g · x0. Let G · x0 be the orbit of x0. Suppose that

1. πx0 is an open mapping, when regarded as a map from G onto the orbit G · x0 (with the relative topology of X).
2. The differential (dπx0)1 : (TG)1 −→ X splits: its kernel and range are closed complemented subspaces.

Then G · x0 is a smooth submanifold of X, and the map πx0 : G −→ G · x0 is a smooth submersion.
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Let V ∈ CN . The isotropy group at V of the above defined action is given by

GV = {U ∈ U : UV = V }.

Suppose that ξ1, . . . , ξN is the orthonormal basis with respect to the inner product of L of S = Ker (V )⊥L . Consider the
projection P = VV ∗, which is given by

P : H −→ H, P(ξ) =

N
i=1

⟨ξ, Vξi⟩L Vξi.

Then we can rewrite the isotropy group as

GV = {U ∈ U : UP = P}. (3.10)

Remark 3.10. Let P be a finite rank L-orthogonal projection in B(H) and X ∈ B(H). It will be useful to point out the
following facts:

(1) The operator XP is continuous with respect to the norm of L. To prove this, pick a sequence (ξn)n in H such that
∥ξn∥L → 0. Since P is L-orthogonal, it is a symmetrisable operator, and it can be extended to a continuous operator
on L (see [19, Theorem I]). Thus, ∥Pξn∥L → 0. But P has finite rank, so that the norms of L and H are equivalent on
Ran (P). Therefore ∥Pξn∥H → 0. The latter implies that ∥XPξn∥H → 0, so it follows that ∥XPξn∥L → 0.

(2) The operator (XP)∗|H belongs to B(H). To see this, note that by the previous item XP can be continuously extended to
L. Therefore the L adjoint of this extension, which we will denote by (XP)∗, is also a bounded operator on L. Also note
that

Ran ((XP)∗|H ) ⊆ Ran ((XP)∗) = Ran (((XP)P)∗) = Ran (P(XP)∗) ⊆ Ran (P).

Hence we find that (XP)∗(H) ⊆ H . Finally, it follows by a straightforward application of the closed graph theorem that
the restriction (XP)∗|H is a continuous operator on H (the same argument as in the proof of implication (iii) ⇒ (ii) of
Lemma 2.5).

Lemma 3.11. Let P be a finite rank L-orthogonal projection in B(H). Then there exists a constant C > 0 such that

∥(XP)∗|H∥ ≤ C∥XP∥,

for all X ∈ B(H), where the adjoint is with respect to the L inner product and the operator norm is with respect to the Hilbert
space H .

Proof. Since all the norms are equivalent in finite dimension, there is a constant C1 > 0 satisfying

∥ξ∥L ≤ ∥ξ∥H ≤ C1∥ξ∥L

for all ξ ∈ Ran (P). Since (XP)∗|H has finite rank, there exists ξ0 ∈ H, ∥ξ0∥H = 1 such that ∥(XP)∗|H∥ = ∥(XP)∗ξ0∥H . In
the second item of Remark 3.10 we have showed that Ran ((XP)∗|H ) ⊆ Ran (P). Hence we have that (XP)∗ξ0 ∈ Ran (P).
Then,

∥(XP)∗|H∥ = ∥(XP)∗ξ0∥H ≤ C1∥(XP)∗ξ0∥L = C1∥ξ0∥L

(XP)∗ ξ0

∥ξ0∥L


L

≤ C1∥(XP)∗∥B(L) = C1∥XP∥B(L).

Due to the fact that XP has finite rank as an operator acting on L, there is a vector η0 ∈ L, ∥η0∥L = 1 such that
∥XP∥B(L) = ∥XPη0∥L. Moreover, we can take η0 ∈ ker(XP)⊥L = Ran ((XP)∗) ⊆ Ran (P), where we have omitted the
L-closure of Ran ((XP)∗) because the operator has finite rank. Hence we obtain

∥(XP)∗|H∥ ≤ C1∥XPη0∥L ≤ C1∥XPη0∥H ≤ C1∥XP∥∥η0∥H ≤ C2
1∥XP∥. �

Our main result on the differential structure of CN now follows.

Theorem 3.12. Let V ∈ CN . Then the map

πV : U −→ CN , πV (U) = UV

is a real analytic submersion, and induces on CN a homogeneous structure. Furthermore, CN is a real analytic submanifold of
B(H).
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Proof. The proof consists in applying Lemma 3.9 with X = B(H),G = U and x0 = V . We first note that the action
U × B(H) → B(H), (U, X) → UX is an analytic map. Indeed, according to Remark 2.4 we know that the inclusion map
i : U ↩→ Gl(H) is analytic. Thus the action, which is given by multiplication in B(H), has to be analytic.

On the other hand, it follows at once from Proposition 3.8 that πV is an open map. The differential of πV at the identity is
given by

δV := (dπV )I : u −→ B(H), δ(X) = XV .

The Lie algebra of the isotropy group computed in (3.10), which is the kernel of δV , is given by

gV = {X ∈ u : XP = 0}.

It is clear that gV is closed in u. From Lemma 2.5 (iii) there exists Z ∈ B(L), Z∗
= −Z , such that Z |H = X . Then we have

that ZP = 0 implies −PZ = (ZP)∗ = 0, and consequently, PX = 0. Thus we may represent X as a 2 × 2 matrix with respect
to the decomposition induced by P , that is

X =


0 0
0 X22


.

Therefore gV is complemented in u. In fact, the subspace

hV = {X ∈ u : (I − P)X(I − P) = 0}

is a closed supplement of gV in u.
It remains to prove that the range of δV is a closed complemented subspace ofB(H). To this endwe define the real linear

map:

K : B(H) −→ B(H), K(X) =
1
2
(PXP − (PXP)∗|H )− ((I − P)XP)∗|H + (I − P)XP.

Note K(X) is the restriction to H of the antisymmetric operator acting on L, namely 1
2 (PXP − (PXP)∗) − ((I − P)XP)∗

+ (I − P)XP , which is bounded on L by the first item of Remark 3.10. This shows that K(X) ∈ u for all X ∈ B(H).
The continuity of K with the operator norm of B(H) essentially follows from Lemma 3.11. Indeed, only the terms

involving the adjoint in the definition of K have to be handled with certain care. For instance, note that

∥((I − P)XP)∗|H∥ ≤ C∥(I − P)XP∥ ≤ C∥I − P∥∥X∥∥P∥.

The second term in the definition of K can be treated analogously. Then a straightforward computation shows that E :

B(H) → (TCN)P , E(X) = K(X)P is a continuous real surjective projection. Now it is enough to note that Ẽ(X) = E(XV ∗)V
is a continuous real projection onto (TCN)V , and the proof is complete. �

By a symmetrically-normed idealwe mean a two-sided ideal S of B(H) equipped with a norm ∥ · ∥S satisfying

(i) (S, ∥ · ∥S) is a Banach space,
(ii) ∥XYZ∥S ≤ ∥X∥∥Y∥S∥Z∥, whenever X, Z ∈ B(H) and Y ∈ S,
(iii) ∥X∥S = ∥X∥, when X has rank one.

Well-known examples of symmetrically-normed ideals are the p-Schatten operators Sp for 1 ≤ p ≤ ∞, where S∞

stands for the compact operators. More elaborated examples as well as a full treatment of symmetrically-normed ideals can
be found in [26] or [27].

Corollary 3.13. Let S be a symmetrically-normed ideal of B(H). Then CN is a real analytic submanifold of S.

Proof. We apply again Lemma 3.9 with X = S,G = U and V ∈ CN . Note that the action U × S → S, (U, X) → UX is an
analytic map since the inclusion map i : U ↩→ Gl(H) is analytic (see Remark 2.4) and the bilinear map

B(H)× S −→ S, (X, Y ) → XY

is bounded. In fact, this follows from the very definition of symmetrically-normed ideals, since it is assumed that ∥XY∥S ≤

∥X∥∥Y∥S. On the other hand, we claim that the map

πV : U −→ S, πV (U) = UV

has continuous local cross sections. To this end let V1, V2 ∈ CN . Since V1 − V2 has rank at most 2N , there are at most 2N
nonzero singular values sj(V1 − V2), j = 1, . . . , 2N , when one regards V1 − V2 as an operator acting on H . It follows that

∥V1 − V2∥ ≤ ∥V1 − V2∥S ≤

2N
j=1

sj(V1 − V2) ≤ 2N∥V1 − V2∥.
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Hence the local cross sections constructed in Proposition 3.8 are continuous with respect to the norm of S. Finally, note that
tangent spaces may be rewritten as

(TCN)V = {XV : X ∈ u ∩ S}.

This allows us to find closed supplements using the same method as in the previous theorem, but with S in place of B(H)
in the definition of the map K . �

4. Grassmann manifolds in quantum chemistry

In the very beginning of the Introduction, the Grassmann manifold GN in quantum chemistry was defined as a quotient
space of CN , when the latter was considered as a subset of HN . If we think of CN as operators, the Grassmann manifold in
quantum chemistrymay be defined as the quotient space with respect to the equivalence relation

V1 ∼ V2 if V1U = V2 for some U ∈ U(S),

where S is an N-dimensional subspace of H equal to the initial space of the operators in CN and U(S) denotes the unitary
group of S with respect to the L inner product.

Remark 4.1. In the above definition of the equivalence relationship we may assume that U ∈ U. In fact, if V1U = V2 for
some U ∈ U, then ∥V1Uξ∥L = ∥V2ξ∥L = ∥ξ∥L = ∥Uξ∥L, and consequently, Uξ ∈ S, whenever ξ ∈ S. We thus get
U|S ∈ U(S), and V1U|S = V2.

Let PN denote the set of rank N L-orthogonal projections on H , i.e.

PN = {P ∈ B(H) : P2
= P, rank(P) = N, ⟨Pξ, η⟩L = ⟨ξ, Pη⟩L , ∀ ξ, η ∈ H}.

In the following, we regard PN endowed with the topology inherited from B(H).

Remark 4.2. Note that PN can be characterised as

PN =


N
i=1

⟨·, ηi⟩L ηi : (η1, . . . , ηN) ∈ CN


.

Actually, if P ∈ PN andη1, . . . , ηN is anL orthonormal basis of Ran (P), then for any ξ ∈ H , wehave that ξ = Pξ+(I−P)ξ =N
i=1 ⟨Pξ, ηi⟩L ηi+(I−P)ξ . It follows Pξ =

N
i=1 ⟨Pξ, ηi⟩L Pηi =

N
i=1 ⟨ξ, Pηi⟩L ηi =

N
i=1 ⟨ξ, ηi⟩L ηi. The other inclusion

is trivial.

Lemma 4.3. The map

ϕ : CN −→ PN , ϕ(V ) = VV ∗,

has continuous local cross sections. In particular, GN and PN are homeomorphic.

Proof. Let P ∈ PN . Consider the open neighbourhood of P given by

V =


P1 ∈ PN : ∥P − P1∥ <

1
(∥P∥ + 1)2


.

Then we note that for P1 ∈ V ,

∥P − PP1P∥ = ∥P(P − P1)P∥ ≤ ∥P∥
2
∥P − P1∥ < 1,

and

∥P1 − P1PP1∥ ≤ ∥P1∥2
∥P − P1∥ ≤ (∥P∥ + 1)2∥P − P1∥ < 1.

In the same fashion as the proof of Proposition 3.8 we can construct an L-partial isometry T1 = T1(P1) = P1(PP1P)−1/2 such
that T ∗

1 T1 = P and T1T ∗

1 = P1. In order to modify the initial space of T1, we can proceed as in the proof of Lemma 3.4 to
find an operator U ∈ U such that U(S) = P(H), where S is the initial space of operators in CN . Thus the continuous map
ψ : V −→ CN , ψ(P1) = T1(P1)U , is the required section for ϕ.

Next we consider the following commutative diagram

CN
ϕ̃ //

ϕ
!!CC

CC
CC

CC
GN

i
��

PN ,
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where ϕ̃(V ) = [V ] and i([V ]) = VV ∗. Notice that ϕ(V ) = VV ∗
= V1V ∗

1 = ϕ(V1) implies V = VV ∗V = V1V ∗

1 V . Then we
have that

U =


V ∗

1 V 0
0 I


satisfies V = V1U . Sowe obtain [V ] = [V1]. Therefore i is a bijection. Moreover, i is continuous: letW an open set inPN , then
i−1(W) is open if and only if ϕ−1(W) is open, which follows from the continuity of ϕ. Finally, the fact that i−1 is continuous
is a consequence of the existence of continuous local cross sections for ϕ. �

Notation 4.4. By the above result, we will use the symbol GN to indicate any of the possible presentations of the Grassmann
manifold in quantum chemistry, i.e. as a quotient space or rank N L-orthogonal projections.

4.1. Differential structure of GN

In this section we use the previous results on CN to study the differential structure of GN . First we define an action of the
Banach–Lie group U on GN by

U × GN −→ GN , U · P = UPU−1.

Remark 4.5. Note that this action is transitive: let P, P1 ∈ GN . By Lemma 4.3 there are V , V1 ∈ CN such that VV ∗
= P and

V1V ∗

1 = P1. Applying Lemma 3.4 we get U ∈ U such that UV = V1. Let W ∈ U(L) be the extension of U to all L. Then we
have thatWPW ∗

= WV (WV )∗ = V1V ∗

1 = P1 on L, but this yields UPU−1
= P1 when one restricts the operators to H .

Lemma 4.6. Let P ∈ GN . The map

πP : U −→ GN , πP(U) = UPU−1,

has continuous local cross sections. In particular, it is a locally trivial fibre bundle.

Proof. Let P, P1 ∈ GN . Set V = ψ(P), whereψ is the continuous local cross section in the proof of Lemma 4.3. According to
Proposition 3.8 there exists an open neighbourhood W of V and a continuous map σ : W −→ U such that σ(V1)V = V1
for all V1 ∈ W . Then we choose r > 0 to ensure that ψ(P1) ∈ W whenever ∥P1 − P∥ < r , and we set

φ : {P1 ∈ GN : ∥P1 − P∥ < r} −→ U, φ(P1) = (σ ◦ ψ)(P1).

Clearly, φ is a continuous map. Note that we can extend the operators of the range of σ to obtain unitary operators on L
satisfying

πP(φ(P1)) = φ(P1)Pφ(P1)∗ = σ(ψ(P1))V (σ (ψ(P1))V )∗ = ψ(P1)ψ(P1)∗ = P1.

If we restrict the above equation to H , we find that φ is a section for πP , and this ends the proof. �

Remark 4.7. Let P ∈ GN . The isotropy group of the action of U on GN is given by

GP = {U ∈ U : UP = PU}.

Operators in GP can be regarded as block diagonal operators with respect to the projection P , i.e.

U =


U11 0
0 U22


.

Then the Lie algebra of GP is given

gP = {X ∈ u : XP = PX},

or in terms of block matrices any X ∈ gP is of the form

X =


X11 0
0 X22


.

Theorem 4.8. Let P ∈ GN . Then the map

πP : U −→ GN , πP(U) = UPU−1

is a real analytic submersion, and induces on GN a homogeneous structure. Furthermore, GN is a real analytic submanifold of
B(H).
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Proof. Note that the action ofU onB(H) given by (U, X) → UXU−1 is analytic essentially due to the fact that the inclusion
map U ↩→ Gl(H) is analytic, which was pointed out in Remark 2.4. According to Lemma 4.6 the map πP : U −→ GN ,
πP(U) = UPU−1 is open. Its differential at the identity is given by

δP := (dπP)I : u −→ B(H), δP(X) = XP − PX .

Note that kernel of δP is a closed complemented subspace of u. In fact, a closed supplement is given by the co-diagonal block
matrices, i.e.

hP = {X ∈ u : PXP = (I − P)X(I − P) = 0}.

On the other hand, the range of δP is also a closed complemented subspace of B(H). To this end it is enough to point out
that

F : B(H) → (TGN)P , F(X) = K(X)P − PK(X),

where K is the map defined at the end of the proof of Theorem 3.12, is a continuous real projection onto (TGN)P . �

The following result can be drawn in much the same way as Corollary 3.13.

Corollary 4.9. Let S be a symmetrically-normed ideal of B(H). Then GN is a real analytic submanifold of S.

5. Finsler structures for the Stiefel and Grassmann manifolds in quantum chemistry

As a straightforward application of the preceding results, we show that the Stiefel and Grassmannmanifolds in quantum
chemistry are complete Finsler manifolds. Furthermore, there is a natural Riemannian metric for these manifolds induced
by the Hilbert–Schmidt inner product. The motivation for including these consequences is that Finsler and Riemannian
manifolds provide a quite natural framework in critical point theory (see e.g. [4,28]).

Since the notion of Finsler manifolds is not uniform in the literature, we mention that we use the definition introduced
by Palais [29]. Let M be a C1 manifold modeled on a Banach space X with tangent bundle TM . A Finsler structure for M is a
function ∥ · ∥ : TM −→ R such that

(i) for eachm ∈ M, w ∈ (TM)m, the function (x, w) → ∥w∥m := ∥(m, w)∥ is an admissible norm on (TM)m,
(ii) for each m0 ∈ M, (W,Φ) a chart of M with m0 ∈ W and k > 1, there is an open neighbourhood Wm0 of m0 in W

satisfying

1
k
∥dΦ−1

Φ(m)(v)∥m ≤ ∥dΦ−1
Φ(m0)

(v)∥m0 ≤ k∥dΦ−1
Φ(m)(v)∥m

for all m ∈ Wm0 and all v ∈ X.

A Finsler manifold is a C1 Banach manifold together with a Finsler structure. If γ (t), t ∈ [0, 1], is a C1 curve in M , its length
is defined by

L(γ ) =

 1

0
∥γ̇ (t)∥γ (t) dt.

On each connected component ofM , there is a well-defined metric given by

d(m0,m1) = inf{L(γ ) : γ ⊆ M, γ (0) = m0, γ (1) = m1},

where the curves considered are C1. Furthermore, it turns out that the topology defined by this metric d coincides with the
manifold topology ofM . We refer the reader to [28] or [29] for the proof of these facts. If (M, d) is a complete metric space,
thenM is called a complete Finsler manifold.

Remark 5.1. An example of a complete Finsler manifold is a closed C1 submanifold M of a Banach space X endowed with
the norm induced by the inclusion (TM)m ⊆ (TX)m ≃ X ([29, Theorem 3.6]).

Let V ∈ CN . Recall that the map πV is a submersion and, therefore, the tangent space of CN at V may be identified with

(TCN)V = {XV : X ∈ u}.

Let P ∈ GN . Analogously, we may identify the tangent space of GN at P with

(TGN)P = {XP − PX : X ∈ u}.
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Corollary 5.2. Let S be a symmetrically-normed ideal of B(H). The following assertions hold:

(i) CN is a complete Finsler manifold with structure given by

∥XV∥V := ∥XV∥S, XV ∈ (TCN)V .

(ii) GN is a complete Finsler manifold with structure given by

∥XP − PX∥P := ∥XP − PX∥S, XP − PX ∈ (TGN)P .

Proof. It follows from the fact that both manifolds are closed in S, Corollaries 4.9 and 3.13 and Remark 5.1. �

As a special case of the above corollary, a bit more can be stated when one considers the ideal of Hilbert–Schmidt
operators of B(H). In fact, a Riemannian metric on CN is at hand: for XV , YV ∈ (TCN)V ,

⟨XV , YV ⟩V := Re Tr (XV (YV )∗),

where Tr is the usual trace and the adjoint is taken with respect to the H inner product. In a similar fashion, we can define
a Riemannian metric on the Grassmann manifold: given XP − PY , YP − PY ∈ (TGN)P ,

⟨XP − PX, YP − PY ⟩P := Re Tr ((XP − PX)(YP − PY )∗).

Corollary 5.3. CN and GN are complete analytic Hilbert–Riemann manifolds.

Remark 5.4. LetSM denote the unit sphere inRM+1. In themulti-configurativeHartree–Fock type equations [7,9], the energy

functional is now defined in the variational spaces CK ,N := S

K
N


× CK , where N < K . Thus CK ,N is also a complete analytic

Hilbert–Riemann manifold, being the product of a sphere and the Stiefel manifold CK .
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