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1. Introduction

In this paper we explore some results implied by range additivity of operators in a 
Hilbert space H. Let L(H) be the algebra of bounded linear operators on H and L(H)+
the cone of positive operators on H. Consider the set

R :=
{
(A,B) : A,B ∈ L(H) and R(A + B) = R(A) + R(B)

}
,

where R(T ) denotes the range of T . If (A, B) ∈ R we say that A, B satisfy the range 
additivity property. On the other side, we say that a positive operator A ∈ L(H)+ and 
a closed subspace S ⊆ H are compatible if S + (AS)⊥ = H; in [11] it is shown that 
A and S are compatible if and only if there exists an idempotent operator E ∈ L(H)
such that R(E) = S and E is A-selfadjoint, in the sense that 〈Ex, y〉A = 〈x, Ey〉A for 
x, y ∈ H, where 〈x, y〉A = 〈Ax, y〉. Notice that ‖x‖A = 〈x, x〉1/2A is a seminorm, and that 
E behaves, with respect to this seminorm, as an orthogonal projection. So, A and S are 
compatible if there is an A-orthogonal projection onto S. One of the main results of the 
paper is that A and S are compatible if and only if (A, I − PS) ∈ R, where PS denotes 
the classical orthogonal projection onto S. In order to prove this assertion, and some 
other general facts on range additivity and compatibility, we explore some features of 
the shorted operator [S]A. This operator has been defined by M.G. Krein [24] as

[S]A := max
{
X ∈ L(H)+ : X ≤ A and R(X) ⊆ S

}
.

He proved that the maximum for the Löwner ordering (i.e., C ≤ D if 〈Cξ, ξ〉 ≤ 〈Dξ, ξ〉
for every ξ ∈ H) exists and then applied this construction for a parametrization of the 
selfadjoint extensions of semi-bounded operators. W.N. Anderson and G.E. Trapp [1]
redefined and studied this operator, which can be used in the mathematical study of 
electrical networks. Here, we use the properties of the shorted operator in order to prove 
that, for A, B ∈ L(H)+ such that R(B) is closed, it holds that (A, B) ∈ R if and only 
if A and N(B) are compatible, where N(B) denotes the nullspace of B. In particular, 
for B = I − PS we get the assertion above. However, this is not the first manifestation 
of a relationship between compatibility of A and S and properties of [S]A. In fact, 
Anderson and Trapp [1] proved that [S]A is the infimum, for the Löwner ordering, of 
the set {EAE∗ : E ∈ L(H), E2 = E, N(E) = S⊥}. In [11, Proposition 4.2], [12, 
Proposition 3.4] it is proven that the infimum is attained if and only if A and S are 
compatible. Moreover, it is shown that if E ∈ L(H) is an idempotent operator such that 
AE = E∗A and R(E) = S, then [S⊥]A = A(I −E). Here, we explore more carefully the 
properties of [S]A which are relevant for the compatibility of A and S. Another result 
which may be relevant for updating theory is the extension of the well-known theorem 
of J.A. Fill and D.E. Fishkind [19] which says that, for n × n complex matrices A, B
such that rk(A + B) = rk(A) + rk(B) it holds that

(A + B)† = (I − S)A†(I − T ) + SB†T,
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where † denotes the Moore–Penrose inverse, S = (PN(B)⊥PN(A))† and T = (PN(A∗) ×
PN(B∗)⊥)†. Here, rk(X) denotes the rank of the matrix X. This is a generalization of 
the famous Sherman–Morrison–Woodbury formula:

(
A + Y GZ∗)−1 = A−1 −A−1Y

(
G−1 + Z∗A−1Y

)−1
Z∗A−1, (1)

provided that A and A + Y GZ∗ are invertible; here A, Y , G, Z are matrices of suit-
able sizes. Around 1950 J. Sherman and W.J. Morrison [31], M.A. Woodbury [32] and 
M.S. Barlett [10] published different versions of formula (1); however it was first discov-
ered by W.J. Duncan [17] and L. Guttman [22] but their finding did not attract much 
attention because it was not explicitly connected with applications. Indeed, the men-
tioned authors were interested in finding a formula for (A +uv∗)−1 provided that A−1 is 
known. For an excellent survey on formula cC(1) and its applications, see [23]. Of course, 
for Hilbert space operators the rank hypothesis must be replaced by a different one. Since 
it is well-known that rk(A + B) = rk(A) + rk(B) if and only if R(A) ∩R(B) = {0} and 
R(A∗) ∩ R(B∗) = {0}, we prove that Fill–Fishkind formula holds for A, B ∈ L(H)
such that R(A) and R(B) are closed, R(A) ∩ R(B) = R(A∗) ∩ R(B∗) = {0} and 
(A, B), (A∗, B∗) ∈ R.

We end this section introducing some notation. The direct sum of two closed subspaces 
S and T will be denoted by S

.
+ T . If H = S

.
+ T then QS//T denotes the oblique 

projection with range S and nullspace T .

2. Range additivity

Let H, K be Hilbert spaces. We say that A, B ∈ L(H, K) have the range additivity 
property if R(A +B) = R(A) +R(B). We denote by R the set of all these pairs (A, B), i.e.,

R :=
{
(A,B) : A,B ∈ L(H,K) and R(A + B) = R(A) + R(B)

}
.

We collect first some trivial or well-known facts about R.

Proposition 2.1. Let A, B ∈ L(H, K). Then:

1. (A, B) ∈ R if and only if (B, A) ∈ R.
2. If R(A) = K and A = C + D for some C, D ∈ L(H, K) then (C, D) ∈ R.
3. If H = K is finite dimensional and A, B ∈ L(H)+ then (A, B) ∈ R.
4. If H = K, A, B ∈ L(H)+ and R(A +B) or R(A) +R(B) is closed, then (A, B) ∈ R; 

in particular, if A, B ∈ L(H)+, R(A) is closed and dimR(B) < ∞, then (A, B) ∈ R.

Proof. Items 1 and 2 are trivial. Item 4 has been proven by P.A. Fillmore and 
J.P. Williams [20, Corollary 3] under the additional hypothesis that R(A) and R(B)
are closed. In [6, Theorem 3.3] there is a proof without this hypothesis. Item 3 follows 
from item 4. �
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Proposition 2.2. For A, B ∈ L(H, K) consider the following conditions:

1. R(A∗)
.
+ R(B∗) is closed.

2. N(A) + N(B) = H.
3. (A, B) ∈ R.

The next implications hold: 1 ⇔ 2 ⇒ 3. The converse 3 ⇒ 2 holds if R(A) ∩R(B) = {0}.

Proof. See [7, Proposition 5.8]. For more a general result see Theorem 2.10. �
Examples 2.3.

1. Consider A =
( 1 1

1 1

)
and B =

( 1 0
1 0

)
. Clearly, (A, B) ∈ R but (A∗, B∗) /∈ R.

2. There exist C, D ∈ L(H)+ such that R(C), R(D) are dense and (C, D) /∈ R. For this, 
consider C, D ∈ L(H)+ with dense ranges such that R(C) ∩R(D) = {0} (see [20]). 
Hence, as N(C) + N(D) = {0} �= H then, by Proposition 2.2, (C, D) /∈ R.

Below we collect some useful characterizations of R. Notice that the proof holds also 
for vector spaces and modules over a ring.

Proposition 2.4. Given A, B ∈ L(H), the following conditions are equivalent:

1. (A, B) ∈ R.
2. R(A) ⊆ R(A + B).
3. R(A −B) ⊆ R(A + B).

Proof. 1 ⇒ 2. If R(A + B) = R(A) + R(B), then, a fortiori, R(A) ⊆ R(A + B).
2 ⇒ 3. For every x ∈ H, (A −B)x = −(A + B)x + 2Ax ∈ R(A + B).
3 ⇒ 1. For every x ∈ H, 2Ax = (A −B)x + (A +B)x ∈ R(A +B) and 2Bx = −(A −

B)x +(A +B)x ∈ R(A +B), and we get R(A) +R(B) ⊆ R(A +B), i.e. (A, B) ∈ R. �
The next result of R.G. Douglas [16] will be frequently used in the paper.

Theorem 2.5. Let A ∈ L(H, K) and B ∈ L(F , K). The following conditions are equiva-
lent:

1. R(B) ⊆ R(A).
2. There is a positive number λ such that BB∗ ≤ λAA∗.
3. There exists C ∈ L(F , H) such that AC = B.

If one of these conditions holds then there is a unique operator D ∈ L(F , H) such that 
AD = B and R(D) ⊆ N(A)⊥.
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This unique operator D is called the reduced solution of AX = B.

Corollary 2.6. For A, B ∈ L(H) the following conditions are equivalent:

1. The equation AX = B has a solution in L(H).
2. (A −B, B) ∈ R.

Corollary 2.7. For A, B ∈ L(H)+ it holds:

1. (A + B)1/2X = A1/2 has a solution.
2. (A1/2, (A + B)1/2 −A1/2) ∈ R.

Proof. In fact, it holds A + B ≥ A and Douglas’ theorem applies. �
The next corollary complements Proposition 2.2. For a proof see [5, Proposition 4.13].

Corollary 2.8. For A, B ∈ L(H, K) the following conditions are equivalent:

1. R(A∗)
.
+ R(B∗) is closed.

2. Equation (A + B)X = A admits a solution which is an oblique (i.e., not necessarily 
orthogonal) projection in L(H).

Recall that A, B ∈ L(H)+ are said to be Thompson equivalent (in symbols, A ∼T B) 
if there exist positive numbers r, s such that rA ≤ B ≤ sA (where C ≤ D means 
that 〈Cx, x〉 ≤ 〈Dx, x〉 for all x ∈ H). By Douglas’ theorem, A ∼T B if and only if 
R(A1/2) = R(B1/2). For a fixed A ∈ L(H)+ the Thompson component of A is the convex 
cone {B ∈ L(H)+ : A ∼T B}. The following identity is due to Crimmins (see [20] for a 
proof): if A, B ∈ L(H, K) then R(A) + R(B) = R((AA∗ + BB∗)1/2). Using Crimmins’ 
identity the following result is clear:

Proposition 2.9. If A, B ∈ L(H)+ then (A, B) ∈ R if and only if (A +B)2 ∼T A2 +B2.

The next characterization of R is less elementary than that of Proposition 2.2. Notice, 
however, that its proof is algebraic, so it also holds in the context of vector spaces, 
modules over a ring, and so on.

Theorem 2.10. Let A, B ∈ L(H). Then R(A + B) = R(A) + R(B) if and only if R(A) ∩
R(B) ⊆ R(A +B) and H = A−1(R(B)) +B−1(R(A)). In particular, if R(A) ∩R(B) = {0}
then (A, B) ∈ R if and only if N(A) + N(B) = H.

Proof. Let T = A +B, W = R(A) ∩R(B) and suppose that R(T ) = R(A) +R(B). Then 
R(A) ⊆ R(T ) and R(B) ⊆ R(T ) so that W ⊆ R(T ). On the other hand, using again that 
R(A) and R(B) are subsets of R(T ) it holds H = T−1(R(T )) = T−1(R(A) + R(B)) =
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T−1(R(A)) + T−1(R(B)). But it is easy to see that T−1(R(A)) = B−1(R(A)). Hence, 
H = T−1(R(A)) + T−1(R(B)) = A−1(R(B)) + B−1(R(A)).

Conversely, suppose that W ⊆ R(T ) and H = B−1(R(A)) + A−1(R(B)). We 
shall prove that R(B) = T (A−1(R(B))). In fact, since B−1(R(A)) = B−1(W) and 
A−1(R(B)) = A−1(W) then

R(B) = B(H) = B
(
B−1(W) + A−1(W)

)
= W + B

(
A−1(W)

)
,

because W ⊆ R(B). Moreover, R(B) = W + B(A−1(W)) = W + T (A−1(W)) =
T (A−1(W)). In fact, for the second equality consider y ∈ W + B(A−1(W)) then 
y = w+Bx where w ∈ W and x ∈ A−1(W), so that y = w−Ax +Tx where w−Ax ∈ W
and Tx ∈ T (A−1(W)); the other inclusion is clear. Then the second equality holds.

To see that W + T (A−1(W)) = T (A−1(W)) it is sufficient to note that W ⊆
T (A−1(W)). In fact, T−1(W) = A−1(W) ∩ B−1(W) ⊆ A−1(W) then applying T to 
both sides of the inclusion W = TT−1(W) ⊆ T (A−1(W)) because W ⊆ R(T ).

Hence, R(B) = T (A−1(W)) = T (A−1(R(B))) ⊆ R(T ). Applying Proposition 2.4, 
(A, B) ∈ R. �

One of the obstructions for range additivity for operators in Hilbert spaces is that 
R(A) is, in general, non-closed. Therefore, the identity R(A + B) = R(A) + (B) is 
not equivalent to N(A∗ + B∗) = N(A∗) ∩ N(B∗), which is easier to check. On these 
matters, see the papers by P. Šemrl [30, §2] and G. Lešnjak and P. Šemrl [25], where 
they discuss different kinds of topological range additivity properties. See also the paper 
by J. Baksalary, P. Šemrl and G.P.H. Styan [9].

3. Shorted operators and range additivity

In his paper on selfadjoint extensions of certain unbounded operators [24], M.G. Krein 
defined what is nowadays known as a shorted operator. More precisely, if A ∈ L(H)+
and S is a closed subspace of H, Krein proved that the set

{
C ∈ L(H)+ : C ≤ A and R(C) ⊆ S

}

admits a maximal element [S]A. Moreover, Krein proved that

[S]A = A1/2PMA1/2,

if M = (A1/2)−1(S). Krein constructed the shorted operators to find selfadjoint positive 
extensions of certain unbounded operators. For a modern exposition of Krein’s ideas on 
these matters, see [8].

Later, W.N. Anderson and G.E. Trapp [1] rediscovered the operator [S]A, proved 
many useful properties and showed its relevance in the theory of impedance matrices 



92 M.L. Arias et al. / Linear Algebra and its Applications 467 (2015) 86–99
of networks. The papers by E.L. Pekarev [26], E.L. Pekarev and J.L. Smul’jan [27], 
T. Ando [3] and S.L. Eriksson and H. Leutwiler [18] contain many useful theorems 
about shorted operators. A nice exposition of results about shorted operators in finite 
dimensional spaces is that of T. Ando [3]. It is worth mentioning the parallel sum, 
a binary operation defined on positive operators, which is also relevant in electrical 
network theory and which is related to shorted operators. If A, B are the impedance 
matrices of two n-port resistive networks then A : B := A(A + B)†B is the impedance 
matrix of their parallel connection. For positive operators A, B on a Hilbert space H, 
Fillmore and Williams [20] defined

A : B = A1/2C∗DB1/2,

if C (resp. D) is the reduced solution of (A +B)1/2X = A1/2 (resp. (A +B)1/2X = B1/2).
Anderson and Trapp [1] proved that A : B is the (1, 1) entry of [S]

(A A
A A+B

)
, where 

S = H ⊕ {0} and the matrix 
(A A
A A+B

)
is considered as an element of L(H ⊕ H)+. 

Thus, the parallel addition is a particular form of the shorted operation. Any extension 
to non-necessarily positive operators of the parallel sum operation requires that (A, B)
and (A∗, B∗) belong to R, at least if one wants to keep the desirable commutativity 
A : B = B : A [29, 10.1.6]. Indeed, Rao and Mitra say that A, B are parallel summable
if A(A + B)−B is invariant for any generalized inverse of A + B. It turns out that 
this happens if and only if (A, B) ∈ R and (A∗, B∗) ∈ R. This means that there is a 
strong relationship among Krein shorted operators, Douglas range inclusion and range 
additivity.

A warning about notation. The original notation by Krein is AS . Anderson and 
Trapp [1] used S(A). Ando [4] proposed [S]A. This is coherent with a relevant con-
struction [B]A for A, B ∈ L(H)+ that he defined and studied in [2], by generalizing a 
theorem of Anderson and Trapp that ([S]A)x = limn→∞(A : nPS)x for every x ∈ H. 
Ando defined the existence of ([B]A)x = limn→∞(A : nB)x for every x ∈ H and proved 
many relevant results on this construction. In particular, it holds that [S]A = [B]A
if S = R(B). Eriksson and Leutwiler [18] used QBA for Ando’s [B]A. In [3], Ando 
has used A/S for the shorted operator and AS = A − A/S . Corach, Maestripieri and 
Stojanoff used 

∑
(PS , A) in [11] and A/S in [12] to denote what we are denoting 

now [S⊥]A.
In the proposition below we collected some facts on the Krein shorted operators, 

mainly extracted from the paper [1] of Anderson and Trapp.

Proposition 3.1. Given A, B ∈ L(H)+ and closed subspaces S, T of H the following 
properties hold:

1. R(A) ∩S ⊆ R([S]A) ⊆ R(([S]A)1/2) = R(A1/2) ∩S; in particular, R([S]A) is closed 
if R(A) is closed or, more generally, if R(A) ∩ S = R(A1/2) ∩ S.
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2. N([S]A) = N(P(A1/2)−1(S)A
1/2) = (A1/2)−1(A1/2(S⊥)) ⊇ N(A) +S⊥; equality holds 

if and only if A1/2(S⊥) ∩R(A1/2) = A1/2(S⊥).
3. [S](A +B) ≥ [S]A +[S]B; equality holds if and only if R((A − [S]A +B− [S]B)1/2) ∩

S = {0}.
4. R((A − [S]A)1/2) ∩ S = {0}. In particular, R([S]A) ∩R(A − [S]A) = {0}.

Proof. 1. See [1, Corollary 4 of Theorem 1 and Corollary of Theorem 3].
2. See [12, Corollary 2.3].
3. See [1, Theorem 4].
4. See [1, Theorem 2]. �

Corollary 3.2. Let A, B ∈ L(H)+. Then:

1. If S = R(B) then [S]B = B and [S](A + B) = [S]A + B.
2. If S = R(B) is closed then R([S](A + B)) = S and N([S](A + B)) = S⊥.

Proof. 1. The identity [S]B = B can be checked through the definition of [S]B; the 
identity [S](A + B) = [S]A + B follows from items 3 and 4 in Proposition 3.1.

2. For every C ∈ L(H)+ it holds R(([S]C)1/2) ⊆ S, therefore S ⊇ R(([S](A +B))1/2) =
R(([S]A +B)1/2) = R(([S]A)1/2) +S ⊇ S, where the second equality holds by Crimmins’ 
identity. The kernel condition follows by taking orthogonal complement. �
Proposition 3.3. Let A ∈ L(H)+ and let S be a closed subspace of H. The following 
conditions are equivalent:

1. ([S]A, A − [S]A) ∈ R.
2. R(A) = R(A − [S]A) 

.
+ R([S]A).

3. R([S]A) ⊆ R(A).
4. R(A1/2) = M ∩R(A1/2) ⊕M⊥ ∩R(A1/2), if M = (A1/2)−1(S).

Proof. Notice that N([S]A) = (A1/2)−1(A1/2(S⊥)) and N(A − [S]A) = A−1(S).
1 ⇔ 2 ⇔ 3. It follows from Proposition 2.4 and Proposition 3.1.
3 ⇔ 4. Assume that R([S]A) ⊆ R(A) and let y = A1/2x ∈ R(A1/2). Hence, A1/2x =

PMA1/2x + (I − PM)A1/2x. Applying A1/2 at both sides, we get that Ax = A1/2(I −
PM)A1/2x + [S]Ax. Thus, since R([S]A) ⊆ R(A) we obtain that A1/2(I − PM)A1/2x ∈
R(A). Therefore, A1/2(I−PM)A1/2x = Az for some z ∈ H. From this, (I−PM)A1/2x −
A1/2z ∈ N(A) ∩R(A) = {0}, i.e., (I − PM)A1/2x = A1/2z ∈ R(A1/2) ∩M⊥. Therefore, 
A1/2x = PMA1/2x + (I − PM)A1/2x ∈ M ∩ R(A1/2) ⊕M⊥ ∩ R(A1/2) and implication 
3 ⇒ 4 is proved.

Conversely, assume that R(A1/2) = M ∩R(A1/2) ⊕M⊥∩R(A1/2). Hence, R([S]A) =
R(A1/2PMA1/2) ⊆ A1/2(M ∩R(A1/2)) ⊆ R(A). �
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4. Compatibility and range additivity

Definition 4.1. Given A ∈ L(H)+ and S a closed subspace of H, we say that A and S
are compatible if H = S + (AS)⊥.

As shown in [11] the compatibility of A and S means that there exists a (bounded 
linear) projection with image S which is Hermitian with respect to the semi-inner 
product 〈·,·〉A defined by 〈ξ, η〉A = 〈Aξ, η〉. It is worth mentioning that compatibil-
ity gives a kind of weak version of invariant subspaces. In fact, if A is a selfadjoint 
operator on H and S is a closed subspace, then S is an invariant subspace for A if 
AS ⊆ S, which means that PSAPS = PSA. On the other side, A and S are com-
patible if and only if R(PSAPS) = R(PSA); for a proof of this fact see [11, Propo-
sition 3.3]. In the recent paper [7, Proposition 2.9] it is proven that A and S are 
compatible if and only if (PSA, I − PS) ∈ R. In this section we shall complete this 
result by proving that A and S are compatible if and only if (A, I − PS) ∈ R, i.e., 
R(A + PS⊥) = R(A) + R(PS⊥) = R(A) + S⊥.

Proposition 4.2. (See [12, Theorem 3.8].) Let A ∈ L(H)+ and S be a closed subspace 
of H. The following conditions are equivalent:

1. A and S are compatible.
2. R([S⊥]A) ⊆ R(A) and N([S⊥]A) = N(A) + S.

Proposition 4.3. Let A, B ∈ L(H)+ with closed ranges. The next conditions are equiva-
lent:

1. A and N(B) are compatible.
2. N(A) + N(B) is closed.
3. B and N(A) are compatible.
4. R(A) + R(B) is closed.
5. (A, B) ∈ R.

Proof. 1 ⇔ 2. See [11, Theorem 6.2].
2 ⇔ 3. Idem.
2 ⇔ 4. It follows from the general fact that, for closed subspaces S, T then S + T is 

closed if and only if S⊥ + T ⊥ is closed. See [15, Theorem 13].
4 ⇒ 5. See [20, Corollary 3].
5 ⇒ 4. R(A +B) = R(A) +R(B) = R(A1/2) +R(B1/2) = R((A +B)1/2) by Crimmins’ 

identity. Then R(A + B) is closed and so R(A) + R(B) is closed. �
Theorem 4.4. Let A, B ∈ L(H)+ and suppose that B has a closed range. The following 
conditions are equivalent:



M.L. Arias et al. / Linear Algebra and its Applications 467 (2015) 86–99 95
1. A and N(B) are compatible.
2. (A, B) ∈ R.
3. R(B) 

.
+ AN(B) is closed.

Proof. 1 ⇔ 2. Let S = N(B). First observe that A and S are compatible if and only 
if A + B and S are compatible. Indeed, S + ((A + B)S)⊥ = S + (AS)⊥. Hence, by 
Proposition 4.2, A and S are compatible if and only if R([S⊥](A +B)) ⊆ R(A +B) and 
N([S⊥](A + B)) = S + N(A + B) or, equivalently, by Corollary 3.2, S⊥ ⊆ R(A + B)
(notice that N(A + B) = N(A) ∩N(B) ⊆ S). Summarizing, A and S are compatible if 
and only if R(B) = S⊥ ⊆ R(A + B), i.e., R(A + B) = R(A) + R(B).

1 ⇔ 3. It follows applying [15, Theorem 13]. �
Corollary 4.5. Let A ∈ L(H)+ and S be a closed subspace of H. The next conditions are 
equivalent:

1. A and S are compatible.
2. (A, I − PS) ∈ R.
3. S⊥ .

+ AS is closed.

Proposition 4.6. Let A, B ∈ L(H)+ such that R(A) ∩ R(B) = {0}. Then, (A, B) ∈ R if 
and only if A and N(B) are compatible.

Proof. Since, R(A) ∩ R(B) = {0} then R(A + B) = R(A) + R(B) if and only if 
H = N(A) + N(B). Now, N(A) + N(B) = A−1({0}) + N(B) = A−1(R(B)) + N(B) =
A−1(N(B)⊥) + N(B). Therefore, R(A + B) = R(A) + R(B) if and only if H =
A−1(N(B)⊥) + N(B), i.e., if and only if A and N(B) are compatible. �

The next example shows that the compatibility of A and N(B) does not imply, in 
general, that (A, B) ∈ R.

Example 4.7. Considering C and D as in Example 2.3.2, we define A =
( 0 0

0 C

)
and 

B =
( 0 0

0 D

)
. Clearly, (A, B) /∈ R. However, A and N(B) are compatible.

Corollary 4.8. Let A ∈ L(H)+ and S be a closed subspace of H. The following conditions 
are equivalent:

1. R(A) = R(A − [S]A) 
.
+ R([S]A).

2. A − [S]A and N([S]A) are compatible.
3. A and N([S]A) are compatible.

Proof. 1 ⇔ 2. It follows from Proposition 3.1 and Proposition 4.6.
2 ⇔ 3. It follows from the fact that A = [S]A + A − [S]A. �
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5. The Fill–Fishkind formula

This last section is devoted to the Fill–Fishkind formula. In order to identify certain 
Moore–Penrose inverses of products of orthogonal projections, the next theorem (due to 
Penrose and Greville) will be helpful.

Theorem 5.1. If Q ∈ L(H) is an oblique projection then Q† = PN(Q)⊥PR(Q). Conversely, 
if M and N are closed subspaces of H such that PMPN has closed range, then (PMPN )†
is the unique oblique projection with range R(PNPM ) and nullspace N(PNPM ).

Proof. For matrices, the proof appears in the paper by Penrose [28, Lemma 2.3] and 
Greville [21, Theorem 1]. For general Hilbert spaces, see [13, Theorem 4.1]. �

We prove now the extension of the theorem of Fill and Fishkind [19, Theorem 3]
mentioned in the introduction.

Theorem 5.2. Let A, B ∈ L(H, K) such that R(A), R(B) are closed, R(A) ∩ R(B) =
R(A∗) ∩R(B∗) = {0} and (A, B) ∈ R and (A∗, B∗) ∈ R. Hence,

(A + B)† = (I − S)A†(I − T ) + SB†T, (2)

where

S := (PN(B)⊥PN(A))†

and

T := (PN(A∗)PN(B∗)⊥)†.

Proof. We start with a series of claims which will be used in the proof.
Claim 1 : All Moore–Penrose inverses in (2) are bounded, i.e., R(A), R(B), R(A +B), 

R(PN(B)⊥PN(A)) and R(PN(A∗)PN(B∗)⊥) are closed. The first two by hypotheses, the 
third one by Proposition 2.2, and R(PN(B)⊥PN(A)) and R(PN(A∗)PN(B∗)⊥) are closed 
by Theorem 22 of F. Deutsch’s paper [15] and since N(A) +N(B) = H, by Proposition 2.2
and R(A) + R(B) = R(A + B) is closed.

Claim 2 : S = QPN(A)(N(B)⊥)//N(B) and T = QR(B)//R(A)+R(A)⊥∩R(B)⊥ .
By Theorem 5.1,

S = QPN(A)(N(B)⊥)//N(PN(A)PN(B)⊥ ) and T = QP
N(B∗)⊥PN(A∗)//N(P

N(B∗)⊥PN(A∗)).

We claim that N(S) = N(B), R(T ) = R(B) and N(T ) = R(A) + R(A)⊥ ∩ R(B)⊥. In 
fact, it holds N(S) = N(PN(A)PN(B)⊥) = N(B), because N(A)⊥ ∩ N(B)⊥ = R(A∗) ∩
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R(B∗) = {0}; for T , notice that R(PN(B∗)⊥PN(A∗)) = N(B∗)⊥ = R(B) because N(A∗) +
N(B∗) = H (it is dense because R(A) ∩R(B) = {0} and it is closed because R(A) +R(B)
is closed); finally, N(PN(B∗)⊥PN(A∗)) = N(A∗)⊥ + N(B∗) ∩N(A∗) = R(A) + R(A)⊥ ∩
R(B)⊥.

Claim 3 : H = [R(A) 
.
+ R(B)] ⊕ R(A)⊥ ∩ R(B)⊥. It follows form the form of T in 

Claim 2.
Claim 4 : AS = 0 and TA = 0 because R(S) ⊆ N(A) and R(A) ⊆ N(T ), respectively. 

Moreover, TB = B since R(B) ⊆ R(T ).
Claim 5 : BS = B, or, which is the same, S∗B∗ = B∗ because, by Claim 2, S∗ is an 

oblique projection with range R(B∗) = N(B)⊥. Moreover, SB†B = S.
Claim 6 : Q1 := PR(A)(I − T ) is the oblique projection onto R(A) with nullspace 

R(B) +R(A)⊥ ∩R(B)⊥. In order to prove the claim first observe that PR(A)(I −T ) is a 
projection because, by Claim 2, it holds R(A) ⊆ N(T ); on the other hand, R(PR(A)(I −
T )) ⊆ R(A) and N(PR(A)(I−T )) ⊆ R(B) +R(A)⊥∩R(B)⊥. By Claim 3 the projection 
Q1 with range R(A) and nullspace R(B) + R(A)⊥ ∩ R(B)⊥ is well defined. Therefore, 
Q1 = PR(A)(I − T ), because if E1, E2 are oblique projections such that R(E1) ⊆ R(E2)
and N(E1) ⊆ N(E2), it follows that E1 = E2.

We use now these technical results to prove formula (2). Recall that, from Penrose’s 
characterization of the Moore–Penrose inverse of C it holds that X = C† if and only if 
CX = PR(C), XC = PR(C∗) and XCX = X. Hence, we must prove:

(2i) (A + B)((I − S)A†(I − T ) + SB†T ) = PR(A+B).
(2ii) ((I − S)A†(I − T ) + SB†T )(A + B) = PR(A∗+B∗).
(2iii) ((I − S)A†(I − T ) + SB†T )(A + B)((I − S)A†(I − T ) + SB†T ) = (I − S)A†(I −

T ) + SB†T .

By Claims 4, 5 and 6, it holds:

(A + B)
(
(I − S)A†(I − T ) + SB†T

)
= AA†(I − T ) + BB†T

= PR(A)(I − T ) + PR(B)T

= Q1 + T.

We must prove now that Q1 + T = PR(A+B):

(a) Since Q − 1, T are projections and Q1T = TQ1 = 0 it follows that Q1 + T is 
a projection.

(b) Clearly, R(Q1 + T ) ⊆ R(A + B). On the other side, as (Q1 + T )(A + B) = A + B

we get the reverse inclusion, and so R(Q1 + T ) = R(A + B).
(c) R(A + B)⊥ = R(A)⊥ ∩R(B)⊥ ⊆ N(Q1 + T ).

Hence, from (a), (b) and (c) we obtain that Q1 + T = PR(A+B) which proves (2i).
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For the proof of (2ii), by Claims 4 and 5, we get
(
(I − S)A†(I − T ) + SB†T

)
(A + B) = (I − S)A†A + SB†B

= (I − S)(I − PN(A)) + S

= I − (I − S)PN(A).

Therefore:

(a) As PN(A)S = S then it is straightforward that (I−(I−S)PN(A))2 = I−(I−S)PN(A).
(b) Clearly, N(A) ∩N(B) ⊆ N(A +B) ⊆ N(I−(I−S)PN(A)). If x ∈ N(I−(I−S)PN(A)), 

since (I − S)PN(A) = PN(A)(I − S)PN(A), we have that x = (I − S)PN(A)x ∈
N(B) and x = PN(A)(I − S)PN(A)x ∈ N(A), i.e., x ∈ N(A) ∩ N(B). Therefore, 
N(I − (I − S)PN(A)) = N(A) ∩N(B) = (R(A∗) + R(B∗))⊥ = R(A∗ + B∗)⊥.

(c) By Claim 2, (I − (I −S)PN(A))(A∗ +B∗) = A∗ +B∗, i.e., R(A∗ +B∗) ⊆ R(I − (I −
S)PN(A)).

Therefore, from (a), (b) and (c) we conclude that ((I−S)A†(I−T ) +SB†T )(A +B) =
I − (I − S)PN(A) = PR(A∗+B∗) which is (2ii).

Finally, in order to prove (2iii), observe that, from (2ii), it holds that ((I − S)A†(I −
T ) + SB†T )(A + B) = I − (I − S)PN(A). It suffices to prove that (I − S)PN(A)((I −
S)A†(I−T ) +SB†T ) = 0. But (I−S)A†(I−T ) +SB†T = A†(I−T ) +S(B†T−A†(I−T )); 
obviously PN(A)A

† = 0 and (I − S)PN(A)S = 0 because R(S) ⊆ N(A) by Claim 4. This 
ends the proof. �
Remark 5.3. Fill and Fishkind proved their formula under the hypothesis rk(A + B) =
rk(A) + rk(B) where A, B are n × n complex matrices and rk denotes the rank. It is 
well known that this rank additivity property is equivalent to R(A) ∩ R(B) = R(A∗) ∩
R(B∗) = {0}. On the other side, by Proposition 2.2, the hypotheses of the theorem of Fill 
and Fishkind are equivalent (for matrices) to (A, B), (A∗, B∗) ∈ R. Thus, the hypotheses 
of our infinite-dimensional version are not stronger than those of the finite-dimensional 
one. For a quite different set of hypotheses for Fill–Fishkind formula in Hilbert spaces, 
see the paper by Deng [14].
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