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a b s t r a c t

We study the zero sets of random analytic functions generated by a sumof the cardinal sine
functions which form an orthonormal basis for the Paley–Wiener space. As a model case,
we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability
that there is no zero in a bounded interval decays exponentially as a function of the length.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We study the asymptotic behavior of the probability that a particular type of simple point process does not have any
point in an interval of increasing length (gap probabilities). The simple point process we consider is given by the real zeros
of the random function

f (z) =


n∈Z

an
sinπ(z − n)

π(z − n)
,

where an are i.i.d. randomvariableswith zeromean and unit variance. Kolmogorov’s inequality shows that this sum is almost
surely pointwise convergent. In fact, since

n∈Z

 sinπ(z − n)
π(z − n)

2
converges uniformly on compact subsets of the plane, this series almost surely defines an entire function. If we take an to
be Gaussian random variables then f is a Gaussian analytic function (GAF). See [1, Lemma 2.2.3] for details.

We are chiefly concerned with the functions given by taking an to be real Gaussian random variables. These functions
are an example of a stationary symmetric GAF. We denote by nf the counting measure on the set Z(f ) of zeros of f . As a
counterpart of the Kac–Rice formula [2,3], Feldheim [4] has shown that the density of zeros is given by

E[nf (z)] = S(y)m(x, y) +
1

2
√
3
µ(x), (1)
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where z = x+ iy,m denotes the planar Lebesgue measure, µ is the singular measure with respect tom supported on R and
identical to Lebesgue measure there, and

S
 y
2π


= π

 ddy

cosh y −

sinh y
y

sinh2 y − y2

 .
(Here S is defined only for y ≠ 0, in fact the atom appearing in (1) is the distributional derivative at 0.) We observe that
since S(y) = O(y) as y approaches zero there are almost surely zeros on the real line, but that they are sparse close by.
Moreover the zero set is on average uniformly distributed on the real line. We are interested in the ‘gap probability’, that is
the probability that there are no zeros in a large interval on the line.

Our result is the following asymptotic estimate.

Theorem 1. Let f be the symmetric GAF given by the almost surely convergent series
n∈Z

an
sinπ(z − n)

π(z − n)
,

where an are i.i.d. real Gaussian variables with mean 0 and variance 1. Then, there exist constants c, C > 0 such that for all r ≥ 1,

e−cr
≤ P (#(Z(f ) ∩ (−r, r)) = 0) ≤ e−Cr .

Remark 1. If instead of considering intervals we consider the rectangle Dr = (−r, r) × (−a, a) for some fixed a > 0, then
we obtain a similar exponential decay for P(#(Z(f ) ∩ Dr) = 0).

Remark 2. Consider the case when the an are i.i.d. Rademacher distributed. I.e., each an is equal to either−1 or 1 with equal
probability. Since f (n) = an for n ∈ N, it follows that if not all an for |n| ≤ N are of equal sign, then by the mean value
theorem, f has to have a zero in (−N,N). Following the proof of Theorem 1, the remaining two choices of the an for |n| ≤ N
each yield an f without zeros in (−N,N), whence the desired probability is exactly e−2N log 2 for r = N .

Remark 3. Whereas the Rademacher distribution is in some sense a simplified Gaussian, the Cauchy distribution, given by
the density

p(x) =
1
π

1
x2 + 1

,

is in some sense its opposite: It has neither an expectation, nor a standard deviation. If we suppose that the an are i.i.d.
Cauchy distributed, it is not hard to see that with probability one the sum


an/n diverges, whence the related random

function diverges everywhere. For a study of random zeros in the polynomial case, see [5].

We now give a short description of the main motivation for our work which comes from the ‘hole theorems’ proved by
Sodin and Tsirelson [6] for point processes uniformly distributed in the plane, and by Peres and Virág [7] for the, so called,
hyperbolic GAF in the disk.

The GAF considered by Sodin and Tsirelson [6] is given by

F(z) =

∞
n=0

an
zn

√
n!

,

where an are i.i.d. standard complex Gaussian variables. For this function, the density of zeros is proportional to the planar
Lebesgue measure and they show that the probability that there are no zeros in a disk of radius r asymptotically behaves as
e−cr , where c > 0.

It was later shown by Nishry [8] that c = 3e2/4 + o(1) as r → ∞. Observe that


zn
√
n!

∞

n=0
constitutes an orthonormal basis

for the Bargmann–Fock space

F =


f ∈ H(C) : ∥f ∥2

F =


C

|f (z)|2e−2|z|2 dm(z)
π

< +∞


,

where m is the planar Lebesgue measure. For a generalization to several variables, see [9].
The hyperbolic GAF considered in [7] is the determinantal process defined in D by the zeros of

F(z) =

∞
n=0

anzn,

where an are i.i.d. standard complex Gaussian variables. In this case, the asymptotic probability that there are no zeros in a
disk of radius r < 1 centered at zero is e−ca(r), where c > 0 and a(r) stands for the area of the disk in the hyperbolic metric.
The set {zn}∞n=0 is an orthonormal basis for the Hardy space H2(D).
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In analogy with these two previous cases, we consider the Paley–Wiener space

PW =


f (z) =

1
2π

 π

−π

φ(t)eiztdt : φ ∈ L2[−π, π]


,

of all entire functions of exponential type at most π that are square integrable on the real axis. It is well known that
the integer translations of the cardinal sine function {sinπ(z − n)/π(z − n)}n∈Z constitute an orthonormal basis for the
Paley–Wiener space. The GAF we consider

n∈Z

an
sinπ(z − n)

π(z − n)

is a stationary Gaussian process with mean zero and continuous covariance function

EF(τ )F(τ + t) =
sinπ t

π t
.

Themain difficulty in studying the gap probabilities for this Gaussian process is to dealwith the oscillations of the covariance
function. Considering just the decay is not enough to get the right asymptotics, see [10,11].

An important caveat is that, though the GAFs above are constructed from orthonormal bases, almost surely they do not
belong to their respective spaces, since the sequence of coefficients an is almost surely not in ℓ2(Z). In our case, however, it
is not hard to see that f belongs almost surely to the Cartwright class of entire functions of exponential type such that

∞

−∞

log+
|f (x)|

1 + x2
dx < ∞.

Finally, we mention that a generalization of the Paley–Wiener space is given by the class of de Branges spaces

H(E) =


f entire :


R

 f (x)E(x)

2 dx < ∞, and f /E, f /E∗
∈ H2(C+)


,

where H2(C+) is the Hardy space of the upper-half plane, f ∗(z) = f (z) and E is an entire function such that |E(z)| > |E∗(z)|
for whenever Imz > 0. Analogous to the Paley–Wiener space, these spaces admit natural orthonormal bases (consisting of
reproducing kernels). An important measure of the behavior of these spaces is the phase function φ(x) = −Arg E(x). As
was shown by Lyubarskii and Seip [12], when a ≤ φ′(x) ≤ b, for a, b > 0 these spaces are in some sense similar to the
Paley–Wiener space in terms of sampling and interpolating sequences. This analogy continues to hold under the weaker
assumption that φ′(x)dx is a doubling measure, as was shown in [13]. Under the former assumption, it is not hard to show
that our results continue to hold. We include our results in this direction in a forthcoming paper.

2. Proof of Theorem 1

2.1. Upper bound

We want to compute the probability of an event that contains the event of not having any zeros on (−N,N), for N ∈ N.
One such event is that the values f (n) have the same sign for |n| ≤ N . The probability of this event is

P (an > 0 for |n| ≤ N or an < 0 for |n| ≤ N) = 2(1/2)2N+1
= e−CN ,

for some constant C > 0.

Remark 4. The same upper bound holds when an are i.i.d. random variables with 0 < P(an > 0) < 1 for which the random
function


n∈Z an sinπ(x − n)/π(x − n) converges.

2.2. Lower bound

To compute the lower hole probability, we use the following scheme. First, we introduce the deterministic function

f0(x) =

2N
n=−2N

sinπ(x − n)
π(x − n)

.

We show in Lemma 1 that it has no zeros on (−N,N), and we find an explicit lower bound on (−N,N) for it. This lower
bound does not depend on N . Second, we consider the functions

f1(x) =

2N
n=−2N

(an − 1)
sinπ(x − n)

π(x − n)
and f2(x) =


|n|>2N

an
sinπ(x − n)

π(x − n)
,
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which induce the splitting

f = f0 + f1 + f2.

We show that for all x ∈ [−N,N] we have |f1(x)| ≤ ϵ with probability at least e−cN for large N and some constant c > 0.
Moreover, we show that

P


sup
x∈[−N,N]

|f2(x)| ≤ ϵ


is larger than, say, 1/2 for big enough N . As the events on f1 and f2 are clearly independent, the lower bound now follows by
choosing ϵ small enough.

We turn to the first part of the proof.

Lemma 1. Given N ∈ N and

f0(x) =

2N
n=−2N

sinπ(x − n)
π(x − n)

= sinπx
2N

n=−2N

(−1)n

π(x − n)
. (2)

Then, there exists a constant C > 0 such that, for N big enough,

1 −
C
N

≤ inf
|x|≤N

f0(x) ≤ sup
|x|≤N

f0(x) ≤ 1 +
C
N

.

Proof. Let R = R(N) be the boundary of the square of length 4N +1, centered at the origin. By the residue theorem, it holds
that for −N ≤ x ≤ N not an integer

1
2π i


R

dξ
(ξ − x) sinπξ

=
1
π

2N
n=−2N

(−1)n

n − x
+

1
sinπx

.

Observe that if we shift around the terms, this yields

sinπx
π

2N
n=−2N

(−1)n

x − n
= 1 +

sinπx
2π i


R

dξ
(ξ − x) sinπξ

. (3)

It is easy now to bound this last integral by C/N. �

Remark 5. The same bound holds for all points z in a strip with fixed height [−N,N] × [−C, C] for some C > 0 and N big
enough depending on C . We observe though, that the function f0(z) in (2) does not yield the desired estimate on rectangles.
Indeed, let R0 be the square centered at x = 1/2 with side lengths 4N . By considering horizontal and vertical contributions
to the contour integral corresponding to (3) separately, then on the line z = 1/2 + iywe get

1
π

2N
n=−2N

(−1)n

z − n
=

1
cosπ iy

−
1
π

 2N

−2N

2N
(y − v)2 + 4N2

dv
cosπ iv

+ O(e−cN).

By considering the signs of the expression of the right-hand side, it follows that for large and fixed N , then for y around log
N the main terms will cancel each other out, leaving only the exponentially small error term. Therefore the estimate proved
in the lemma above does not work for z on squares.

2.2.1. The middle terms
Let ϵ > 0 be given, and consider N ∈ N to be fixed. We look at the function

f1(x) =

2N
n=−2N

(an − 1)
sinπ(x − n)

π(x − n)
=

sinπx
π

2N
n=−2N

(an − 1)
(−1)n

x − n
.

To simplify the expression, we set bn = (an − 1)(−1)n. We want to compute a lower bound for the probability that, for
x ∈ [−N,N],

|f1(x)| . ϵ.

Define Bn = b−2N + · · · + bn for |n| ≤ 2N , and suppose that x ∉ Z. With this, summation by parts yields

2N
−2N

bn
x − n

= −

2N−1
−2N

Bn

(x − n)(x − n − 1)
+

B2N

x − 2N − 1
. (4)
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We now claim that under the event

E = {|Bn| ≤ ϵ for |n| ≤ 2N} , (5)

we have |f1(x)| . ϵ for |x| ≤ N , and the proportionality constant involved does not depend on N . Indeed, the second
summand at the right hand side of (4) converges to zero on E uniformly for |x| ≤ N , because B2N

x − 2N − 1

 ≤
ϵ

N
.

Suppose that x ∈ (k, k + 1) and split the first sum in (4) as
2N−1
n=−2N

n≠k−1,k,k+1

Bn

(x − n)(x − n − 1)
+

k+1
n=k−1

Bn

(x − n)(x − n − 1)
.

Then 
2N−1
n=−2N

n≠k−1,k,k+1

Bn

(x − n)(x − n − 1)

 ≤


n≥k+2

ϵ

(k + 1 − n)2
+


n≤k−2

ϵ

(k − n)2
. ϵ.

For the remaining terms, the function sinπx comes into play. E.g., suppose that |x − k| ≤ 1/2, thensinπx
Bk

(x − k)(x − k − 1)

 .
ϵ

|x − k − 1|

 sinπ(x − k)
π(x − k)

 . ϵ.

The remaining terms are treated in exactly the sameway. So, we have obtained that |f1(x)| . ϵ for x ∉ Z on E. By continuity,
this bound also holds for x ∈ Z.

What remains is to compute the probability of the event E defined by (5). We recall that the bn were all defined in terms
of the real and independent Gaussian variables an. So the event E above defines a set

V =


(t−2N , . . . , t2N) ∈ R4N+1

:

 n
−2N

tn

 ≤ ϵ, |n| ≤ 2N


in terms of the values of the bn. Hence,

P(E) = c4N+1

V
e−((t−2N−1)2+···+(t2N−1)2)/2dt−2N · · · dt2N .

Here, c is the normalizing constant of the one dimensional Gaussian. It follows that

P(E) ≥ c4N+1e−(4N+1)(1+Cϵ)2/2

V
dt−2N · · · dt2N = c4N+1e−(4N+1)(1+Cϵ)2/2Vol(V ).

We now seek a lower bound for this euclidean (4N + 1)-volume. To simplify notation, we pose this problem as follows. For
real variables x1, . . . , xN , we wish to compute the euclidean volume of the solid VN defined by

|x1| ≤ ϵ,

|x1 + x2| ≤ ϵ,

...

|x1 + x2 + · · · + xN | ≤ ϵ.

One way to do this is as follows. Write yN = x1 + · · · + xN−1, then

Vol(VN) =


VN−1

 ϵ−yN

−ϵ−yN
dxN


dx1 · · · dxN−1.

This is illustrated in Fig. 1. Clearly, if yN < 0, ϵ−yN ≥ ϵ and−ϵ−yN ≤ 0, while if yN > 0 then ϵ−yN ≥ 0 and−ϵ−yN ≤ −ϵ.
Therefore,

Vol(VN) ≥


VN−1∩{yN<0}

 ϵ

0
dxN


dx1 · · · dxN−1 +


VN−1∩{yN>0}

 0

−ϵ

dxN


dx1 · · · dxN−1 = ϵVol(VN−1).

Iterating this, we get

Vol(VN) ≥ ϵN .

In conclusion,

P(E) ≥ e−cN ,

which concludes this part of the proof.
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Fig. 1. Illustration of the solid VN .

2.2.2. The tail
We now turn to the tail term

f2(x) = sinπx


|n|>2N

an(−1)n

π(x − n)
.

Clearly, we need only consider the terms for which n is positive. Set cn = (−1)nan. We apply summation by parts, to get

L
n>2N

Cn

x − n
=

L
2N+1

Cn
−1

(x − n)(x − n − 1)
+

CL

x − L − 1
(6)

where

Cn = c2N+1 + · · · + cn, C2N = 0.

We want to take the limit as L → ∞. It is easy to see that the last term almost surely converges to zero uniformly for
|x| ≤ N . Indeed, CL is a sum of independent Gaussian variables with mean 0 and variance 1, and therefore is itself Gaussian
with mean 0 and variance L − 2N . Moreover, since for all |x| ≤ N CL

x − L − 1

 .
CL

L − 2N
,

and the random variable inside of the absolute values on the right-hand side has variance L − 2N , it follows by the law of
large numbers that the limit is almost surely equal to 0, whence we are allowed to let L → ∞ in (6).

We prove the following. With a positive probability, we have for |x| ≤ N L
2N+1

Cn
1

(x − n)(x − n − 1)

 ≤ ϵ.

As n2 . |(x − n)(x − n − 1)| for |x| ≤ N and n > 2N , it is enough to consider the expression
∞

2N+1

|Cn|

n2
.

The absolute value of a Gaussian random variable has the folded-Gaussian distribution. In particular, if X ∼ N(0, σ 2), then

E(|X |) = σ


2
π

.

Since, in our case, σ 2
= n − 2N , this yields

E


∞

2N+1

|Cn|

n2


.

∞
2N+1

√
n − 2N
n2

.

∞
1

1
(n − 2N)3/2

.
1

√
N

.
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Finally, by Chebyshev’s inequality,

P


∞

2N+1

|Cn|

n2
≤ ϵ


≥ 1 −

1
ϵ

E


∞

2N+1

|Cn|

n2


≥ 1 −

C

ϵ
√
N

.
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