SOFTWARE - PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2012; 42:281-302
Published online 9 March 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1061

A methodology for transparent knowledge specification in a
dynamic tuning environment

P. Caymes-Scutari!* A Morajko?, T. Margalef? and E. Luque?

! Laboratorio de Investigacién en Cémputo Paralelo/Distribuido, Departamento de Ingenieria en Sistemas
de Informacion, Universidad Tecnolégica Nacional—Facultad Regional Mendoza, Rodriguez 273, (M5502AJE)
Mendoza, Argentina—CONICET (Argentina)
2Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, Edifici
Q—Campus, Bellaterra, 08193 Barcelona, Spain

SUMMARY

The increasing use of parallel/distributed applications demands a continuous support to take significant
advantages from parallel power. This includes the evolution of performance analysis and tuning tools
which automatically allows for obtaining a better behavior of the applications. Different approaches and
tools have been proposed and they are continuously evolving to cover the requirements and expectations of
users. One such tool is MATE (Monitoring Analysis and Tuning Environment), which provides automatic
and dynamic tuning for parallel/distributed applications. The knowledge used by MATE to analyze and
take decisions is based on performance models which include a set of performance parameters and a
set of mathematical expressions modeling the solution of the performance problem. These elements are
used by the tuning environment to conduct the monitoring and analysis steps, respectively. The tuning
phase depends on the results of the performance analysis. This paper presents a methodology to specity
performance models. Each performance model specification can be automatically and transparently
translated into a piece of software code encapsulating the knowledge to be straightforwardly included in
MATE. Applying this methodology, the user does not have to be involved in the implementation details of
MATE, which makes the usage of the tool more transparent. Copyright © 2011 John Wiley & Sons, Ltd.

Received 15 October 2010; Revised 30 December 2010; Accepted 10 January 2011

KEY WORDS: specification; automatic development; performance model; parallel/distributed computing;
automatic performance analysis; dynamic tuning

1. INTRODUCTION

In the recent years, the demand for high-performance computing has increased significantly. Scien-
tists have to solve complex problems involving large volumes of data with complex operations
over them. In this context, parallel/distributed computing has emerged to provide the compu-
tational power required to overcome these problems. However, developing parallel/distributed
applications is a difficult task since it requires the usage of parallel programming models and
communication libraries. Moreover, it involves some additional aspects, such as synchroniza-
tion, concurrency, scalability, and decomposition, which determine the correct behavior of the
application [1]. In addition, the performance of applications is a crucial issue, and therefore a

*Correspondence to: P. Caymes-Scutari, Laboratorio de Investigacién en Coémputo Paralelo/Distribuido, Departa-
mento de Ingenierfa en Sistemas de Informacién, Universidad Tecnolégica Nacional—Facultad Regional Mendoza,
Rodriguez 273, (M5502AJE) Mendoza, Argentina.

TE-mail: pcaymesscutari @frm.utn.edu.ar

Copyright © 2011 John Wiley & Sons, Ltd.

282 P. CAYMES-SCUTARI ET AL.

high degree of expertise is required to program an efficient application that takes full advantage
of parallelism. Furthermore, given the frequent heterogeneity and/or the dynamic characteris-
tics of the systems, even experts in the field have to face the optimization or tuning process
with the aim of improving the application and its behavior. The above mentioned determines
different kinds of parallelism users, depending on their knowledge and experience in the field. This
determines the necessity for counting with tools covering the different abstraction levels. Fortu-
nately, along the years different approaches have been proposed and many tools have appeared
to assist users in some phase of the optimization process: monitoring, performance analysis, or
tuning. Here we summarize some of these tools showing the experience that is required from
a user.

First, a variety of monitoring and visualization tools appeared [2—5]. However, although they
facilitated the task of the user in collecting information, the user had to be responsible for the
analysis of such data to make decisions in how to improve the application. Then automatic analysis
tools appeared in order to exempt the user from being an expert in performance analysis [6, 7].
Finally, the tuning tools tended (and they still do) toward the automatic and dynamic introduction
of changes in the application without the users’ intervention [8]. Although the tools intend to make
the users’ task easier, the analysis is based on a single execution of the application and the tuning
changes are post mortem, preparing it to improve future executions. Thus, decisions made as a
consequence of performance analysis are only useful in case the application is always executed
under the same conditions: homogeneous system, data (application input) and/or exclusive system
resources.

The dynamic tuning approach is especially suitable for heterogeneous or time-sharing execution
environments, due to monitoring, analysis, and tuning are executed on the fly with the aim of
adapting the behavior of the application to the current conditions of the system. There exist
different tools implementing this approach [9—11]. The main differences among them are related
to the monitoring and tuning technology, and the knowledge representation used to analyze the
performance of the application: fuzzy logic, heuristics, history, or performance models. In this
paper we focus on MATE (Monitoring, Analysis and Tuning Environment) [12—14], a dynamic
and automatic monitoring, analysis and tuning environment based on performance models. MATE
provides certain advantages when tuning an application: the application does not have to be
reimplemented with extra source code for the monitoring purposes since MATE automatically
instruments the application on the fly. Moreover, the performance analysis is relatively concise
because it is based on the evaluation of a series of mathematical expressions rather than on a
complex kind of search.

The knowledge represented by each performance model is encapsulated in MATE as a
‘tunlet’, i.e. a piece of software which condenses the logic to tune a particular performance
problem, indicating what to monitor in the application, how to evaluate the collected informa-
tion, and what to change, when, and where. Although MATE and other dynamic tuning tools
are very useful, the lack of transparency is common to all of them. In general, the user has
to get involved with the techniques and technologies used by the tool, whether for directly
instrumenting the application (Active Harmony [10], Autopilot [9]) or for preparing the instru-
mentation process (PerCo [11] and MATE). In the particular case of MATE, until now, the
inclusion of knowledge has been manual and dependent on the implementation of the tuning
environment. This restricted the usage of MATE since users had to know its implementation
details. In this paper we concentrate on the transparency of the performance model specifica-
tion in MATE. We present a methodology proposed to make easier the task of including the
performance models into MATE. We defined a set of abstractions to represent the elements
of the tunlet and a series of steps to conform the corresponding specification. We defined a
tunlet specification language and developed a translator to automatically create a tunlet from a
specification.

In the following section we document MATE in more detail. Section 3 presents the proposed
methodology to transparently include knowledge in MATE. Section 4 shows a complete simple
example of the usage of this methodology. Section 5 presents results related to the effectiveness

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 283

of MATE and the usefulness of the proposed methodology to automatically create tunlets. Finally,
Section 6 draws the conclusions.

2. MATE

MATE is an environment which provides dynamic and automatic tuning for iterative parallel/
distributed applications. The steering of the application comprises three different phases: monitoring
the behavior of the application, performance analysis using the collected information, and tuning of
the application. All these phases are continuously and automatically executed on the fly. The main
goal of this tool is to improve the performance of an application, by adapting it to the changing
conditions of the system. In this way, the user is exempted from manual application tuning. MATE
includes several components which cooperate among them to control and improve the execution
of the application. The main components are the following:

1. Application Controller (AC) is a daemon-like process which controls the execution of indi-
vidual application tasks. It is responsible for monitoring (dynamic instrumentation and creation
of events) and tuning. These functionalities are implemented by the Monitor and the Tuner
modules, respectively.

2. Dynamic Monitoring Library (DMLib) is a shared library, which is dynamically loaded in the
application tasks. It is used to perform data monitoring and collection.

3. Analyzer carries out performance analysis of the application. In addition, it decides what
have to be monitored (to obtain the necessary metrics to evaluate the performance) and tuned
(to improve the behavior of the application according to the conclusions obtained after the
performance analysis). From a functional point of view, the Analyzer is divided into two main
parts:

(a) Dynamic Tuning API (DTAPI) which constitutes the interface of the Analyzer module to
communicate with the Monitor and Tuner modules. DTAPI provides the Analyzer with a
global view of the application, the tasks and the events, and encapsulates all the low-level
issues related to controlling the execution of the parallel application.

(b) Tunlets, where each ‘tunlet’ may be defined as a software component which describes
a particular performance problem of a running application. It provides the logic that
indicates how to evaluate the behavior and modify the execution to improve the appli-
cation performance. Each tunlet should use the DTAPI to allow the Analyzer module
to communicate with AC and DMLib. The Analyzer is responsible for managing the
application by invoking monitoring and tuning actions that are provided by a tunlet.
Tunlets constitute the core of the tuning approach of MATE in terms of representation of
knowledge.

The collection and processing of monitoring data is carried out in a distributed-hierarchical
manner to avoid the analysis process from being a performance bottleneck. In this way we also
go toward making MATE scalable. This approach is explained in detail in [14].

In addition to its tuning properties, MATE is provided with a framework for the development
of Master/Worker applications [15, 16]. MATE provides a set of ready-to-use tunlets defined in
terms of framework-related performance problems (the measure points, performance functions, and
tuning points depend on the framework classes). Therefore, every application developed using this
framework can be automatically tuned by those tunlets. This represents a great benefit especially
for non-expert users: they can develop their Master/Worker applications considering high-level
abstractions, without entering into communications and synchronization details. Moreover, they
can also automatically tune these applications according to the problems the tunlets can overcome.
At the moment, MATE offers only the Master/Worker framework [17], but in the future, we expect
to incorporate new programming models, skeletons and tunlets to tune a wider range of parallel
applications.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

284 P. CAYMES-SCUTARI ET AL.

When MATE is used, the run-time changes of the application, for both the monitoring and
tuning processes, are implemented via the dynamic instrumentation library Dynlnst [18]. MATE
and its approach have been previously presented in detail in [12, 14].

2.1. Tunlets

Tunlets are the core of the dynamic and automatic tuning approach implemented by MATE as
they provide the knowledge required to improve the performance of parallel applications. Each
tunlet defines and implements a particular tuning technique, i.e. the logic to overcome a particular
performance problem encapsulating the knowledge about this problem. The general structure of a
tunlet includes

1. Measure points which indicate what must be measured in the application to be able to
evaluate its behavior. This definition includes values of variables, parameters, function returns,
timestamps, etc.

2. Performance functions are mathematical expressions which determine kow to evaluate the
collected information in order to detect bottlenecks.

3. Tuning points/Actions/Synchronization indicate what, where, and when to change in the
application execution with the aim of adapting its behavior.

At this point, an obvious question is: how to determine a performance model? In general, parallel
applications follow a parallel paradigm, such as Master/Worker or Pipeline [19]. This fact provides
us with an advantageous situation as for each parallel paradigm we can indicate a set of well-known
performance problems. In the case of the Master/Worker paradigm, it presents two serious prob-
lems: load balance which depends on the characteristics of the environment where the application
is executed and on the applied assignment strategy (complete or on demand) and the number of
workers, which depends on the volume of data to be processed, the computational power and
the communication cost. In the case of the Pipeline paradigm, it presents problems related to
load balancing. Every stage in the pipeline may have a different volume of computation, and in
consequence the throughput is determined by the slowest stage of the pipeline.

Such kinds of performance problems are already modeled, for example in [20—22]. Therefore,
a person who wants to analyze the performance of the parallel application can use these already
available mathematical models or he/she can develop a new particular performance model, if
necessary. In both cases, the considered model may constitute a piece of knowledge that can be
included as a tunlet in MATE.

As an example of a performance model, we consider the one presented in [20] that defines a
tunlet for a Master/Worker framework associated with MATE. This performance model offers the
means to calculate the optimal number of workers for a Master/Worker application:

AV+Tc
tl

where Nopt represents the number of workers needed to minimize the execution time. This expres-
sion was obtained by deriving the expression that models the execution time of an iteration, in
order to minimize it. The expression is defined as a function of computing time (7 c), total data
volume (V), latency (¢/), and bandwidth (4). For this example, Tc, V, tl, and A constitute the
performance parameters of the model which can be calculated using the measurements provided
by the inserted instrumentation. The application is instrumented in different points that represent
the variables and values which allow the collection of the required information. Given that MATE
is based on event tracing, the measure points are captured and associated to events along the
execution time. For example, in the case of V, it is calculated as) _(v; +v,,), where v; represents
the size of the tasks sent to each worker;, in bytes, and v, represents the size of the answer sent
back to the master for each worker, in bytes. For this model, if the application is not developed
with the framework provided by MATE, the measure points depend on the implementation and
the names of the variables in the application. Considering the names of the variables, functions,
parameters, etc. of the framework source code, the value of v; can be obtained from the variable

Nopt= (D)

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 285

Application - -—-—-—--——— -
Execution <

Modifications
Instrumentation
Monitoring Tuning
A

]

: Events Solution
i —>| Perf. Analysis |5——
: ;
]

]

]

[}
|
[}
Tunlet H
[}
[}

el e Measure points
Performance functions -4 --!

ettt

|
I
I
|
|
|
I
I
|
|
|
I
I
|
|
|
I
I
|
|
|
I
\

Figure 1. Basic operation of MATE based on the tunlet knowledge.

NumTuples which indicates (in the sending action of the master process) the number of tasks sent
to the worker i. In addition, we need the variable called The WorkUnitBytes—which indicates the
size in bytes of each task—to multiply by the cumulative addition of every NumTuples. In this
case, v; must be captured when the master sends tasks to the workers. The value of v,, can be
obtained from the variable NBytes, used by the master process to indicate the size of the answer
received from each worker.

Once the application is developed, the performance model determined, and the tunlet prepared,
the application may pass to the tuning process. Figure 1 illustrates the execution of the application
under MATE. When the execution of the application under MATE starts, the tunlet indicates to
the Analyzer the set of measure points that are required by the model. The Analyzer forwards the
requirement to every AC (distributed over processors where the application is being executed).
Consequently, the corresponding instrumentation is automatically inserted online in the code to
capture events as the entry of send and receive functions. Such events will also contain the values of
TheWorkUnitBytes, NumTuples, and NBytes to calculate V. Then, during the execution of iteration
i the Analyzer receives event records related to such iteration generated by different processes and
the tunlet is notified. The tunlet classifies and examines the set of received event records, with the
aim of extracting the necessary measurements. When all the information about iteration i has been
received and processed, the tunlet evaluates the performance functions according to the behavior
of the application along the iteration i. In the example, the tunlet evaluates the Expression (1) to
determine the optimal number of workers according to the current conditions. If the tunlet detects
a performance bottleneck, it decides if the performance can be improved considering the existing
conditions. If so, the tunlet informs the Analyzer about the possible improvement. Consequently,
the Analyzer requests the corresponding tuning actions. A request determines what should be
changed (tuning point/action/synchronization) and it is sent to the appropriate instance of AC,
for being managed by the Tuner. In the example, the tuning action will indicate that the value of
the variable controlling the number of workers needs to be changed. The tuning actions required
by the tunlet will improve the execution of the following iterations. In general, the execution of
the application and the tuning actions of MATE are not explicitly synchronized, meaning that
the application does not stop its execution (although there are some cases in which the user can
determine a synchronized tuning at the expense of the idle time waiting for the insertion of the
modifications), but MATE is changing the application on the fly. Consequently, when the tunlet
makes a decision regarding iteration i, the application is executing the iteration i+ 1, and the
improvement of the tuning action will be effective at iteration i 4+2. The dashed arrows in the
rounded dashed square (tagged ‘MATE’) of Figure 1, conceptually show the elements required
directly by the monitoring, analysis, and tuning phases provided by the tunlet.

2.2. Inclusion of the knowledge in MATE

Given that the purpose of the paper is to present a methodology for transparent knowledge spec-
ification, it is important to indicate how the performance knowledge inclusion was previously

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

286 P. CAYMES-SCUTARI ET AL.

managed. MATE may tune performance problems at different layers and consider diverse tuning
approaches. The provided possibilities of the usage of MATE determine a trade-off between level
of abstraction, benefits, ease of use, and required user knowledge. With respect to the tuning layers,
we have distinguished different layers of the application that can be tuned: application-specific
code, standard and custom libraries (API4-code), operating system libraries (API+code), and use
of hardware resources. For some layers we have many common information and hence we can
extract well-defined bottleneck representatives for many applications and define their solutions.
In other cases, it is required to provide the knowledge about the specific application problems
and solutions since there is no information about the potential application bottlenecks. Note that
due to incomplete application information, dynamic tuning of unknown applications is difficult,
or sometimes even impossible. Generally, the performance analysis might not be performed effec-
tively without knowledge about what the application does. Dynamic modifications of unknown
application structures are complex, may appear as dangerous and hence, must be done very care-
fully. In other words, tuning of the application code is the most complex task, due to the lack
of problem-specific knowledge. Each application-specific implementation may be totally different
and there might be no parts common for many applications although they provide the same func-
tionality. The upper the layer, the more specific the information about the application required,
and conversely, the lower the layer, the more generic the information available. Summarizing, this
constitutes the main motivation of this work: the necessity of simplifying and making transparent
the use of MATE when a specific problem has to be tuned.

With respect to the tuning approaches, MATE offers mainly two of them:

e Automatic approach: When there is no available information about a particular application,
just generic performance problems may be treated. In this case, the tunlets are predefined
and included in MATE, particularly considering information non-dependent on any specific
application. In this approach the user is not involved in the tunlets preparation/programming
but he/she only uses them. Thus, this approach is very suitable for non-expert users in
performance modeling and tuning, at the expense of being constrained to a determined set
of predefined tuning techniques. The generic performance problems considered may rise at
different library levels. In this case, the often tackled problems are related to the operating
system or library levels. From a more specific point of view, when the applications are devel-
oped using the framework included in MATE for Master/Worker applications, the typical
problems of Master/Worker parallel programming model—such as problems with communi-
cations, synchronization, and decomposition—can also be tackled. Figure 2(a) illustrates this
approach representing the usage of MATE as a black box. The user is only responsible for
the application development, but he/she does not have to worry about the performance model
determination nor the tunlet creation.

e Cooperative approach: More specific problems can be tuned when the user provides informa-
tion about the application. In this case, the user must prepare the application for the tuning
process (e.g. re-declare certain variables as global or write some part of the code as a function)
and define an application-specific knowledge to model what to measure, how to evaluate it,
and what to change to improve the execution time. Therefore, the user has to develop the
corresponding tunlet, i.e. to implement the performance model that tunes the problems of
the application. This approach is much more flexible than the previous one, given that any
problem can be tackled. However, this flexibility requires a high degree of expertise in parallel
programming and developing performance models. Moreover, the user has to provide the
performance knowledge as a tunlet, which implies being familiar with the implementation of
MATE, in particular with the DTAPI that a tunlet must use to be incorporated in MATE. In
Figure 2(b) we illustrate this approach representing the involvement of the user in providing
MATE with new knowledge.

Each approach has advantages and specific constraints that determine the degree of flexibility
in the usage of MATE. The ideal solution would be to combine direct and transparent usage of
MATE with the flexibility to incorporate the knowledge for the treatment of any performance

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION

— DTAPL
Tunlet

Tunlet,
Performance
Model

| Performance
| Model

|
Global variables

Application

Statistics

MATE
Measure poi

Performance]
functions

hts

DTAPI

Tunlet()
~Tunlet()
Initialize()
BeforeAppStart()
AppStarted()
TaskStarted()
TaskFinished()
InsertEvents()
HandleEvent()
TryTuning()

|

Tunlet Specification

Measure Points
events
actors
parameters
variables

Performance Functions

Tuning Points

287

]
Automatic 1 generation

¥

—1 DTAPI
Tunlet

Performance
Model

Tuning

| point/actions /iclasses for

// storing and Statistics
/lmanage the MATE

|
|
| /feollected data
|

- P /land the
Application
o /intermmediate

/lresults
(@)
Statistfcs

) MATE

Application

Figure 2. Different approaches to use MATE: (a) automatic approach; (b) cooperative
approach; and (c) cooperate to automate approach.

problem. To achieve this goal, it is necessary to have an abstraction mechanism that works as
the interface between the information possessed by the user and the MATE environment. The
implementation details of MATE should be hidden and therefore made transparent for the users,
which would relieve them from the programming responsibility. In Section 3, we present a method-
ology proposed to provide such an approach, making easier and transparent the cooperation
between the users and MATE. The complete methodology provides the easier knowledge repre-
sentation, automatic creation of tunlet code, incorporation into MATE, and reusability for other
applications.

3. TRANSPARENT INCLUSION OF KNOWLEDGE IN MATE

In this section we present a new approach to include performance knowledge in MATE: the
‘cooperate to automate approach’. It includes a methodology to automatically develop tunlets
from a given specification and constitutes an interface between the user and MATE in which the
implementation details are transparent. In Figure 2(c) we illustrate this new approach. As in the
automatic approach, MATE is used as a black box, the user does not directly use DTAPI to create
a tunlet. However, the user is responsible for providing the information related to the application
and to the performance model necessary to automatically create the tunlet. Clearly, it demands a
cooperation of the user—similar to the cooperative approach. However, the advantage is that the
user works at an abstract and descriptive level rather than at a programming and implementation
level. Figure 3 extends the previously explained approach, indicating the user’s point of view.
Let us suppose a particular parallel application with some specific performance problem. In many
cases it is possible to overcome the problem or reduce its negative effects in order to improve the
application performance. As mentioned in Section 2, MATE uses an effective and fast approach
based on performance models, i.e. a set of expressions describing the performance problem. As
the figure shows, the user only needs to determine the performance model to be specified and
he/she has to provide the necessary information about the parallel application in order to define
the elements required by the specification of the corresponding tunlet. Once the tunlet specification
is complete, the creation of the tunlet is performed automatically. Therefore, the performance
problem can be tuned by using the tunlet incorporated in MATE. In summary, the user has to
cooperate to automate the creation and use of the tunlet.

In the subsequent subsections, we present the abstractions utilized to specify a tunlet, the
methodology to provide a tunlet based on a performance model, the defined tunlet specification
language, and the tunlet generator. For simplicity reasons, in Section 4 we provide only a simple

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302

DOI: 10.1002/spe

288 P. CAYMES-SCUTARI ET AL.

N
Application Tunlet Specification
. +" | Performance Model
Programming B
Model e Meassure Points
4 Parameters PuPy o P
‘ 1 F2 i
use Pubs o P, >
Performance Performance Functions
Problem Mathematical Model fy ot
o € ..€
> Tuning Actions/Points
&Yy o G,
e Teepme———— . ______J P, .. b,
T T == T,_,Tf:,_,:f,_,_,::,_,ff,_' _________________________
i i
I I
i i
i |
| H L2
| . g ! Automatic Generation
! H Solution | | of Tunlets
i
100\5 ! : Perf. Analysis p——' | i
! i T ol
!] L [!
| ! Tunlet . !
! Dt Dl Measure points . !
| Performance functions -4~ 1 & ;
}\ MATE Tuning points/actions =9===== N

Figure 3. Development of a tunlet basing on its specification.

example of the usage of this methodology. Results related to the example presented in Section 2.1
are described in Section 5. More details of the experimental results of the methodology can be
obtained from [13].

3.1. Abstractions and terminology

The basic terminology used here is related to the philosophy of MATE in terms of functioning and
knowledge representation: MATE acts to overcome performance problems. Fortunately, there is
a set of well-known performance problems which are mathematically modeled. The performance
models define the optimal behavior of the application and are mainly defined by two elements.
On the one hand, the performance parameters which are needed to evaluate the expressions that
represent the behavior of the application; these are the ‘mathematical’ variables involved in the
evaluation of the performance functions. On the other hand, the performance functions, which
express how to evaluate the performance parameters. In general, the results of the performance
functions are used to determine the solution to the existing problem, i.e. how to improve the
application execution time.

The three elements that each tunlet must provide—measure points, performance functions, and
tuning points/actions—are defined considering the performance model of the problem to solve
and the corresponding information about the application to interpret the parameters and functions
of the model. Therefore, to provide the required knowledge to MATE and to be coherent with the
DTAPI we define the following abstractions (see Figure 4):

1. Actor: In general, each parallel application has different kinds of processes executing in
parallel and cooperating to solve the problem. Each kind of process or task in the programming
model, constitutes a different actor. For instance, in the Master/Worker model, master and
worker are two different actors.

2. Event: It is the mechanism used by MATE in order to collect information about the application
behavior. Events are captured at the entry or exit points of functions and they provide all the
required information, for instance, timestamp, event place, and data volume.

3. Variable: 1t is a global variable of the application. A variable may be needed to obtain its
value or change it.

4. Value: It is a value assumed by a parameter or the result of a function. Similar to the variables,
values are useful to obtain information or to change such values.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 289

Prgcess_1 Process_2 Process_3
Variables —_| ?\k \

\ma,b,c,d... ~ms,\crdﬁ\\ma .
int i int i [T Actors
Res f_1(Data d) g_1l(Data d,int x) h_1(Data e)

/V - |

Values ,//—)—/ } — I Events
main () main () main ()
{ { {
£f i(c,d) g _1l(b,1i) h 10

} } }

Figure 4. Abstractions in the application.

5. Attribute: 1t is a piece of information related to a particular entity. Actors and Events are the
entities that may have a set of associated attributes. These attributes represent information
related to the entity, which is used to determine the value of performance parameters. For
instance, let suppose we want to know the computing time of each actor in a Master/Worker
application. Then the master and each worker have to be provided with an attribute ‘ct’ for
storing the corresponding computing time. An example of an attribute associated to an event
could be the timestamp when it occurred.

3.2. Methodology

Once the abstractions required for the knowledge provision have been defined, we briefly present
the methodology a user should follow in order to define a tunlet. The methodology includes a series
of steps to identify or/and interpret the previously defined abstractions in a parallel application
and in a performance model utilized to improve the application behavior.

1. Providing a performance model. Given an application with some performance problem, the
user has to determine how to model such a problem. The performance model may be a
previously defined one or can be an ad hoc model defined by the user. In the first case, if the
already existing model has been included in MATE, the user has to reinterpret such a tunlet
according to the application, or he/she can directly use the tunlet in case the application was
developed using the Master/Worker framework included in MATE. In the second case, i.e.
when the user is involved in developing a performance model, a higher degree of expertise
is needed, but we can suppose that if somebody turns to parallel computing, she/he has to
be conscious of the ‘collateral’ problems the parallel application may present, and should be
willing to dominate a certain set of concepts related to the parallel paradigm.

2. Understanding the performance model. The understanding of the model is a basic requirement
as the model has to be interpreted according to the application. The user should concentrate
especially in the study and in understanding the relevance and semantic of each performance
parameter. As mentioned before, the performance functions are defined over the parameters;
then if the user understands the semantic of each performance parameter, he/she will be able
to interpret them in the application, and hence, the performance functions will be provided
with all the required measurements to evaluate the application behavior.

3. Interpreting the performance model. This step—interpretation of the model—and the
following one—identification of the actors—are closely related and interdependent, and
hence, they could be done in parallel. The user has to determine the entities in the application
that embody each performance parameter, i.e. how to provide each parameter with its
semantics. In this step the user has to define the events to be captured and the information
associated to them.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

290 P. CAYMES-SCUTARI ET AL.

(a) Identifying the information/variables/values. According to the semantic of each param-
eter, the user has to determine how to obtain its value, which events correspond to it and
what kind of information they should contain. A special consideration is needed with
variables: those variables that are read to obtain their value or to be changed, have to be
global variables. Thus, this may require some adaptations in the implementation of the
application, redefining variables as global, as well as using auxiliary global variables.

(b) Identifying the events. According to the semantic of each performance parameter (or some
group of parameters), the user has to determine the entry and exit points of functions
that have to be caught, i.e. the points in the application code that will provide the
required information. Sometimes—especially when the required information is related to
timestamps—the user will be forced to encapsulate some parts of the functionality of the
application into functions in order to set the limits of the required points of execution.

4. Identifying the actors in the application. The user has to abstract the actors involved in the
application, i.e. the different kinds of processes cooperating during the execution.

3.3. Tunlet specification language

In the previous sections we defined a set of abstractions and a methodology to specify a tunlet based
on the performance model knowledge required by MATE. To help a user in a tunlet preparation
process, we propose a mechanism to formalize such a conceptual definition of a logic about
the possible solutions to a performance problem and to transform it into a tunlet. Therefore, we
define a Tunlet Specification Language that helps users to develop a tunlet without entering into
the implementation details of MATE. However, this language must consider the fact that MATE
provides its DTAPI to incorporate the required knowledge. Summarizing Section 2, tunlets have
to obey DTAPI, and hence the specification language must cover all the necessary elements to
automatically generate a tunlet from a specification. In this paper we present the language in a
general way, complementary details are documented in [13]. Our study on how to define the Tunlet
Specification Language has been centered in the following aspects:

1. How to capture the information. We had to consider the methods provided by DTAPI to
instrument the application, in particular, the properties which define an event.

2. How to manage the collected information. When an event is inserted in a process, a handler
has to be determined to manage the event when received by the Analyzer.

3. How and where to store the information. Each tunlet manages a data structure for each
iteration. In such a structure, the information collected is stored according to the nature of
the information: information about actors or iteration.

4. How to modify the application. Similar to the insertion of monitoring instrumentation, we had
to consider the methods provided by DTAPI to introduce modifications in the application, in
case a tuning action is required.

The information encapsulated in a tunlet comes from two different and complementary sources:
a performance model which provides the knowledge to tune a performance problem and the
information about the application to interpret such a performance problem. Thus, the performance
model determines three sections in the specification: measure points, performance functions, and
tuning points/actions, while the application information provides the components to embody the
performance model. From the point of view of the application we need to be aware of

(a) the programming model it follows, i.e. how different kinds of processes or actors are involved
in the scheme,

(b) the variables or values we can manipulate, both to get their values or to change them, and

(c) the functions whose execution we need to detect to collect the information and send it as
events.

As we can see, the variables, values, and events in the application are closely associated to the

measure points of the tunlet, because they constitute the interpretation of the performance model.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 291

In this way, we divided the specification into three different sections, which we describe in the
following subsections.

3.3.1. Measure points. The measure points section embodies the largest part of the specification,
as it condenses all the information about the application, the programming model and all the
parameters of the performance model. The user must define:

1. The actors of the programming model. The tunlet needs the information about the actors of
the application because each type of process may have different instrumentations inserted
depending on the nature and role in the programming model. According to DTAPI, when a
process is registered in the Analyzer, the tunlet must provide the location of the points in
the code and discriminate what kind of instrumentation should be inserted. Therefore, it is
necessary to declare the name of the actor, the class in which it is included or defined, and
the name of the executable file. Moreover, some additional information is required from the
tunlet point of view:

(a) The minimal and maximal quantity of this type of actor that can be executed. It is needed
to generate the structures that manage the behavioral information of each process during
the successive iterations.

(b) A completion condition to detect when the actor reached the end of its work during
an iteration. This is necessary to check if every process finished before evaluating the
performance functions.

(c) The actor’s attributes, i.e. the properties that should be registered in each iteration; for
example for a worker, to catch the computing time along the iteration could be interesting.
The attributes are normally used to calculate the value of other attributes or performance
parameters.

2. The variables and values which can be instrumented or tuned in the application. For each
of them a user must declare: the name and the data type, according to the declaration in the
application; the type of the element: a variable, a parameter, or a function output; and the
actor that has visibility of it. In general, these variables and values are used in defining
the attributes of the specification elements as events and actors. The details (type, actor, etc.)
are needed to locate them in the code and transmit them correctly.

3. The events to capture, such as entry or exit points of functions. Each event is defined by its
name, the actor it is associated with, the place in the source code (entry or exit point of a
function) and a code in case the event must be used to control the beginning or the end of an
iteration. For each event it is also necessary to determine its utility, i.e. if the event must be
always caught or if it is an addable or removable event. This is because some instrumentation
could be added or removed from the application according to the current conditions of the
system. Thus, utility may assume three different values: always, addable, removable. Certain
attributes—variables or values measured when an event occurs—may be associated to a
particular event. For example, the quantity of bytes sent can be a required metric generated
when an event for the exit of a sending function occurs.

4. The parameters of a model that are treated as attributes of the performance model, whose
values are generally calculated as a certain function of the attributes of actors or events.
Although these parameters could be omitted in the tunlet, because the performance functions
may obtain the values directly from the attributes of the entities, it is convenient to respect
the parameters of the performance model to avoid mistakes in the interpretation.

5. As MATE was designed to tune iterative applications, it is necessary to indicate to which
iteration the collected information is associated. Communications could cause a gap between
the instant in which the information is sent and the moment in which it is received by
the Analyzer. Therefore, to avoid inconsistencies, we require an additional section in the
specification to collect information about each iteration. It includes an attribute to indicate the
current iteration, and then all the additional information necessary to describe the behavior
of each iteration, according to the performance model.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

292 P. CAYMES-SCUTARI ET AL.

In general, all the elements in the specification with a set of attributes, must declare for each
attribute its name, the data type, the initialization value and the way its value must be calculated in
each iteration. Finally, if the attribute depends on another attribute or event it should be expressed
to maintain the coherence in calculating values.

3.3.2. Performance functions. Considering the performance functions, they must be defined in
C/C++ language. The user writes the functions’ code using C/C++ and these functions will be
recognized as the performance functions of the tunlet. Each function will be the value assigned to
a tuning point or to an intermediate calculation. Any library needed to implement the functions
should be declared in the include section.

3.3.3. Tuning actions/points. There could be different tuning actions to modify the behavior
of the application: to modify the value of a certain variable in a determined process
(SetvVariableValue), to replace every call to a certain function by a call to another function
(ReplaceFunction), toinsert a new function call with its attributes (InsertFunctionCall),
to eliminate every call to a certain function (RemoveFunctionCall), to call a certain function
once during the execution (OneTimeFuncCall), and to change the value of a parameter in
the entry of a function, before the body of the function is executed (FuncParamChange). All
the information about a tuning action, i.e. what to do, where and when, is encapsulated as a
tuning point. Therefore, for each tuning point it must be declared the kind of action (one of the
previously enumerated), the identifier of the entity to be managed (the name of a variable or a
function), the value to be assigned, a condition to apply the tuning and additional information
about synchronization on the appropriate execution place to apply the tuning action.

Tunlet
Specification Input Flex
— Lexical
5, Analyzer
I
Output
XML
Input
Tunlet. —P% 1 XMLDom
Specification
Preprocessor
L
Output
v
XML
Tunlet
Specification
(translated expressions, ﬂ, XSLT
solved dependencies) Source Code
Generation
S
I S
A/% urpm\\A
Tunlet.h Tunlet.cpp Stats.h Stats.cpp

Figure 5. Phases in the generation of a tunlet from a specification.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 293

3.4. Tunlet generator

Once the tunlet has been specified, it is possible to translate such specification into source code.
As part of this work, we developed a translator that supports the creation of a determined tunlet
from a specification. The translation process to obtain the source code of the tunlet includes several
steps, which are illustrated in Figure 5 and is briefly described here.

Let 5o be the specification of a tunlet written by the user. In the first place, during the lexical
analysis, so is translated from its original text format into an equivalent XML [23] specifica-
tion (s1). Second, s; is preprocessed to solve the dependences among attributes and events through
the specification with the aim of obtaining a new XML specification (s) without inconsistencies.
In the last step, s is used as the input of the source code generation process. The informa-
tion to conform the source code of the tunlet is obtained from the different sections of s,. We
implemented this translator using several tools: Flex [24] for the lexical analyzer, an XMLDom
program [25] for the preprocessor, and several XSLT stylesheets [26,27] for the source code
generator.

Note that the generation process includes several steps, but the user is only involved in the
definition of the specification. From that specification it is possible to generate the source code.

4. SIMPLE EXAMPLE

In order to clarify the functioning of the proposed methodology, we present a simple example of
a tunlet specification. Let us suppose that we have the parallel application presented in Figure 6.
The application consists of two kinds of processes: Process_I (P;) and Process_2 (P,). Figure 7
shows a diagram of activities between both kinds of processes. Dashed lines represent the time
line. Every iteration starts with a brief period of initialization. After that, P; divides the set of data
to be processed into two parts. One portion is sent to P, and the other portion is processed by P;.
When P, finishes the reception of the data, the computing phase starts. When all the data have
been processed, the results are sent back to Pj. After a brief phase of finalization of iteration, for
example to gather all the results, it starts the next iteration.

Let us suppose now that the performance of this application is poor because the application
execution lasts too long. The user may want to analyze how much time is wasted in communications.

Process_1

Data dt,dt1,dt2,rs,rs1,rs2
inti

Initialize(Data d);
//nitialize data
Finalize(Data r, Data r1, Data r2);
//Final processing of results
DivideData(Data d, Data d1, Data d2);
//Divide d into d1 and d2
Send(Data d);
//Send d to Process_2
Receive(Data r);
//Receive r from Process_2
Data Process(Data d);
/[Process d and return the results

main()

while(i<n){ //while(!end)
Initialize(dt)
DivideData(dt,dt1,dt2)
Send(d2)
rs1=Process(d1)
Receive(rs2)
Finalize(rs,rs1,rs2)
dt=rs }

Process_2
Data dt,rs

Send(Data d);

//Send d to Process_1
Receive(Data r);

/IReceive r from Process_1
Data Process(Data d);

/[Process d and

/freturn the results

main()
{
while(!end) {
Receive(dt)
rs=Process(dt)
Send(rs) }
}

Figure 6. General view of a parallel application.

Copyright © 2011 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2012; 42:281-302

DOI: 10.1002/spe

294 P. CAYMES-SCUTARI ET AL.

P P 1 Preparing send action
1 2 I Receiving action
i | [/] Processing action
» |
Initialize() ! !
i | .
DivideData () ‘ ? } Computing
i | c icati
! Send (data) I ; ommunication
Process () iy Receive () 4
i.
Process () N
) .
‘ Computing Iter.atlon
Time
|
'6
|
| i,
! Send (results) L. .
- g Communication
Receive () g |
. |
v 1
Finalize () VAo | i
s ! Computing

Figure 7. Diagram of activities and iteration time calculation.

Then, the user has to provide the mathematical model of the execution time of an iteration.
Note that for this example we consider a slight difference between ‘mathematical model’ and
‘performance model’. In Section 2, we introduced the three elements conforming a performance
model: the measure points, the performance functions, and the tuning points and/or actions. The
evaluation of expressions of performance in terms of measuring points can decide the appropriate
tuning action to solve the problem. To simplify this example, we will not consider the various
possibilities to overcome the bottlenecks nor improve the execution time. In other words, we
are not considering the tuning points and/or actions, but we only analyze the time spent in
computing and communications. It is clear that the analysis is not enough to improve the application
performance if the program is not modified accordingly. This is the simple reason why we talk about
mathematical model instead of model performance. In the following subsections we analyze this
example.

4.1. First and second steps: Providing and understanding the model

In a scheme like the one presented in Figure 7, it is possible to calculate the total time of an
iteration by adding the computing time and the communication time of such iteration. Let us
suppose that T'r,,(x) represents the time spent during the iteration x to execute the foo function.

The execution time of the iteration iz can be determined as follows: Tg(it) =Tcomp(it) +
Tcomm(it), where Tcomp (1) =Tpi(t) + Tproc(it) +Trin(it) and Tcomm (1) =Tsena(it) +TRecv (i)
where

e Ty, comprises the initial treatment and configuration, previous to the parallel processing.
Similarly, for TF;, we consider the final treatment made over the processed data.

e Tproc comprises the time in which the processes are processing the data.

o Ts.nq comprises the time spent on sending messages, whenever this time is not overlapped
with computing time.

e Tpecy is the time spent on receiving messages.

In order to effectively calculate each one of the components of Tcemp and Tcomm We can
consider the instants of the entries and exits of different methods or functions. Let Entry(foo) and
Exit(foo) be the functions to obtain the initial and final instants of a function foo. Considering
this particular example, the mathematical model may be interpreted and expressed as shown in
Figure 8. Although in this complete example we provide the model, some preexisting model
could be used. In general, the use of a preexisting model provides more sense to the second
step of the methodology. Clearly, in this example the parameters to be considered are entries and

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 295

Mathematical Model: Iteration Time (T_,)
Parameters
Entry(Initialize()) Entry(Finalize()) Entry(Send()) Entry(Receive())
Exit(DivideData()) Exit(Finalize()) Exit(Send()) Exit (Receive())

Mathematical Model

T (i) = Exit(DivideData()) - Entry(Initialize())

T pyo0(i) = max(Exit(Process())) - min(Entry(Process()))

T (i) = Exit(Finalize()) - Entry(Finalize())

T seng(i) = [max(Exit(Send())) - min(Entry(Send()))1 - T, () :
[V Entry(Process()): Entry(Send()) < Entry(Process())] A
[V Exit(Process()): Exit(Send()) > Exit(Process())]

T peeo () = max(Exit(Receive())) - min(Entry(Receive())) :
[V Entry(Process()): Entry(Receive()) > Entry(Process())]
[/ Exit(Process()): Exit(Receive()) > Exit(Process())]

TCamp (I) = Tlni(I) + TProc(i) + TFm(i)

TComm i) = TSend(i) + TF?ecv(i)

TEX(/) = TComp (I) + 7-Comm (I)

Figure 8. Mathematical model of the iteration time calculation.

exits of functions. They allow for the calculation of necessary time intervals. As we provide the
performance model and explain all the required elements, we put both steps of the methodology
(providing and understanding the model) together. This is why the second step of the methodology
(i.e. the understanding of the model) is not elaborated as a separated section.

4.2. Third step: Interpreting the performance model in the application

Although the proposed mathematical model was developed ad hoc for this simple application, we
have to determine the required measure points. In other words, in order to calculate each one of
the components of Tcomp and Teomm We have to determine the points in the application code that
allow for the necessary calculations. Considering Figure 7, we represent the instants of the entries
and exits of different functions as i,. According to Sections 3.1 and 3.2, events are entities which
allow for capturing timestamps and additional associated information if needed. We define the
corresponding events to capture the timestamps of entries and exits (the bold text represents the
name of each event):

e T, can be obtained from the substraction between the exit of the DivideData() function and
the entry of the Initialization() function (in the example of Figure 7, T},; =iz —i1):

o Event_Div_Dat_Exit: actor: pl; place: exit of Divide_Data(); attr: timestamp;
o Event_Init_Entry: actor: pl; place: entry of Initialize(); attr: timestamp;

e Tri, similar to the previous case, for Tr;, we consider Finalize() action (in the example,
Trin=1i10—1i9):
o Event_Fin_Exit: actor: pl; place: exit of Finalize(); attr:
timestamp;
o Event_Fin _Entry: actor: pl; place: entry of Finalize(); attr: timestamp;

e Tp,oc is calculated by considering the time the first process starts the processing of its data
(in the example, the entry of Process() for P;) and the time the last process finishes the
processing of its data (the exit of Process() forP>) (in the example, Tpyoc =i7—14). The order
in which the data are processed cannot be ensured, and hence we have to instrument the
Process() function of P; and P,. Once the events are captured, some comparisons have to be
carried out to determine the order of execution:

o Event_Proc_Exit: actor: pl,p2; place: exit of Process(); attr: timestamp;
o Event_Proc_Entry: actor: pl,p2; place: entry of Process(); attr: timestamp;

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

296 P. CAYMES-SCUTARI ET AL.

o Tsenq is the time spent sending messages, whenever this time is not overlapped with the
computing time (in the example, Tse,q = (i1 —i3) + (i3 —i7)):
o Event_Send_Exit: actor: pl,p2; place: exit of Send(); attr: timestamp;
o Event_Send Entry: actor: pl,p2; place: entry of Send(); attr: timestamp;
o Tgrecy is the time spent receiving messages (in the example, TRecy =19 —ig):
o Event_Recv_Exit: actor: pl,p2; place: exit of Receive(); attr: timestamp;
o Event_Recv_Entry: actor: pl,p2; place: entry of Receive(); attr: timestamp;
Note that in the example, interval (is—i4) is not considered as part of Tg.., because it is
overlapped to Tp;oc.

Then, by capturing these events, we can obtain the timestamp of the entries and exits of different
functions as the code is executed, which will allow us to calculate the total time of an iteration.

4.3. Fourth step: Identifying the actors in the application

In this example, from Figures 7 and 6 we can distinguish the existence of two different kinds of
actors: Processl and Process2. Processl executes a bit of computing, but is mainly devoted to
manage and coordinate all the work, while Process2 is devoted to process the received data and
send back the results. Clearly, these processes have a different functionality, which turns them into
different actors. It is important to identify them as separated actors, as each one of them need to
be instrumented in a different way according to the required measure points. For each one of the
actors we have to determine some properties and associate the collected data as the corresponding
attributes:

e Processl: name: pl; class: none; executable file: Process_1; completion condition: exit
of Finalize() (Exit(Finalize)); attributes: timestamps of Entry(Initialize), Exit(DivideData),
Entry(Send), Exit(Send), Entry(Receive), Exit(Receive), Entry(Process), Exit(Process),
Entry(Finalize), and Exit(Finalize).

e Process2: name: p2; class: none; executable file: Process_2; completion condition: exit of
Send(); attributes: Entry(Send), Exit(Send), Entry(Receive), Exit(Receive), Entry(Process),
Exit(Process).

The property class is none, as this simple example is written using C language. If it had been
written in C++ we would have needed the name of the class. At this point of the methodology, the
user must formalize all this information using the Tunlet Specification Language, to automatically
generate the tunlet. Finally, he/she will use our generator to automatically create the tunlet code.

4.4. Formalizing the specification

In this section we formalize the specification of some of the entities previously determined. The
specification obeys the syntax of the Tunlet Specification Language presented in Section 3.3. For
simplicity, we only concentrate on one actor: the p/, presented in Figure 9(a). For this actor we
formalize the identifier, the minimal and maximal amount of them along the iteration (in this
simple example only one), the completion condition (in this case determined by the end of the
Finalize() method), and finally the class and the executable file where the actor is stored. Following
that, we enumerate the attributes of the actor. One of the attributes is TInit, which is initialized in
0.0 (inic:TInit=0.0;) without dependencies (depinic:none), and whose value is determined by the
timestamp of Event_Init_Entry. This explains the value of the attribute dependency, which during
the translation step will indicate that the value of TInit has to be assigned when the tunlet handles
the event Event_Init_Entry. Given that there is only an actor of kind p/, the information is stored
in the record of p1[0]. Let us now consider the specification of Event_Init_Entry. In Figure 9(c)
we highlight that the event is captured in the code of actor pl, and that it indicates the starting
of a new iteration (controliter=begin). The event Event_Init_Entry has an associated attribute to
indicate which iteration has just started. This attribute takes the value from the variable called i
whose specification is provided in Figure 9(b). The event Event_Init_Entry together with the event
Event_Div_Dat_Exit illustrated in Figure 9(d) (in particular their corresponding timestamps) allows

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 297

1
2
3
4 max: 1
5 completion:/#comp==1#/
6 class: none
7 exe: /home/paola/pvm3/bin/LINUX/Ej/p1
8
9
10

ATTRS
id:comp
comment:/*"When the Finalize() method
11 finishes, the value of comp is set to 1,
12 which indicates the completion of the
13 iteration.*/
14 type: int
15 inic:/#comp=0;#/
16 depinic:none

17 value: /#p1[0].comp=1;#/
18 dependency: Event_Fin_Exit

19
20 id:TInit
21 comment:/*instant in which Initialize starts*/

22 type: double
23 inic: /#TInit=0.0;#/

24 depinic:none

25 value:/#p1[0].Tlnit =

26 Event_Init_Entry.timestamp;#/
27 dependency:Event_Init_Entry

28

29 id:TDivData

30 comment:/*instant in which DivideData finishes*/
31 type: double

32 inic: /#TDivData=0.0;#/

33 depinic:none

34 value:/#p1[0].TDivData =

35 Event_Div_Data_Exit.timestamp;#/
36 dependency:Event_Div_Dat_Exit

37

38 id:TEntrySend

39

40 id: TExitSend

41

42 id:TEntryRecv

43

44 id: TExitRecv

45

46 id: TEntryProcess

47

48 id: TExitProcess

49

50 id:TEntryFin

51

52 id: TExitFin

53

54 endactor

VARIABLES AND VALUES
variable
id: i
comment:/* current
iteration*/
source:asVarValue
type:int
actorld: p1
endvariable

(b)

event
id:Event_Init_Entry
actorld:p1
controliter:begin
utility:always
method: Initialize
class: Process_1
place: entry

ATTRS
id: i

endevent

(©

event
id:Event_Div_Dat_Exit
actorld:p1
controliter:no
utility:always
method: Divide_Data
class: Process_1
place: exit

ATTRS

endevent

(d)

MODEL PARAMETERS

id:T_Ini
type:double
inic:/#T_Ini=0.0;#/
depinic:none
value: #T_Ini =

(p1[0]. TDivData -

p1[0].Tinit); #/

dependency:none

(e)

PERFORMANCE FUNCTION

function
def:/#double T_Ex()
{return (T_Comp +
T_Comm);

)

endfunction

(a)

()

Figure 9. Extracts of the specification: (a) actor specification; (b) variable specification; (c) event specifi-
cation; (d) event specification; (e) parameter specification; and (f) performance function specification.

for calculating 7_Ini, the model parameter specified in Figure 9(e). The value of T_Ini is calculated
according to the values of TInit and TDivData, two attributes of actor pl. Finally, in Figure 9(f),
we formalize the main expression of the model, which allows for calculating the execution time.
These extracts of specification release the user from being directly involved with the specific
implementation of MATE. Considering this simple example and this reduced set of entities specified

Copyright © 2011 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

298

P. CAYMES-SCUTARI ET AL.

class p1_Data
{
public:
pl_Data();
void Set_comp(int c);
void Set_TInit(double t);

bool pl_Data::IsComplete ()
(

return (comp==1);

}

oid pl_Data::Set_comp(int c)

void Set_TDivDat(double t); {
comp=c;
double Get_comp(); }
double Get_TInit();

double Get_Set_TDivDat(); int pl_Data::Get_comp()

(
bool IsComplete (); return comp;
}
private: (b)
it comp ;) enum possibleEvents
double TInit ; (
double TDivDat ; Event_Init_Entry =1,
double TEntrySend; Event_Div_Dat_Exit =2,
double TExitFin; Event_Recv_Entry= 10
ki }s
(a) ©)

Figure 10. Extracts of source code related to the specifications—Declaration of data and events: (a) data
of pl; (b) some methods of pl_Data; and (c) names of the events to capture.

void SimpleExampleTunlet::Insert_pl_Events (Task & t)
{
/l EVENT_INIT_ENTRY
/I Attribute List for Event_Init_Entry
Attribute InitEntryAttrs [1];
IterationStartsAttrs [0].source=asVarValue;
IterationStartsAttrs [0].type=avtlnteger;
TterationStartsAttrs [0].id="i";
Event InitEntry (Event_Init_Entry, "Process_1::Initialize", ipFuncEntry);
InitEntry.SetAttribute (1, InitEntryAttrs);
InitEntry.SetEventHandler(*this);
t. AddEvent(InitEntry);

// EVENT_DIV_DAT_EXIT

/I Attribute List for Event_Div_Dat_Exit

Event DivDatExit (Event_Div_Dat_Exit, "Process_1::Divide_Data", ipFuncExit);
DivDatExit.SetEventHandler(*this);

t.AddEvent(DivDataEXxit);

},..

Figure 11. Extracts of source code related to the specifications—Instrumentation of the application.

in Figure 9, the user is exempted from programming the corresponding source code, parts of
which are presented in Figures 10-13. In the first place, the attributes of the actor pl and the
corresponding methods to set and get them have to be declared (Figure 10(a)). In Figure 10(b)
we present the implementation of some Set/Get methods. In second place, an enumeration of the
possible events has to be provided. In this case, Event_Init_Entry and Event_Div_Dat_EXxit constitute
the first and second elements of the enumeration possibleEvents (Figure 10(c)). Additionally, the
events have to be created, registered with the EventHandler process (in general the tunlet constitutes
the EventHandler) to determine which process will receive and process it. This is illustrated in

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302

DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 299

void SimpleExampleTunlet::HandleEvent (EventRecord const & 1)
{
IterData * data = FindIterData (_lastIterIdx);
switch(r.GetEventld ())
{
case Event_Init_Entry :
{
data->Get_p1(0).Set_TInit(r.GetTimestamp());
_lastIterIdx=r.GetAttribute Value(0).GetInt Value();
break;
}
case Event_Div_Dat_Exit :
{
data->Get_p1(0).Set_TDivDat(r.GetTimestamp());
break;
}
default:
{
break;
}
}H/end switch

}

Figure 12. Extracts of source code related to the specifications—Management of the received events.

oid SimpleExampleTunlet::Update_T_Ini (double t)

i
IterData *data =FindIterData(iterIdx);
T_Ini=data->(Get_p1(0).Get_TDivData()) - (Get_p1(0).Get_TInit());

}

int SimpleExampleTunlet::T_Ex()
{

return (T_Comp + T_Comm);

}

Figure 13. Extracts of source code related to the specifications—Treatment of
model parameters and functions.

Figure 11, where we summarize the two events considered in this section. Note that in the case of
the Event_Init_Entry, the variable i is associated as an attribute. In the third place, the EventHandler
has to be provided with the functionality to process each kind of events, as shown in Figure 12.
Finally, Figure 13 shows how to calculate T_Ini and T_Ex.

5. EXPERIMENTAL RESULTS

In the previous section we presented a simple and easy to understand example, which does not
depend on any application implementation, but is useful to explain the complete methodology. In
this section we briefly present some results of usefulness and effectiveness of MATE to automati-
cally tune parallel applications using the proposed methodology. The transparent creation of tunlets
from specifications relieves the programmer from being involved in the implementing details of
MATE and the management of the collected information. To conduct our experiments, we consid-
ered a performance problem presented by Master/Worker applications: the amount of workers
according to the computational work and the load balancing of the application. We focused on
the performance model presented in Section 2.1. These are critical problems especially in time-
sharing or heterogeneous environments, as the number of workers should be adapted depending on

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

300 P. CAYMES-SCUTARI ET AL.

Table 1. Execution times of the application by itself and under MATE, in ms.

Experiment Execution time
Application—1 worker 64487
Application—2 workers 34611
Application—4 workers 18087
Application—8 workers 10372
Application—16 workers 11834
App. under MATE (tunlet created using DTAPI) 10923
App. under MATE (tunlet created from specification) 10887

the changes in the system. These experiments were conducted using an NBody application. The
execution environment was a homogeneous cluster of Pentium 4, 1.8 GHz connected by 100 Mb/s
network, with SuSE Linux 8.0 as operating system.

First, we only executed the application without any change and without the intervention of
MATE. We measured the execution times when the application was executed in 1, 2, 4, 8 and 16
machines. Second, we executed the application under MATE in two different scenarios: in the first
place, we implemented the model of the optimal number of workers [20] using DTAPI of MATE to
create a corresponding tunlet; in the second place, we implemented the same performance model,
but in this case we followed the proposed methodology to specify and create the tunlet.

In both scenarios the execution started with a unique worker, and then the number of workers was
tuned according to the load in the system. The load pattern in the system was variable, but controlled
and was the same for each experiment. We can divide the analysis of the results into two parts:
benefits of using MATE for application tuning and effectiveness of the automatically generated
tunlet. Considering the first part of the experimentation, in a general view of the results presented
in Table I, we can observe the benefits obtained when the application is executed under MATE. The
execution times under MATE are comparable to the best time obtained when the fixed number of
workers is 8. However, when the application is executed under MATE, the computational resources
are used only when they are really necessary, making a more efficient use of the whole system.
The second part of the experimentation, in a particular comparison of the two last experiments, we
can appreciate the effectiveness of the tunlet created from the specification. We can see that there
is no additional overhead introduced into the application execution comparing both tunlets—the
tunlet developed by hand directly using DTAPI and the specified and automatically generated one.
As the proposed methodology is devoted to facilitate the use of MATE to improve the execution
performance rather than to improve the code performance, this is a very important result given
that the user obtains the same benefit in tuning the application working at a more abstract level.
The complete reasoning to create this tunlet may be referred in [28].

6. CONCLUSIONS

In many scientific fields, parallel/distributed computing provides the necessary power to solve prob-
lems faster. In this work we have treated a very important aspect of high-performance computing:
the transparent tuning process of parallel applications. In particular, we have focused on MATE
which provides dynamic and automatic tuning of parallel applications, based on performance
models implemented as tunlets. Until now, if users wanted to use MATE to tune their applications,
they had to program the corresponding tunlet considering the requirements and implementation
details of MATE. In this work we have proposed and developed a particular extension of MATE in
order to expand, improve, and facilitate its usability. We have transformed the MATE environment
into more transparent tool for the users. We have given the user the possibility of improving
the application performance in a simple way without the typical efforts related to the C/C++
implementation.

We have proposed and developed a methodology to automatically generate tunlets from spec-
ifications. The user only defines a set of abstractions taking into account information about the

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

METHODOLOGY FOR TRANSPARENT KNOWLEDGE SPECIFICATION 301

application to interpret the performance model under consideration. Some of these abstractions are
the actors in the application (i.e. the different kinds of processes co-executing in the application),
the events and information to be collected, the performance parameters, and the tuning points. For
each entity the user has to provide some information, such as data type, location, and name. These
abstractions have to be formalized to constitute the specification, i.e. they must be written using the
Tunlet Specification Language. In addition, we have developed and coded a translator to transform
a given specification into a tunlet code. The whole methodology considers the requirements of
MATE, i.e. the API that tunlets have to follow to work within MATE. Our approach constitutes
a very promising way to extend the use of MATE, so that users can specify or reuse different
performance problems for different applications. They will not be restricted to tunlets provided
a priori by MATE nor involved in the implementing details of MATE. Furthermore, we have
shown the effectiveness of MATE to tune applications and the comparability of the results between
the manual and the automatically generated version of the tunlet. Transparency of MATE is a
quality necessary to make MATE a more useful and user-friendly tool. The proposal and develop-
ments presented in this work attempt to provide MATE with such characteristics. Although several
improvements remain to extend and improve MATE, we established the basis to provide users the
possibility of using MATE in a transparent way for the tuning process of parallel applications.

ACKNOWLEDGEMENTS

This research has been supported by the MICINN-Spain under contract TIN2007-64974 and by the
CONICET-Argentina under contract PIP11220090100709.

REFERENCES

1. Grama A, Gupta A, Karypis G, Kumar V. Introduction to Parallel Computing (2nd edn). Pearson Addison
Wesley: U.S.A., 2003.

2. Maillet E. TAPE/PVM an Efficient Performance Monitor for PVM Applications—User Guide. LMC-IMAG:
Grenoble, France, 1995.

3. Geist A, Heath TM, Peyton BW, Worley PH. A User’s Guide to PICL: A Portable Instrumentation Communication
Library. TR TM-11616, Oak Ridge National Lab, 1990.

4. Heath M, Etheridge J. Visualizing the performance of parallel programs. IEEE Software 1995; 8(5):29-39. DOI:
10.1109/52.84214.

5. Nagel W, Arnold A, Weber M, Hoppe H. VAMPIR: Visualization and analysis of MPI resources. Supercomputer
1996; 12:69-80.

6. Espinosa A, Margalef T, Luque E. Automatic detection of parallel program performance problems.
VECPAR’98 (Lecture Notes in Computer Science, vol. 1573). Springer: Berlin, 1998; 365-377. DOL
http://doi.acm.org/10.1145/281035.281051.

7. Yan J, Sarukhai S. Analyzing parallel program performance using normalized performance indices and trace
transformation techniques. Parallel Computing 1996; 22:1215-1237. DOI: 10.1016/S0167-8191(96)00032-4.

8. Miller B, Callaghan M, Cargille J, Hollingsworth J, Irvin R, Karavanic K, Kunchithapadam K, Newhall T. The
paradyn parallel performance measurement tool. IEEE Computer 1995; 28:37-46. DOI: 10.1109/2.471178.

9. Ribler R, Vetter J, Simitci H, Reed D. Autopilot: Adaptive control of distributed applications. Proceedings of
the Seventh IEEE Symposium on High Performance Distributed Computing, Chicago, 1998; 172-179. DOI:
10.1109/HPDC.1998.709970.

10. Tapus C, Chung I, Hollingsworth J. Active harmony: Towards automated performance tuning. Proceedings
of the Conference on High Performance Networking and Computing, Baltimore, 2002; 1-11. DOIL
10.1109/SC.2002.10062.

11. Mayes K, Lujan M, Riley G, Chin J, Coveney P, Gurd J. Towards performance control on the grid. Philosophical
Transactions of the Royal Society of London Series A 2005; 363/1833:1793—-1806. DOI: 10.1098 /rsta.2005.1607.

12. Morajko A, Caymes-Scutari P, Margalef T, Luque E. MATE: Monitoring, Analysis and Tuning Environment for
parallel/distributed applications. Concurrency and Computation: Practice and Experience 2007; 19(11):1517—
1531. DOI: 10.1002/cpe.v19:11.

13. Caymes-Scutari P, Morajko A, Margalef T, Luque E. Automatic generation of dynamic tuning techniques.
Euro-Par’07 (Lecture Notes in Computer Science, vol. 4641). Springer: Berlin, 2007; 13-22. DOI: 10.1007/978-
3-540-74466-5_3.

14. Caymes-Scutari P, Morajko A, Margalef T, Luque E. Scalable dynamic monitoring, Analysis and tuning
environment for parallel applications. Journal of Parallel and Distributed Computing 2010; 70(4):330-337. DOIL:
10.1016/j.jpdc.2009.08.008.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302
DOI: 10.1002/spe

302

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P. CAYMES-SCUTARI ET AL.

Morajko A, César E, Caymes-Scutari P, Mesa J, Costa G, Margalef T, Sorribes J, Luque E. Development
and tuning framework of Master/Worker applications. Journal of Computer Science and Technology 2005;
5(3):115-120.

Morajko A, César E, Caymes-Scutari P, Margalef T, Sorribes J, Luque E. Automatic tuning of Master/Worker
applications. Euro-Par’05 (Lecture Notes in Computer Science, vol. 3648). Springer: Berlin, 2005; 95-103. DOI:
10.1007/11549468_14.

Mesa JG. Framework Master/Worker. Master Thesis. Universitat Autonoma de Barcelona, 2004; 1-154.

Buck B, Hollingsworth J. An API for runtime code patching. The International Journal of High Performance
Computing Applications 2000; 14:317-329. DOI: 10.1177/109434200001400404.

Mattson T, Sanders B, Massingill B. Patterns for Parallel Programming. Addison-Wesley: Reading, MA, 2004.
César E, Mesa J, Sorribes J, Luque E. Modeling Master-Worker applications in POETRIES. Proceedings of the
IEEE Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments,
Santa Fe, NM, U.S.A., 2004; 22-30. DOI: 10.1109/HIPS.2004.1299187.

César E, Moreno A, Sorribes J, Luque E. Modeling Master/Worker applications for automatic performance
tuning. Parallel Computing 2006; 32(7):568-589. DOI: 10.1016/j.parco.2006.06.005.

César E, Sorribes J, Luque E. Modeling pipeline applications in POETRIES. Euro-Par’05 (Lecture Notes in
Computer Science, vol. 3648). Springer: Berlin, 2005; 83-92. DOI: 10.1007/11549468_12.

Extensible Markup Language (XML). Available at: http://www.w3.org/ XML/ [September 2005].

Flex, a fast scanner generator. Available at: http://www.gnu.org/software/flex/manual/ [September 2005].
Document Object Model (DOM). Available at: http://www.w3.org/DOM/ [September 2005].

XSL Transformations (XSLT)—Version 1.0. Available at: http://www.w3.0rg/1999/XSLT/Transform [October
2005].

XQuery 1.0, XPath 2.0, and XSLT 2.0 Functions and Operators. Available at: http://www.w3.0rg/2005/04/xpath-
functions [October 2005].

Caymes-Scutari P. Extending the usability of a dynamic tuning environment. PhD Thesis, TEX—Universitat
Autonoma de Barcelona, 2007; 1-235.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:281-302

DOI: 10.1002/spe

	SPE_1061_web.pdf

