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a b s t r a c t

We investigate exact solutions of the Navier–Stokes equations for steady rectilinear pendent rivulets
running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets
for any profile of the substrate (transversally to the direction of flow) and with no restrictions on
the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static
equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact
angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically
a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane,
computing some of their global properties, and discussing their stability.

© 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Steady parallel flowswith a free surface such as rivulets flowing
over or under inclined surfaces, flows in inclined channels of
various cross sections, etc. are of great interest since they model
many natural as well as industrial flows. These currents are driven
by gravity, to which in some instances stresses on the free surface
(like those arising fromwind)must be added. These and the viscous
forces determine the velocity field, while the shape of the free
surface depends on a balance between surface tension and gravity,
and on the contact angles on both contact lines.
The first investigation of the steady unidirectional flow of a

uniform rivulet of a Newtonian fluid down an inclined plane is
due to Towell and Rothfeld [1]. This work was later extended by
many authors. Allen and Biggin [2] addressed rectilinear rivulet
flow by means of a series expansion in terms of the rivulet
aspect ratio (height/width) and compared the results with an exact
numerical solution. Duffy andMoffat [3] calculated the shape of the
rivulet as a function of the inclination of the substrate. Non-planar
supporting surfaces were considered by Alekseenko et al. [4],
who treated flows down the lower surface of an inclined circular
cylinder, and by Wilson and Duffy [5] who considered rivulets
on a substrate with a slow variation transverse to the direction
of flow. Thermocapillary effects on thin viscous rivulets draining
down a heated or cooled substrate were also investigated [6], as
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well as temperature-dependent viscosity effects [7,8]. Rivulet flow
of non-Newtonian liquids was considered by Rosenblat [9], and
more recently by Wilson et al. [10]. A rivulet driven by interfacial
shear and gravity was investigated by Myers et al. [11], as well
as by Sullivan et al. [12,13]. Braiding and meandering of rivulets
flowing on a partially wetting inclined plane have been addressed
by Mertens et al. [14,15] and Birnir et al. [16]. In all these works it
is assumed that the thickness of the rivulet varies smoothly. This
requires that the aspect ratio be small and that the contact angle
be not too large.
In the light of the previous comments it appears that the basic

theory of the steady parallel flowswith a free surface on an inclined
substrate is well known. However in many instances the condition
of small free surface slope is violated, so that the above-mentioned
theoretical results are, at best, approximate. Exact solutions of the
Navier–Stokes equations for these situations have been obtained
numerically only for a few particular cases [2,11] and have not yet
been investigated systematically. Accurate quantitative solutions
that go beyond the known approximate results require extensive
computations and their results are not obvious nor trivial but are
important for applications, as well as to assess the accuracy of the
approximate results that can be found in the literature.
Recently we investigated exact solutions of the Navier–Stokes

equations that describe rivulets flowing over an inclined plane,
with no limitations on the aspect ratio nor on the contact
angle [17]. Herewe extend thiswork to consider exact solutions for
steady rectilinear rivulets running over or under inclined surfaces
that may have an arbitrary profile transversally to the direction of
flow, as well as changes of the wettability across the supporting
surface. Given the shape of the rivulet, the velocity field is obtained
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Fig. 1. Geometry of the problem.

by integrating numerically a Poisson equation. We give a few
examples of sessile and hanging rivulets. Next we perform a
systematic study of rivulets hanging below an inclined plane; we
compute their global properties (cross-sectional area, thickness,
width of the wetted region, volumetric flow, etc.), and we discuss
their stability.

2. The shape of the free surface and the velocity field

The theory of cylindricalmenisciwas developed long ago [18,1].
Herewe cast it in a form that simplifies the task of computing exact
solutions for any profile of the substrate, and without limitations
on the static contact angles. We consider a rivulet flowing steadily
over or under a rigid cylindrical substrate, whose inclination is
α ∈ [0, π]. The X coordinate is along the cylinder and increases
downward, and the Y coordinate is horizontal (Fig. 1). Then X is
ignorable and the topography Z = S(Y ) of the substrate is a datum.
We indicate the free surface with Z = H(Y ), the surface tension
with γ , the density of the liquid with ρ, and g is the acceleration
of gravity. To allow for transversal changes of the wettability we
denote the left and right contact angles with θl and θr . The velocity
field is U = U(Y , Z)X̂ . The boundary condition at the free surface
is then
T · n̂ = γK n̂, (1)
where T is the stress tensor, K(Y ) = H ′′(1 + H ′2)−3/2 is the
curvature of the free surface (primes denote derivatives with
respect to the argument) and n̂ is its normal. The z component of
the momentum equation is

0 = −
∂P
∂Z
− ρg cosα, (2)

where P is the pressure. The component of Eq. (1) in the normal
direction states that P = −γK at Z = H , so that the pressure is

P = ρg(H − Z)− γK . (3)
The y component of the momentum equation is 0 = −∂P/∂Y .
Using this in (3) we obtain the equation that determines the shape
of the free surface:

ρg cosα
γ

H ′ =
[

H ′′

(1+ H ′2)3/2

]′
. (4)

This equation can also be obtained byminimization of gravitational
plus surface energy.
When α = π/2 the solution of (4) is a circle. If α 6= π/2,

introducing the factor σ = +1 for sessile rivulets (0 ≤ α < π/2)
and σ = −1 for hanging rivulets (π/2 < α ≤ π ), defining the
capillary length λ =

√
γ /ρg| cosα|, and using the dimensionless

variables h = H/λ, y = Y/λ, we can write (4) as

σh′ =
[

h′′

(1+ h′2)3/2

]′
. (5)

We first find the solutions of (5), ignoring momentarily the
boundary conditions at the contact lines, which depend on the
shape of the solid surface. Due to the symmetry of (5) its solutions
always have a point (the vertex) such that h′ = 0, where we shall
a b

Fig. 2. Solutions (7) for different values of κ for (a) σ = +1, (b) σ = −1. Notice
that reversing the sign of κ produces a solutionwith the same y, and hwith opposite
sign.

assume that h = 0 and y = 0without loss of generality. Notice that
the present conventions differ from those used previously [17],
since we now wish to derive formulae that describe sessile as well
as hanging menisci.
Introducing the dimensionless curvature at the vertex κ =

λK(0) in (5) one obtains

dy
dh
= ±sign(κ)

1− 1
2σh

2
− κh√

1−
(
1− 1

2σh
2 − κh

)2 . (6)

In this expression the + (−) sign describes the solution for y > 0
(y < 0). In the following we shall give the results for y > 0, since
it is obvious how to change the formulae for y < 0. Integrating (6)
we obtain y(h) as

y = sign(σκ)
√
h(h1 + h)(h2 + h)(h3 − h)

h1 + h

+ [sign(κ)](1−σ)/2 h2
[
F(φ|r2)− E(φ|r2)

]
, (7)

where F(φ|r2) and E(φ|r2) are the elliptic integrals of the first and
second kind, and

r = h3/h2, h1 = 2σκ, h2 = σ
(√
κ2 + 4σ + κ

)
,

h3 = σ
(√
κ2 + 4σ − κ

)
, φ = arcsin

√
hh2/(h1 + h)h3.

(8)

By means of (7) and (8) we can describe the shape of the free
surface of any cylindrical meniscus, sessile or hanging. In Fig. 2 we
show some of these solutions. Notice that for σ = −1 the solutions
(7) have always two symmetric inflexion points.
The free surface of the rivulet is the part of solution (7) that

arrives at the substratewith the appropriate contact angles. To find
this part it is convenient to write (7) in terms of the parameter
ϕ = sign(κ) arctan h′; then

h = ζ (ϕ) ≡ −σκ + sign(σκ)
√
κ2 + 4σ sin2(ϕ/2),

y = η(ϕ) ≡ sign(σκ)
[
−κE(ϕ/2| − 4σ/κ2)

+ (κ + 2σ/κ)F(ϕ/2| − 4σ/κ2)
]
.

(9)

Here ϕ ∈ [0, π] if σ = 1. For σ = −1 (see Fig. 2) we have
ϕ ∈ [0, ϕi], where ϕi = 2 arcsin(|κ|/2) is the value of ϕ at the
inflexion point, whose coordinates are hi = κ and yi = η(ϕi).
Then (9) describes the solution for 0 ≤ h ≤ hi. The solution for
hi ≤ h ≤ 2hi is h = 2hi − ζ (ϕ) and y = 2yi − η(ϕ).
Let us denote with s(y) the topography of the substrate scaled

by λ. Then the free surface must satisfy the boundary conditions
at the left and right contact lines yl and yr (defined by h(yl,r) =
s(yl,r)), which can be written as

arctan h′ = arctan s′ + σθl at y = yl,

arctan h′ = arctan s′ − σθr at y = yr ,
(10)

using appropriate determinations of arctan s′. Summarizing, the
free surface is the part of solution (7) limited by yl and yr , andmay,
or may not, include inflexion points.
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Fig. 3. The liquid may be located on either side of the curves in Fig. 2. Here we
show two examples based on the curve for σ = −1 and κ = 1.6. The dark grey
is the substrate, and the dashed lines are the parts of the solution that have been
discarded.

Notice that each curve in Fig. 2 describes an interface between
the liquid and the air. Then the same curve may represent a long
filament of liquid immersed in air or a cylindrical bubble of air
within a liquid, as shown in Fig. 3.
We now turn to the velocity field. We define the dimensionless

stress tensor τ = T/λρg sinα. Then the conservation of linear
momentum leads to

∂yτxy + ∂zτxz = −1. (11)

The boundary conditions on the solid surface and on the free
surface are

U(y, z = s) = 0,
(
τxz − h′τxy

)
z=h = 0. (12)

Nothing has been said yet concerning the rheology of the liquid.
In the following we shall assume that the liquid is Newtonian.
Defining the dimensionless velocity u = Uµ/λ2ρg sinα, where
µ is the viscosity, we can write Eq. (11) as

∂yyu+ ∂zzu = −1, (13)

subject to the boundary conditions

u(y, z = s) = 0,
(
∂zu− h′∂yu

)
z=h = 0. (14)

The last condition implies that the isovelocity contours are
perpendicular to the free surface (see Figs. 4 and 5), as already
noticed by Allen and Biggin [2].
In general, problem ((13)–(14)) must be solved numerically. An

exception arises when the free surface is a circular cylinder (which
occurs if surface tension dominates so that g cosα can be neglected
in (4)), and if in addition the solid surface is a plane and the contact
angles areπ/2.When all these conditions aremet the velocity field
can be obtained in closed form [17].
To find the solution for a specific situation (say, for a given

value of the volumetric flow Q ) it is necessary to know s(y), the
contact angles θl,r , which are input data, and we must find κ , that
is connected in a non-trivial way to s(y) and to the dimensionless
cross-sectional area a of the rivulet through the integral condition∫ yr

yl
|h− s| dy = a. (15)

To solve the problem we follow an iterative procedure. We first
guess κ . Next we compute the velocity field, and then Q . The
procedure is repeated, varying κ until the specified flow is obtained
a c

b

Fig. 5. Examples of hanging rivulets. (a) and (b): κ = 1.2, θl = θr = 30°; (c) κ =
1.51, θl = θr = 90°. Notice that the free surface of rivulet (b) has no inflexion
points. The grey regions are the substrates, the thick lines are the free surfaces and
the dashed lines are the disregarded portions of solution (7). We also show with
thin lines some equally spaced isovelocity contours.

by trial an error. As examples, in Fig. 4 we show the cross section
of two sessile rivulets running in wedge-shaped channels, and
in Fig. 5 three rivulets hanging below a plane. In this way we
can obtain the exact solutions we are seeking, but their stability
must still be checked. This issue is not obvious, and will be briefly
discussed later on.

3. Rivulets hanging below a plane

Since the exact solutions for rivulets over an inclinedplanewere
already obtained [17], we investigate here rivulets hanging below
such a plane, and in the following we shall assume θl = θr =
θ . We shall be interested in the global properties of the rivulet,
namely, the cross-sectional area a, the dimensionless thickness
hm = max(h), the dimensionless width d of the wetted region
(which may be different from the width of the rivulet; see for
example Fig. 5(c)), and the dimensionless volumetric flow q =∫
u da. Any other quantity of interest, such as the averaged velocity,
the drag coefficient, the Reynolds number, etc., may be obtained in
terms of these.
The geometrical properties of a suspended rivulet whose

contact angle is θ can be easily found using the formulae of
Section 2. From (9) we obtain

hm =
{
ζ (θ), 0 ≤ h ≤ hi
2hi − ζ (θ), hi ≤ h ≤ 2hi,

d =
{
2η(θ), 0 ≤ h ≤ hi
2[2yi − η(θ)], hi ≤ h ≤ 2hi.

(16)

In addition, using (15) one finds
a = d(hm − κ)+ 2 sin θ, (17)
an expression already obtained by Pitts [19] for suspended drops
in a narrow gap.

3.1. Stability of static hanging menisci

Before considering the properties that depend on the velocity
field we must say a few words about the stability of the meniscus.
a b

Fig. 4. Examples of sessile rivulets. (a) κ = −0.05, θl = θr = 70°; (b) κ = 0.1, θl = 40°, θr = 10°. The grey regions are the substrates, the thick lines are the free surfaces
and the dashed lines are the disregarded portions of solution (7). We also show with thin lines some equally spaced isovelocity contours.
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a b

Fig. 6. (a) Area vs. height; (b) energy vs. area. Contact angles are in degrees.
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Fig. 7. Stability limits on the dimensionless volumetric flow for hanging rivulets:
qm is the limit based on the criterion of Pitts [19], and qj and qp,α are given by Eqs.
(20) and (21) respectively. The grey vertical stripmarks the range of q’s investigated
in the experiment reported in [20].

A hanging rivulet may be unstable with respect to perturbations of
two kinds: (a) those that preserve the translational symmetry, and
(b) those that tend to break the cylinder into a series of drops, or
that lead to the fall-off or the ejection of drops. We shall postpone
the discussion of the latter, since the stability of these modes
depends on the velocity field; their detailed investigation is beyond
the scope of this paper, but some comments will be given in the
next section.
The stability against perturbations that preserve translational

symmetry is not affected by the velocity field. Then we can apply
the results of Pitts [19] for a static hanging meniscus, which we
briefly recall. The plot of the dimensionless cross-sectional area of
the meniscus as a function of hm for a fixed θ (Fig. 6(a)) shows
that a has a maximum, below which there are two menisci that
have the same area but different hm. It can be shown [19] that the
meniscus having the larger hm corresponds to a maximum of the
total (gravitational plus surface) potential energy E per unit length
of the meniscus, and therefore is unstable. In Fig. 6(b) we plot E vs.
a, to identify which of the two configurations that exist for a given
a corresponds to theminimum E. Themaximumvalue of a that can
be achieved for stable configurations corresponds to themaximum
dimensionless volumetric flow qm that can be attained for a given
θ (provided no other instability occurs), and can be computed from
the numerical solutions of ((13)–(14)). In Fig. 7 we plot qm(θ). Note
that qm depends weakly on θ ; in fact 3.65 < qm < 6 in the whole
interval 0° ≤ θ ≤ 120°. Henceforth we shall consider only the
configurations with q ∈ [0, qm].
Clearly the previous considerations hold for ameniscus hanging

from a plane, and should be changed if the topography of the
substrate is different [21].
3.2. Numerical results

To find q it is necessary to calculate the velocity field. To this
endwe employed a finite elementmethod to integrate (13) subject
to the boundary conditions (14), as we did previously [17]. In this
reference the reader can find a discussion of the accuracy of the
method. Typical results for the velocity field are shown in Fig. 5,
where we have drawn contour plots of u. As expected, the larger
velocity gradients are located where the isovelocity contours are
nearly parallel to the plane, which occur near the substrate, and
not too close to the surface of the rivulet. On approaching the free
surface the isovelocity contours fan out to become perpendicular
to the surface.
We solved the problem for θ = 0°, 30°, 60°, 90° and 120°. For

each θ we computed solutions for a range of κ sufficient to cover
the interval 10−4 ≤ q ≤ qm. The results are displayed in Fig. 8,
where we plot the curvature at the vertex, the area, the width
of the wetted region, and the aspect ratio hm/d as functions of
the volumetric flow, which is an easily measured quantity. From
Fig. 8 any other property of interest can be obtained. Notice that
the numerical results are needed only to establish the connection
between q and κ , as the other parameters are given in terms of κ
by the exact formulae ((16)–(17)).
As remarked by Duffy and Wilson [8], contrarily to what

happens for sessile rivulets, it is possible to have hanging rivulets
with θ = 0. For small q the dimensionless width of these rivulets
tends to the constant value 2π . On the other hand, for θ 6= 0 the
thickness and the width of the rivulets tend to zero for q → 0,
but the aspect ratio tends to a constant value (which depends on
θ ). The origin of this different behaviour is that for θ = 0 the free
surface always has inflexion points, while for θ 6= 0 it does not
have inflexion points if q is small. We observe that regardless of θ
one has 0 ≤ d ≤ 2π for any q. Notice also that hm/d < 1, except
for large θ and q close to qm.
Using Fig. 8, the properties of any hanging rivulet, for any liquid

and any inclination of the plane can be obtained, because the
dependence on γ , ρ, µ, g and α are implicit in the length and
velocity scales. This is the advantage of this figure, which displays
in compact form the properties of all possible rivulets hanging
below a plane.
However, to compare the present results with actual measure-

ments it is convenient to know the behaviour of the physical prop-
erties of a rivulet as functions of the inclination α (for fixed θ ) for
fixed dimensional volumetric flow Q , or vice versa, as functions of
Q for fixed α. Of course these can be obtained by elaborating the
data of Fig. 8, but the result is far from obvious since the length and
velocity scales depend on α in a non-trivial way. For example, in
Fig. 9 we show the area A = λ2a of the cross section of the rivulet,
as well as the Reynolds number Re = ρUHm/µ as functions of α,
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a b

c d

Fig. 8. Properties of hanging rivulets. (a)–(d): curvature at the vertex, cross-sectional area, width and aspect ratio hm/d of the rivulet as functions of the volumetric flow.
On each curve the dot indicates the limit of stability given by qm and the dashed portions of the curves correspond to unstable menisci. Angles are in degrees.
a b

c d

Fig. 9. Area versus α: (a) for Qµρg/γ 2 = 0.01 and different θ ; (b) for θ = 60° and different Q . Reynolds number versus α: (c) for Qµρg/γ 2 = 0.01 and different θ ; (d) for
θ = 60° and different Q .
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with Q kept constant. Clearly, the behaviour of the curves in this
figure, such as the non-monotonic trend of A in some instances, as
well as the weak dependence of Re on α, are not obvious from the
results displayed in Fig. 8.

4. Discussion

In the present paper we have not taken into account the van
der Waals forces that can be important for very thin liquid layers
(≈100–1000 Å [22]). Due to these forces a static liquid layer
suspended from a horizontal plane may be stable if its thickness
is smaller than a critical value [23]. According to these results it
can be expected that the present theory will describe correctly a
rivulet whose thickness is much larger than the above-mentioned
critical value, because the van der Waals forces will only affect the
shape of the free surface in the neighbourhood of the contact lines.
So far we have not considered the stability of the hanging

rivulets with respect to perturbations that break the translational
symmetry. This is a very difficult endeavour. Drop fall-off
from pendent rivulets has been investigated experimentally by
Indeikina et al. [20], who also developed an approximate treatment
(which excludes perfectly wetting liquids) of the instability, based
on lubrication theory. For θ 6= 0, and using the present notation,
their theoretical results are the following: (a) if α + θ < π (we
recall that π/2 < α ≤ π ) fall-off occurs by a jet mechanism if the
condition
cos(d/2) < −1/4 (18)
is satisfied; (b) if α + θ > π , fall-off of drops occurs by means of a
pinch-off mechanism if

1.5[− cos(d/2)]1/6 > − tanα/ tan θ. (19)
These conditions mean that (for θ 6= 0) drop fall-off occurs if d
exceeds a critical value, which is slightly larger than π . Notice that
according to Eqs. (18) and (19) if α = π the rivulet is unstable.
The experiments reported in [20] are in reasonable agreement

with Eqs. (18) and (19). It should be stressed that Indeikina
et al. [20] did not measure the contact angle, but used it as a
fitting parameter in their theory. Thus they assumed θ = 55°,
corresponding to a glycerin–water solution on Plexiglas, so that
the validation of the theory is limited to similar θ . We believe that
these results can be taken (with caution) as a guide to assess the
stability of our solutions against drop fall-off, thus indicating that
the maximum volumetric flow of rivulets with a contact angle not
very large may be less than qm. In terms of q the conditions (18)
and (19) can be expressed as

q > qj = 1.079 tan3 θ, (20)

q > qp,α =
4
9
tan3 θ

[
1+

9
8
π

(
tanα
tan θ

)6
L(0)−6

]
. (21)

According to Indeikina et al. [20], L(0) = 1.5. In Fig. 7 we have
plotted qj and qp,α for two values of α, as well as the range of q
investigated in [20]. Of course, conditions (20) and (21) cannot be
taken seriously for large θ , as they were obtained by means of an
approximate treatment based on lubrication theory. However, it
appears from Fig. 7 that the volumetric flow is limited by qj for
small θ , by qp,α for larger θ , and perhaps by qm for very large θ .
For fixed (but not very large) θ, q is limited by qj for small α and by
qp,α for large α.
On the other hand Indeikina et al. [20] did not observe

the Rayleigh pinching instability nor the inertial meandering
instability, that occur for sessile rivulets. But it should be noticed
that they did not explore the full range of Q . While the velocity
gradients present in the rivulet should inhibit the growth of the
Rayleigh instability, we expect this instability to occur for very
small Q .
Alekseenko et al. [24] investigated the formation of waves on

the surface of a rivulet hanging below an inclined circular cylinder
that is irrigated by a liquid jet. They found that the waves appear
at a distance Lw from the point where the jet impacts the cylinder.
This distance depends on Q and α. For large α it is an increasing
function of Q , but for smaller α it attains a maximum for a certain
Q and then diminishes and finally vanishes for a critical volumetric
flowQ ∗. ForQ > Q ∗ thewaves are present along the entire rivulet.
It appears reasonable that a qualitatively similar behaviour will be
observed for rivulets hanging below a plane. This means that in
the previously mentioned unstable situations, the present theory
can still be applied near the irrigation point, up to a distance of the
order of Lw . Beyond this region, the presence of waves breaks the
translational symmetry and the present theory cannot be applied.
The instabilities just discussed belong to the Rayleigh–Taylor

(R–T) family. In the linear approximation the maximum growth
rate Γm of the R–T instability of a uniform liquid layer of thickness
H0 below a horizontal plane [22] is Γm = ρ2g2H30/12µγ . Although
the velocity gradients present in a rivulet will tend to hinder the
development of the instability, we can tentatively take Γm as an
estimate of the order of magnitude of the maximum growth rate
of the R–T instability for the rivulet (replacing g by g| cosα| and
H0 by the average thickness). It is reasonable to guess that in the
nonlinear regime the instability tends to produce structureswhose
amplitude is of the order of thewavelength. Then if thewavelength
of the most unstable mode is smaller than the thickness of the
rivuletwe expect that the nonlinear evolution of the instabilitywill
lead to the formation of structures that travel along the rivulet but
do not fall-off. On the other hand, if the wavelength is larger than
the thickness we expect that the nonlinear evolution will lead to
drop fall-off. The reciprocal of Γm gives the characteristic time for
the growth of the R–T instability, which multiplied by the average
flow velocity Q/A yields Lw ≈ Q/AΓm.

5. Conclusions

We have shown how to construct solutions describing steady
parallel flows with a free surface, running either above or below a
solid surfacewhose profile in a plane perpendicular to the direction
of flow is arbitrary, andwhose inclination can vary from 0° to 180°.
These solutions are based on a general formula from which the
shape of the free surface can be obtained as soon as the profile of
the substrate, the contact angles, and an additional parameter such
as the curvature at the vertex are given. For a Newtonian liquid
the velocity field is then obtained solving a Poisson equation in the
domain defined by the cross section of the rivulet.
We next investigate rivulets hanging below an inclined plane.

We calculate the shape of the free surface, the velocity field,
and global properties such as the volumetric flow and various
geometrical quantities. We consider several contact angles in the
range 0°–120°, and dimensionless volumetric flows from 10−4 to
qm. The present results can also be applied when the slope of the
substrate is not uniform, but varies slowly with X .
Our theory is exact so that the results we report are not

limited, except by eventual instabilities. In this respect they are an
improvement on those published in the literature, since the latter
are based on approximations that are valid only when the slope of
the free surface is small.
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