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Abstract 

In modern materials science modeling, the evolution of the energetics of random alloys 

with composition are desirable input parameters for several meso-scale and continuum 

scale models. When using atomistic methods to parameterize the above mentioned 

concentration dependent function, a mean field theory can significantly reduce the 

computational burden associated to obtaining the desired statistics in a random alloy. In 

this work, a mean field concept is developed to obtain the energetics of point-defect 

clusters in perfect random alloys. It is demonstrated that for a rigid lattice the concept is 

mathematically exact. In addition to the accuracy of the presented method, it is also 

computationally efficient as a small box can be used and perfect statistics are obtained 

in a single run. The method is illustrated by computing the formation and binding 

energy of solute and vacancy pairs in FeCr and FeW binaries. In addition, the 

dissociation energy of small vacancy clusters was computed in FeCr and FeCr-2%W 

alloys, which are considered model alloys for Eurofer steels. As a result, it was 

concluded that the dissociation energy is not expected to vary by more than 0.1 eV in 

the 0-10% Cr and 0-2% W composition range. The present mean field concept can be 

directly applied to parameterize meso-scale models, such as cluster dynamics and object 

kinetic Monte Carlo models. 

Keywords: atomistic modelling; random alloys; rigid lattice 

 

1. Introduction 

 

In modern materials science modeling, the evolution of the energetics of random alloys with 

composition are desirable input parameters for several meso-scale and continuum scale 

models. On the continuum scale, several thermodynamic packages (MatCalc, ThermoCalc, 

FactSage…) [1-3] hinge on an accurate description of the free energy of random solid 

solution, even outside their experimental stability range. On the meso-scale, cluster dynamics 

models [4] and object kinetic Monte Carlo methods [5-7] hinge on an accurate description of 
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the formation, binding and dissociation energy of point-defects and point-defect clusters. Here 

solutes and solute clusters are also considered as point-defect (clusters). 

 When using atomistic methods to parameterize the above mentioned concentration 

dependent function, a mean field theory (MFT) can significantly reduce the computational 

burden associated to obtaining the desired statistics in a random alloy. In a density functional 

theory (DFT) framework, the coherent potential approximation (CPA) [8] is a well-

established method to obtain the energetics of the random alloy in a given supercell.  

In the framework of empirical interatomic potentials, Smith and Was developed a first 

order MFT approximation in the form of an effective atom method [9] such that the alloy 

becomes an aggregate of identical effective atoms. Later, Bonny et al refined the method by 

introducing higher order corrections in the form of a so-called variance expansion, for both 

binary [10] and multi-component alloys [11]. These techniques were successfully applied to 

estimate, for example, mixing enthalpy, stacking fault energy, elastic constants and friction 

stress [10-13] in concentrated random solid solutions. 

In the framework of rigid lattices, an MFT is realized by the Bragg-Williams-Gorsky 

point approximation [14, 15] and is an excellent tool to obtain the energetics of random solid 

solutions. The latter assumes that the occupancy of all lattice sites are uncorrelated and the 

theory is well developed for perfect lattice crystals. However, for lattice configurations 

(supercells) containing point-defects and point-defect clusters, for example vacancies and 

solute atoms, the theory is not well developed. 

In this work this MFT concept is further developed to obtain the energetics (formation 

and binding energy) of point-defect (clusters) embedded in random solid solutions. Moreover, 

we will prove that the developed MFT for the rigid lattice is mathematically exact. The MFT 

is illustrated using a recently developed clusters expansion (CE) for the FeCrW-vacancy (v) 

system [16, 17]. The latter serves as a model alloy for reduced activation steels, such as 

Eurofer, that are considered for structural components in future fusion devices [18]. 

The evolution with composition of the formation and binding energy of various v-

solute and solute-solute pairs in random solid solutions is calculated. In addition, the stability 

of small vacancy clusters in random FeCr alloys containing up to 2% W is computed. 

 

2. Methods 

 

The configurational energy per atom of a given lattice configuration is easily described by a 

so-called cluster expansion (CE) [19, 20], 
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.       (1) 

 

Here   runs over all symmetrically inequivalent clusters contained in the maximum cluster 

     that contains all physical interactions. The vector   (       ) specifies the species 

on  each of the N number of lattice positions. For a K-element alloy, the summation over the 

decoration variable   (      |    |) runs over all possible permutations, where si can take 

the values 1,…, K-1. The effective cluster interactions (ECI) are denoted by    
  and the 

number of equivalent clusters   per lattice site are denoted by the multiplicity factor   .  

The cluster correlation functions   
 ( ) are defined as, 

 

  
 ( )  〈∏    

(  )
| |
   〉 ,       (2) 

 

where the average runs over all symmetry equivalent clusters and    
 are the so-called 

configuration functions, which serve as basis functions to span the K
N
 configurational space 

(see [19, 20] for more details).  

 To illustrate the method developed in Section 3, the recently developed CE for the 

quaternary FeCrWv system [17] is applied. For this CE, K=4 and the site operator    takes 

the values -1, 0, +1, +2 if site n is occupied by Cr, v, Fe or W, respectively. The configuration 

functions are defined as      ,      ,      
  and      

 . 

 

3. Mean field theory 

 

The computation of the formation energy of a defect, or the binding energy between defects, 

in a random alloy is a challenging task due to the scatter introduced by the stochasticity of the 

random alloys. In a box containing N atoms and a defect D containing ND atoms/vacancies the 

formation energy, Ef, is given as, 

 

  ( )     ( )  (    )    ( )         ( ).    (3) 

 

Here E(D) denotes the average energy per atom of the configuration containing the defect, 

while Eref(M) and Eref(D) denote the average energy per atom for the reference state of the 
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matrix and defect, respectively. Here the reference state for M is the defect free random alloy 

while the reference state for D is bcc Fe, Cr, W or vacuum (Eref(v)=0). 

The total binding energy, Eb, between R defects Di is given as, 

 

  (       )  ∑   (  )
 
      (       ),     (4) 

 

where positive values indicate attraction and negative ones repulsion. 

Every energy calculation in the random alloy has a statistical error, and as shown in 

equations 3 and 4, this error accumulates when computing Ef and Eb. This error accumulation 

can be (partially) reduced by computing the formation energy in boxes containing special 

quasi-random structures (SQSs) [21] and by averaging Ef over many different SQSs or 

random configurations. However, given that the standard error decreases with the inverse of 

the square root of the number of trials, many calculations are necessary. 

 In this section we propose an MFT to compute the energy of a supercell containing a 

defect in a random alloy. The method is based on the BWG point approximation and replaces 

the lattice positions occupied by random atoms by a grey alloy. As shown below, for a rigid 

lattice model this approximation is exact. The proof goes as follows: the average over all 

different random configurations for the correlation functions can be written as, 
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In the first line we switched the average over equivalent clusters with the average over the 

random configurations; in the second line we split up the product over the cluster sites 

depending on the occupying species:   
 , runs over the cluster sites that are occupied by the 

defected atoms while   
   runs over the cluster sites that form the alloyed background. In the 

third line we used the fact that the product   
  yields a constant factor independent of the 

alloyed background and the fact that the sites in a random alloy are uncorrelated, thereby 

moving the average over the random configurations inside the product   
  . In the last line we 

remark that the average of the different configurations of the occupation functions is exactly 

the point correlation function   
  ( ) for the given concentration vector   (       ).  
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As shown in [22], there is a linear relationship between the concentration vector (point 

probabilities) and the point correlation functions. For our FeCrWv system the relations are 

given as, 

 

{
 
 

 
   

( )
                  

  
( )

             

  
( )

             

  
( )

             

 .     (6) 

 

The last equality in equation 6 is nothing more than a mean field approximation, that 

embeds the defect configuration into a grey alloy. However, given the linear relation between 

the energy and the correlation functions for a CE, this MFT is exact. Because of the accuracy 

of this concept, details in Ef and Eb with composition are visible that would be 

computationally unaffordable with the traditional methods (see Section 4). 

 

4. Results 

 

The results presented in this section were obtained by applying the MFT presented in Section 

3. All calculations were performed in the smallest possible simulation box that complies with 

the minimum image condition, i.e., maximum distance of the defect augmented by twice the 

maximum cluster size used in the CE. For a compact v15 cluster, this leads to a bcc supercell 

of dimensions 5×5×5 a0
3
 containing 250 atoms. Although this box is small, it is equivalent to 

embedding the defect in an infinite random alloy with perfect statistics. 

As a starting point we present the mixing enthalpy of both FeCr and FeW binaries in 

the top panel of Fig. 1. The mixing enthalpy is defined as the formation energy per atom of 

the corresponding alloy. As already extensively discussed in [17], both curves reproduce the 

available DFT data well, characterized by an inversion of curvature and negative heat of 

mixing in the Fe-rich limit. In the bottom panel of Fig. 1, Ef of an Fe/Cr atom and an Fe/W 

atom in the FeCr and FeW binaries is presented, respectively. 

 Consistent with the mixing enthalpy, both Ef of Cr and W are slightly negative in Fe. 

Then, with the alloying of Cr/W it becomes positive and converges to zero in the limit of pure 

Cr and W, respectively. Indeed, following the definition of Ef (see equation 4), Ef of the host 

solute atom becomes zero in the host. Ef of Fe in both W and Cr is positive, with the value in 
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W larger than the one in Cr. This is fully consistent with the slope of the mixing enthalpy at 

the W/Cr rich side. 
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Fig. 1 – Mixing enthalpy (top panel) and formation energy (bottom panel) of a solute atom in 

FeCr and FeW binaries. 

 

In Fig. 2  Eb between solute-solute and solute-v pairs in the FeCr and FeW binaries is 

plotted. For Cr-Cr pairs in the FeCr binary, repulsion is observed up to ~15% Cr, above which 

the interaction becomes attractive and converges to zero in pure Cr. The change of sign of the 

Cr-Cr interaction is consistent with the interaction parameters derived in [23, 24] based on the 

experimental observation of short range order (SRO). 

 Indeed, both experiments [23, 24] and atomistic simulations [25] predict a negative 

SRO parameter below 10-15% Cr and positive above, with the precise cross over point 

depending on the annealing time [25]. The appearance of the observed SRO at low Cr content 

and precipitation at high Cr content [26-28] is a consequence of the change of sign and 

curvature of the mixing enthalpy, a feature that is well reproduced by the present CE. 

 For W-W pairs the cross over only appears at ~30% W. The repulsive W-W 

interactions is consistent with a tendency long range order (LRO). Indeed, the alloying of Fe 

with W leads to the formation of the Laves and  -intermetallic phases [29]. 
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 For both FeCr and FeW binaries, Eb of v-Fe, v-W and v-Cr pairs were investigated. Eb 

between v-W and v-Cr pairs exhibit similar behavior: attractive interaction up to ~40% Cr/W, 

and repulsive above; eventually converging to zero in pure Cr and W, respectively. We note 

that for the FeCr case, there is a shallow maximum around 10% Cr, a subtle feature that is 

likely to be lost in standard statistical calculations.  

 In both FeCr and FeW binaries, the Eb of v-Fe pairs are attractive in the W- and Cr-

rich limit and reduce to essentially zero around 60% Fe. 

 Eb of Fe-Fe pairs in both the FeCr and FeW binaries is positive, with the largest value 

in the FeW binary. This observation is consistent with the slope of the mixing enthalpy in the 

Cr and W rich limit. 
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Fig. 2 – Binding energy of solute pairs in FeW (top panel) and FeCr (bottom panel) binaries. 

 

In Fig. 3 the evolution with composition of Eb between 1nn and 2nn v-v pairs in FeCr 

and FeW binaries is given. In pure Fe, the CE predicts the 2nn di-vacancy as most stable 

configuration, consistent with DFT calculations (see [17] and references therein). In pure W 

and Cr, on the other hand, the 1nn di-vacancy is the most stable, although the actual values 

and even sign is open for debate following the different DFT data sets (see [17] and 

references therein).  
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The evolution of Eb of the 1nn and 2nn di-vacancy differs essentially. For the 1nn pair, 

the evolution in the FeCr and FeW binaries is similar, characterized by a deep (negative) 

minimum around 55% Cr/W. Thus, the 1nn di-vacancy is only stable in the ranges 0-25% and 

85%-100% W, and 0-35% and 75-100% Cr. The 2nn di-vacancy remains attractive in the 

whole concentration range for the FeCr binary, while the one in the FeW binary becomes 

repulsive starting from 70% W. As a result, the 2nn di-vacancy is the most stable 

configuration in the range 0-70% and 0-85% W (with no stable configuration in the range 70-

85% W). In the FeCr binary, the 2nn di-vacancy is the most stable configuration in the range 

0-80% Cr, at which point the 1nn di-vacancy becomes the most stable configuration. The 

present analysis is based on subtle differences in the trends of the binding energy curves, 

which are likely to be lost in the statistics of traditional methods. 

We note that in the 70-85% W range the CE predicts no stable di-vacancies. Given the 

small value of the maximum repulsion (~ -0.02 eV), it is unclear if the non-existence of a di-

vacancy is physical or an artifact of the CE. For all other cases, regardless the significant 

repulsion of the 1nn di-vacancy, there is always a stable di-vacancy configuration. 
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Fig. 3 – Binding energy of 1nn and 2nn vacancy pairs in the FeCr and FeW binaries. 

 

In Fig. 4 Ef per vacancy is presented for a v, v2, v3, v4, v9 and v15 in FeCr alloys. For 

the v-clusters the most stable configurations are chosen: for v-clusters up to v9 this is a 
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topology where the number of 2nn v-v pairs are maximized while for v15 and larger clusters 

this is the most compact topology. Ef for the single vacancy reduces from 2.16 eV in pure Fe 

to reach a minimum of 1.89 eV at 45% Cr and subsequently rises again to 2.78 eV for pure 

Cr. 

The initial decrease of Ef for the single vacancy is consistent with the small but 

attractive v-Cr (~ 0.05 eV) binding predicted by DFT [30] and reproduced by the CE (see 

[17]). Due to the attractive interaction between a vacancy and Cr atoms in bcc Fe, Ef initially 

decreases. 

We note that in the work by del Rio et al [31] the Ef a single vacancy remains almost 

constant up to ~6% (consistent with our results) but then increases monotonically with Cr 

concentration, contrary to our results. This discrepancy is explained by the small but repulsive 

v-Cr binding predicted by the used potential (~ -0.05 eV, see [32]), which is a minor 

descrepancy of the potential compared to the DFT data. Due to the repulsive interaction 

between a vacancy and Cr atoms in bcc Fe, Ef thus increases. 

In addition, the comparison between Fig. 4 and figure 5 in [31] illustrates the power of 

our MFT: even statistics over ~1000 configurations provide large error bars compared to the 

infinite statistics provided by our MFT. 

 With increasing number of vacancies in the clusters, the Ef per vacancy reduces 

progressively to a constant value, consistent with classical liquid tear drop (LTD) models. The 

LTD model is based on the energy balance associated with a volume term and surface term 

(see for example [33]). Starting from v4, the minimum around 45% becomes negligible, 

making Ef of the v-clusters quasi constant up to 40% Cr. The additional effect of 2% W on Eb 

for v-cluster is negligible. 
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Fig. 4 – Formation energy of the most stable v-clusters for FeCr alloys with and without 2% 

W. 

 

The binding energy, Eb, per vacancy and incremental binding energy,   
      (  )  

  (    ), of different v-clusters in FeCr alloys is presented in Fig. 5. The latter is a measure 

of how strong a single v is bound to a vN cluster and is essential in the determination of the 

dissociation energy. The dissociation energy, Ediss, is classically estimated as      (  )  

  
   (  )    ( ), with   ( ) the migration energy of a single v. Both types of binding 

energy decrease with increasing cluster size to a constant value, consistent with the LTD 

model. In both cases and for all cluster sizes the binding energy decreases with Cr content to a 

minimum between 50-60% Cr and increases back to the values in pure Cr, which are higher 

than in pure Fe. The addition of 2% W has a negligible influence on the either binding energy.  

Thus, in the region of importance for Eurofer steels (0-15%Cr, 0-2%W), the binding 

energy per vacancy varies by at most 0.1 eV and remains constant with the addition of 2% W. 

For   
    the same conclusions are true and thus      (  ) is estimated to be quasi constant in 

the composition range relevant for Eurofer steels. Such results could serve as an input in 

cluster dynamics and object kinetic Monte Carlo models. 
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Fig. 5 – (a) Binding energy per vacancy and (b) incremental binding energy of different v-

clusters in FeCr and FeCr-2%W alloys. 

 

 

5. Conclusions 

 

A mean field concept is developed to obtain the energetics of point-defect clusters in perfect 

random alloys. It was demonstrated that for a rigid lattice the concept is mathematically exact. 

In addition to the accuracy of the presented method, it is also computationally efficient as a 

small box can be used and perfect statistics are obtained in a single run. 

 The method is illustrated by computing the formation and binding energy of solute and 

vacancy pairs in the FeCr and FeW binaries. In addition, the dissociation energy of small 

vacancy clusters was estimated in FeCr and FeCr-2%W alloys, which are considered model 

alloys for Eurofer steels. As a result, it was concluded that the dissociation energy is not 

expected to vary by more than 0.1 eV in the 0-10% Cr and 0-2% W composition range. 

 The present mean field concept can be directly applied to parameterize meso-scale 

models, such as cluster dynamics and object kinetic Monte Carlo models. 
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