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For a set theoretical solution of the Yang–Baxter equation (X, σ), we define a 
d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/〈xy =
zt : σ(x, y) = (z, t)〉, such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively 
the homology and cohomology complexes computing biquandle homology and 
cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle
case (for example defined in [4]). This algebraic structure allows us to show 
the existence of an associative product in the cohomology of biquandles, and a 
comparison map with Hochschild (co)homology of the algebra A.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

A quandle is a set X together with a binary operation ∗ : X ×X → X satisfying certain conditions (see 
definition in Example 1.1 below), it generalizes the operation of conjugation on a group, but also is an 
algebraic structure that behaves well with respect to Reidemeister moves, so it is very useful for defining 
knot/links invariants. Knot theorists have defined a cohomology theory for quandles (see [5] and [3]) in such 
a way that 2-cocycles give rise to knot invariants by means of the so-called state-sum procedure. Biquandles 
are generalizations of quandles in the sense that quandles give rise to solutions of the Yang–Baxter equation 
by setting σ(x, y) := (y, x ∗ y). For biquandles there is also a cohomology theory and state-sum procedure 
for producing knot/links invariants (see [4]).

The main tool of this work is, for any set theoretical solution of the Yang–Baxter equation (X, σ), to 
define a d.g. algebra B = B(X, σ), containing the semigroup algebra A = k{X}/〈xy = zt : σ(x, y) = (z, t)〉, 
in such a way that k ⊗A B ⊗A k and HomA−A(B, k) canonically identify with the standard homology 
and cohomology complexes attached to general set theoretical solutions of the Yang–Baxter equation. As 
a product of this construction we have two main results: the first is Theorem 3.1 where we show the 
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existence of an associative product in cohomology, already defined at the level of the complex. The second 
is Theorem 4.6 where we found an explicit comparison map between Yang–Baxter (co)homology of X and 
Hochschild (co)Homology of the semigroup algebra A.

The existence of an associative product on cohomology was known for rack cohomology (see [7]), but it 
was unknown for biquandles, or general solutions of the Yang–Baxter equation. Also, the proof in [7] was 
based on topological methods, our methods are purely algebraic.

The existence of a comparison map between Yang–Baxter (co)homology of X and Hochschild (co)ho-
mology of the semigroup algebra A was also unknown, and moreover, we prove that it factors through a 
complex of “size” A ⊗B ⊗A, where B is the Nichols algebra associated to the solution (X, −σ). This result 
leads to new questions, for instance when (X, σ) is involutive (that is σ2 = Id) and the characteristic is zero 
we show that this complex is acyclic (Proposition 3.10), we wonder if this is true in any other characteristic, 
and for non-necessarily involutive solutions.

Also, depending on properties of the solution (X, σ) (square-free, quandle type, biquandle, involutive, . . . ) 
this d.g. bialgebra B has natural d.g. bialgebra quotients, giving rise to the standard sub-complexes com-
puting quandle cohomology (as sub-complex of rack homology), biquandle cohomology, etc.

This work is organized as follows: Section 1 contains the basic definitions and examples of solutions of 
the Yang–Baxter equation, in Section 2 we define the d.g. algebra B, we prove (Theorem 2.1) that it admits 
a structure of a d.g. bialgebra, and that after tensor product or Hom it canonically gives the standard 
complexes for Yang–Baxter (co)homology (Theorem 2.4). The maps we use are the natural ones, but the 
technical reason depends on the existence of “normal forms” for writing elements, this takes the rest of 
Section 2. In Section 3 we show the existence of the product in cohomology, and that this product is com-
patible with all types of natural quotients attached to special cases of solutions (e.g. square-free, quandles, 
biquandles, involutives). We also prove that the involutive quotient is acyclic in characteristic zero. Finally 
in Section 4 we derive from general reasons the existence of a comparison map, but introducing algebraic 
structure on the standard Hochschild resolution of A (e.g. braided shuffle product) we give (Theorem 4.6) 
an explicit chain map, that factors through a Nichols algebra.

1. Basic definitions

A set theoretical solution of the Yang–Baxter equation (YBeq) is a pair (X, σ) where σ : X×X → X×X

is a bijection satisfying

(Id × σ)(σ × Id)(Id × σ) = (σ × Id)(Id × σ)(σ × Id) : X ×X ×X → X ×X ×X

If X = V is a k-vector space and σ : V ⊗ V → V ⊗ V is a linear bijective map satisfying (Id ⊗ σ)(σ ⊗
Id)(Id ⊗ σ) = (σ ⊗ Id)(Id ⊗ σ)(σ ⊗ Id) then σ is called a braiding on V .

Example 1.1. A set X with a binary operation � : X ×X → X ×X is called a rack if

• − � x : X → X is a bijection ∀x ∈ X and
• (x � y) � z = (x � z) � (y � z)∀x, y, z ∈ X.

If (X, �) is a rack, then

σ(x, y) := (y, x � y)

is a set theoretical solution of the YBeq.
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If (X, �) also satisfies that x � x = x for all x ∈ X then it is called a quandle. An important example of 
rack, which is actually a quandle, is X = G a group but with operation x � y = y−1xy. For X a rack, x � y
is also usually denoted by xy.

Example 1.2. If s and t are two commuting units in a ring and X is a module over that ring, then the formula 
σ(x, y) = (sy, tx + (1 − st)y) is a solution of the YBeq, called the Alexander switch, or bi-Alexander.

Example 1.3 (Wada solutions). If G is a group, then σ(x, y) := (xy−1x−1, xy2) is a solution of the Yang–
Baxter equation that is not of rack or quandle type, and in general non-linear.

Let M = MX be the monoid generated in X with relations

xy = zt

∀x, y, z, t such that σ(x, y) = (z, t). Denote GX the group with the same generators and relations. For 
example, when σ = flip then M = N

(X)
0 and GX = Z

(X)
0 . If σ = Id then M is the free (non-abelian) monoid 

in X. If σ comes from a rack (X, �) then M is the monoid with relation xy ∼ y(x � y) and GX is the group 
with relations x � y ∼ y−1xy.

2. A d.g. bialgebra associated to (X, σ)

Let k be a commutative ring with 1. Fix X a set, and σ : X×X → X×X a solution of the YBeq. Denote 
Aσ(X), or simply A if X and σ are understood, the quotient of the free k algebra on generators X modulo 
the ideal generated by elements of the form xy − zt whenever σ(x, y) = (z, t):

A := k〈X〉/〈xy − zt : x, y ∈ X, (z, t) = σ(x, y)〉 = k[M ]

It can be easily seen that A is a k-bialgebra declaring x to be group-like for any x ∈ X, since A agrees with 
the semigroup-algebra on M (the monoid generated by X with relations xy ∼ zt). If one considers GX , the 
group generated by X with relations xy = zt, then k[GX ] is the (non-commutative) localization of A, where 
one has inverted the elements of X. An example of A-bimodule that will be used later, which is actually a 
k[GX ]-module, is k with A-action determined on generators by

xλy = λ, ∀x, y ∈ X, λ ∈ k

We define B(X, σ) (also denoted by B) the algebra generated by three copies of X, denoted x, ex and x′, 
with relations as follows: whenever σ(x, y) = (z, t) we have

• xy ∼ zt, xy′ ∼ z′t, x′y′ ∼ z′t′

• xey ∼ ezt, exy′ ∼ z′et

Since the relations are homogeneous, B is a graded algebra declaring

|x| = |x′| = 0, |ex| = 1

Theorem 2.1. The algebra B admits the structure of a differential graded bialgebra, with d the unique su-
perderivation satisfying

d(x) = d(x′) = 0, d(ex) = x− x′
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and comultiplication determined by

Δ(x) = x⊗ x, Δ(x′) = x′ ⊗ x′, Δ(ex) = x′ ⊗ ex + ex ⊗ x

By differential graded bialgebra we mean that the differential is both a derivation with respect to multi-
plication, and coderivation with respect to comultiplication.

Proof. In order to see that d is well-defined as super derivation, one must check that the relations are 
compatible with d. The first relations are easier since

d(xy − zt) = d(x)y + xd(y) − d(z)t− zd(t) = 0 + 0 − 0 − 0 = 0

and similar for the others (this implies that d is A-linear and A′-linear). For the rest of the relations:

d(xey − ezt) = xd(ey) − d(ez)t = x(y − y′) − (z − z′)t

= xy − zt− (xy′ − z′t) = 0

d(exy′ − z′et) = (x− x′)y′ − z′(t− t′) = xy′ − z′t− (x′y′ − z′t′) = 0

It is clear now that d2 = 0 since d2 vanishes on generators. In order to see that Δ is well defined, we compute

Δ(xey − ezt) = (x⊗ x)(y′ ⊗ ey + ey ⊗ y) − (z′ ⊗ ez + ez ⊗ z)(t⊗ t)

= xy′ ⊗ xey + xey ⊗ xy − z′t⊗ ezt− ezt⊗ zt

and using the relations we get

= xy′ ⊗ xey + xey ⊗ xy − xy′ ⊗ xey − xey ⊗ xy = 0

similarly

Δ(x′ey − ezt
′) = (x′ ⊗ x′)(y′ ⊗ ey + ey ⊗ y) − (z′ ⊗ ez + ez ⊗ z)(t′ ⊗ t′)

= x′y′ ⊗ x′ey + x′ey ⊗ x′y − z′t′ ⊗ ezt
′ − ezt

′ ⊗ zt′

= x′y′ ⊗ x′ey + x′ey ⊗ x′y − x′y′ ⊗ x′ey − x′ey ⊗ x′y = 0

This proves that B is a bialgebra, and d is (by construction) a derivation. Let us see that it is also a 
coderivation:

(d⊗ 1 + 1 ⊗ d)(Δ(x)) = (d⊗ 1 + 1 ⊗ d)(x⊗ x) = 0 = Δ(0) = Δ(dx)

for x′ is the same. For ex:

(d⊗ 1 + 1 ⊗ d)(Δ(ex)) = (d⊗ 1 + 1 ⊗ d)(x′ ⊗ ex + ex ⊗ x)

= x′ ⊗ (x− x′) + (x− x′) ⊗ x = x′ ⊗ x− x′ ⊗ x′ + x⊗ x− x′ ⊗ x

= −x′ ⊗ x′ + x⊗ x = Δ(x− x′) = Δ(dex) �
Remark 2.2. Δ is coassociative.
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For a particular element of the form b = ex1 . . . exn
, the formula for d(b) can be computed as follows:

d(ex1 . . . exn
) =

n∑
i=1

(−1)i+1ex1 . . . exi−1d(exi
)exi+1 . . . exn

=
n∑

i=1
(−1)i+1ex1 . . . exi−1(xi − x′

i)exi+1 . . . exn

=

I︷ ︸︸ ︷
n∑

i=1
(−1)i+1ex1 . . . exi−1xiexi+1 . . . exn

−

II︷ ︸︸ ︷
n∑

i=1
(−1)i+1ex1 . . . exi−1x

′
iexi+1 . . . exn

If one wants to write it in a normal form (say, every x on the right, every x′ on the left, and the ex’s in the 
middle), then one should use the relations in B: this might be a very complicated formula, depending on 
the braiding. We give examples in some particular cases. Lets denote σ(x, y) = (σ1(x, y), σ2(x, y)).

Example 2.3. In low degrees we have

• d(ex) = x − x′

• d(exey) = (ezt − exy) − (x′ey − z′et), where as usual σ(x, y) = (z, t).
• d(ex1ex2ex3) = AI −AII where

AI = eσ1(x1,x2)eσ1(σ2(x1,x2),x3)σ
2(σ2(x1, x2), x3) − ex1eσ1(x2,x3)σ

2(x2, x3) + ex1ex2x3

AII = x′
1ex2ex3 − σ1(x1, x2)′eσ2(x1,x2)ex3 + σ1(x1, σ

1(x2, x3))′eσ2(x1,σ1(x2,x3))eσ2(x2,x3)

In particular, if f : B → k is an A–A′ linear map, then

f(d(ex1ex2ex3)) = f(eσ1(x1,x2)eσ1(σ2(x1,x2),x3)) − f(ex1eσ1(x2,x3)) + f(ex1ex2)

−f(ex2ex3) + f(eσ2(x1,x2)ex3) − f(eσ2(x1,σ1(x2,x3))eσ2(x2,x3))

Erasing the e’s we notice the relation with the cohomological complex given in [4], see Theorem 2.4
below.

If X is a rack and σ the braiding defined by σ(x, y) = (y, x � y) = (x, xy), then:

• d(ex) = x − x′

• d(exey) = (eyxy − exy) − (x′ey − y′exy )
• d(exeyez) = exeyz − exezy

z + eyezx
yz − x′eyez + y′exyez − z′exzeyz .

• In general, expressions I and II are

I =
n∑

i=1
(−1)i+1ex1 . . . exi−1exi+1 . . . exn

x
xi+1...xn

i

II =
n∑

i=1
(−1)i+1x′

iexxi
1
. . . exxi

i−1
exi+1 . . . exn

so
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∂f(x1, . . . , xn) = f(d(ex1 . . . exn
)) =

n∑
i=1

(−1)i+1 (f(x1, . . . , xi−1, xi+1, . . . , xn)xxi+1...xn

i − x′
if(x1

xi , . . . , xxi
i−1, xi+1, . . . , xn)

)

Let us consider k ⊗k[M ′] B ⊗k[M ] k then d represents the canonical differential of rack homology and 
∂f(ex1 . . . exn

) = f(d(ex1 . . . exn
)) gives the traditional rack cohomology structure.

In particular, taking trivial coefficients:

∂f(x1, . . . , xn) = f(d(ex1 . . . exn
)) =

n∑
i=1

(−1)i+1 (f(x1, . . . , xi−1, xi+1, . . . , xn) − f(x1
xi , . . . , xxi

i−1, xi+1 . . . , xn)
)

Theorem 2.4. Taking in k the trivial A′–A-bimodule, the complexes associated to set theoretical Yang–Baxter 
solutions defined in [4] can be recovered as

(C•(X,σ), ∂) 
 (k ⊗A′ B• ⊗A k, ∂ = idk ⊗A′ d⊗A idk)

(C•(X,σ), ∂∗) 
 (HomA′−A(B, k), ∂∗ = d∗)

In the proof of the theorem we will assume first Proposition 2.12 that says that one has a left A′-linear 
and right A-linear isomorphism:

B ∼= A′ ⊗ TE ⊗A

where A′ = TX ′/(x′y′ = z′t′ : σ(x, y) = (z, t)) and A = TX/(xy = zt : σ(x, y) = (z, t)). We will prove 
Proposition 2.12 later.

Proof. In this setting every expression in x, x′, ex, using the relations defining B, can be written as 
x′
i1
· · ·x′

in
ex1 · · · exk

xj1 · · ·xjl , tensorizing leaves the expression

1 ⊗ ex1 · · · exk
⊗ 1

This shows that T = k ⊗k[M ′] B ⊗k[M ] k 
 T{ex}x∈X , where 
 means isomorphism of k-modules. Now 
it is immediate to see that under these isomorphisms, the differentials correspond to each other, giving 
isomorphisms of complexes

(C•(X,σ), ∂) 
 (k ⊗A′ B• ⊗A k, ∂ = idk ⊗A′ d⊗A idk)

(C•(X,σ), ∂∗) 
 (HomA′−A(B, k), d∗) �
Remark 2.5. This isomorphism gives an alternative proof of the fact that ∂2 = 0, using that d2 = 0 in B.

Now we will prove Proposition 2.12: Call Y = 〈x, x′, ex〉x∈X the free monoid in X with unit 1, k〈Y 〉
the k algebra associated to Y . Lets define w1 = xy′, w2 = xey and w3 = exy

′. Let S = {r1, r2, r3} be the 
reduction system defined as follows: ri : k〈Y 〉 → k〈Y 〉 the families of k-module endomorphisms such that ri
fix all elements except

r1(xy′) = z′t, r2(xey) = ezt and r3(exy′) = z′et.

Note that S has more than 3 elements, each ri is a family of reductions.
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Definition 2.6. A reduction ri acts trivially on an element a if wi does not appear in a, i.e.: AwiB appears
with coefficient 0.

Following [1], a ∈ k〈Y 〉 is called irreducible if AwiB does not appear for i ∈ {1, 2, 3}. Call kirr〈Y 〉
the k submodule of irreducible elements of k〈Y 〉. A finite sequence of reductions is called final in a if 
rin ◦ · · · ◦ ri1(a) ∈ kirr(Y ). An element a ∈ k〈Y 〉 is called reduction-finite if for every sequence of reductions 
rin acts trivially on rin−1 ◦ · · · ◦ ri1(a) for sufficiently large n. If a is reduction-finite, then any maximal 
sequence of reductions, such that each rij acts non-trivially on ri(j−1) . . . ri1(a), will be finite, and hence 
a final sequence. It follows that the reduction-finite elements form a k-submodule of k〈Y 〉. An element 
a ∈ k〈Y 〉 is called reduction-unique if it is reduction finite and it’s image under every finite sequence of 
reductions is the same. This common value will be denoted rs(a).

Definition 2.7. Given a monomial a ∈ k〈Y 〉 we define the disorder degree of a, disdeg(a) =
∑nx

i=1 rpi +∑nx′
i=1 lpj , where rpi is the position of the i-th letter “x” counting from right to left, and lpi is the position 

of the i-th letter “x′” counting from left to right.
If a =

∑n
i=1 kiai where ai are monomials in letters of X, X ′, eX and ki ∈ K − {0},

disdeg(a) :=
n∑

i=1
disdeg(ai)

Example 2.8.

• disdeg(x1ey1x2z
′
1x3z

′
2) = (2 + 4 + 6) + (4 + 6) = 22

• disdeg(xeyz′) = 3 + 3 = 6 and disdeg(x′eyz) = 1 + 1
• disdeg(

∏n
i=1 x

′
i

∏m
i=1 eyi

∏k
i=1 zi) =

n(n+1)
2 + k(k+1)

2

The reduction r1 lowers disorder degree in two and reductions r2 and r3 lower disorder degree in one.

Remark 2.9.

• kirr(Y ) = {
∑

A′eBC : A′ word in X ′, eB word in exs, C word in X}.
• kirr 
 TX ′ ⊗ TE ⊗ TX.

Take for example a = xeyz
′, there are two possible sequences of final reductions: r3 ◦ r1 ◦ r2 or r2 ◦ r1 ◦ r3. 

The result will be a = A′eBC and a = D′eEF respectively, where

A = σ(1)
(
σ(1)(x, y), σ(1)(σ(2)(x, y), z)

)

B = σ(2)
(
σ(1)(x, y), σ(1)(σ(2)(x, y), z)

)

C = σ(2)
(
σ(2)(x, y), z

)

D = σ(1)
(
x, σ(1)(y, z)

)

E = σ(1)
(
σ(2)(x, σ(1)(y, z), σ(2)(y, z))

)

F = σ(2)
(
σ(2)(x, σ(1)(y, z), σ(2)(y, z))

)

We have A = D, B = E and C = F as σ is a solution of YBeq, hence r3◦r1◦r2(xeyz′) = r2◦r1◦r3(xeyz′).
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A monomial a in k〈Y 〉 is said to have an overlap ambiguity of S if a = ABCDE such that wi = BC and 
wj = CD. We shall say the overlap ambiguity is solvable if there exist compositions of reductions, r, r′ such 
that r(Ari(BC)DE) = r′(ABrj(CD)E). Notice that it is enough to take r = rs and r′ = rs.

Remark 2.10. In our case, there is only one type of overlap ambiguity and is the one we solved previously.

Proof. There is no rule with x′ on the left nor rule with x on the right, so there will be no overlap ambiguity 
including the family r1. There is only one type of ambiguity involving reductions r2 and r3. �

Notice that rs is a projector and I = 〈xy′ − z′t, xey − ezt, exy′ − z′et〉 is trivially included in the kernel. 
We claim that it is actually equal:

Proof. As rs is a projector, an element a ∈ ker must be a = b − rs(b) where b ∈ k〈Y 〉. It is enough to prove 
it for monomials b.

• If a = 0 the result follows trivially.
• If not, then take a monomial b where at least one of the products xy′, xey or exy′ appear. Lets suppose 

b has a factor xy′ (the rest of the cases are analogous).
b = Axy′B where A or B may be empty words. r1(b) = Ar1(xy′)B = Az′tB. Now we can rewrite:
b −rs(b) = Axy′B −Az′tB︸ ︷︷ ︸

∈I

+Az′tB−rs(b). As r1 lowers disdeg in two, we have disdeg(Az′tB−rs(b)) <

disdeg(b − rs(b)) then in a finite number of steps we get b =
∑N

k=1 ik where ik ∈ I. It follows that 
b ∈ I. �

Corollary 2.11. rs induces a k-linear isomorphism:

k〈Y 〉/〈xy′ − z′t, xey − ezt, exy
′ − z′et〉 → TX ′ ⊗ TE ⊗ TX

Returning to our bialgebra, taking quotients we obtain the following:

Proposition 2.12. B 
 (TX ′/(x′y′ = z′t′)) ⊗ TE ⊗ (TX/(xy = zt))

Notice that x1 . . . xn =
∏

βm ◦ · · · ◦ β1(x1, . . . , xn) where βi = σ±1
ji

, analogously with x′
1 . . . x

′
n.

This ends the proof of Theorem 2.4.

Example 2.13. If the coefficients are trivial, f ∈ C1(X, k) and we identify C1(X, k) = kX , then

(∂f)(x, y) = f(d(exey)) = −f(x) − f(y) + f(z) + f(t)

where as usual σ(x, y) = (z, t) (if instead of considering HomA′−A, we consider HomA−A′ then (∂f)(x, y) =
f(d(exey)) = f(x) + f(y) − f(z) − f(t) but with σ(z, t) = (x, y)).

Again with trivial coefficients, and Φ ∈ C2(X, k) ∼= kX
2 , then

(∂Φ)(x, y, z) = Φ(d(exeyez)) = Φ

⎛
⎜⎝

I︷ ︸︸ ︷
xeyez −

II︷ ︸︸ ︷
x′eyez −

III︷ ︸︸ ︷
exyez +

IV︷ ︸︸ ︷
exy

′ez +
V︷ ︸︸ ︷

exeyz−
VI︷ ︸︸ ︷

exeyz
′

⎞
⎟⎠

If considering HomA′−A then, using the relations defining B, the terms I, III , IV and VI change leaving
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∂Φ(x, y, z) = Φ(σ1(x, y), σ1(σ2(x, y), z)) − Φ(y, z) − Φ(x, σ1(y, z)) +

Φ(σ2(x, y), z) + Φ(x, y) − Φ(σ2(x, σ1(y, z)), σ2(y, z))

If M is a k[T ]-module (notice that T need not to be invertible as in [3]) then M can be viewed as an 
A′ −A-bimodule via

x′ ·m = m, m · x = Tm

The actions are compatible with the relations defining B:

(m · x) · y = T 2m , (m · z) · t = T 2m

and

x′ · (y′ ·m) = m , z′ · (t′ ·m) = m

Using these coefficients we get twisted cohomology as in [3] but for general YB solutions.
If one takes the special case of (X, σ) being a rack, namely σ(x, y) = (y, x � y), then the general formula 

gives

∂f(x1, . . . , xn) = f(d(ex1 . . . exn
)) =

n∑
i=1

(−1)i+1 (Tf(x1, . . . , xi−1, xi+1, . . . , xn) − f(x1
xi , . . . , xxi

i−1, xi+1, . . . , xn)
)

that agree with the differential of the twisted cohomology defined in [3].

Remark 2.14. If f : X ×X → k×, where k× denotes the units of k viewed as (multiplicative) abelian group, 
then cf (x ⊗ y) := f(x, y)σ1(x, y) ⊗ σ2(x, y), is a solution of YBeq if and only if f is a 2-cocycle with trivial 
coefficients.

Proof. Direct checking. �
3. First application: multiplicative structure on cohomology

Theorem 3.1. Δ = ΔB induces an associative product in HomA′−A(B, k) (the graded Hom) and hence in 
(C•(X, σ), ∂∗) and H•

Y B(X, σ, k).

Proof. It is clear that Δ induces an associative product on Homk(B, k) (the graded Hom), and 
HomA′−A(B, k) ⊂ Homk(B, k) is a k-submodule. We will show that it is in fact a subalgebra. Notice 
that Δ is a coderivation, so d∗ will be a derivation with respect to that product.

Consider the A′–A diagonal structure on B ⊗B (i.e. x′
1.(b ⊗ b′).x2 = x′

1bx2 ⊗ x′
1b

′x2 for x1, x2 ∈ X) and 
denote B ⊗D B the k-module B ⊗ B considered as A′ − A-bimodule in this diagonal way. We claim that 
Δ: B → B ⊗D B is a morphism of A′ −A-modules:

Δ(x′
1yx2) = x′

1yx2 ⊗ x′
1yx2 = x′

1(y ⊗ y)x2

same with y′, and with ex:

Δ(x′
1eyx2) = (x′

1 ⊗ x′
1)(y′ ⊗ ey + ey ⊗ y)(x2 ⊗ x2) = x′

1Δ(ey)x2
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Dualizing Δ one gets:

Δ∗ : HomA′−A(B ⊗D B, k) → HomA′−A(B, k)

consider the natural map

ι : Homk(B, k) ⊗ Homk(B, k) → Homk(B ⊗B, k)

ι(f ⊗ g)(b1 ⊗ b2) = f(b1)g(b2)

and denote ι| by ι| = ι|HomA′−A(B,k)⊗HomA′−A(B,k). Let us see that

Im(ι|) ⊂ HomA′−A(B ⊗B, k) ⊂ Homk(B ⊗B, k)

If f, g : B → k are two A′ − A-module morphisms (recall k has trivial actions, i.e. x′λ = λ and λx = x), 
then

ι(f ⊗ g)(x′(b1 ⊗ b2)) = f(x′b1)g(x′b2) = (x′f(b1))(x′g(b2))

= f(b1)g(b2) = x′ι(f ⊗ g)(b1 ⊗ b2)

ι(f ⊗ g)((b1 ⊗ b2)x) = f(b1x)g(b2x) = (f(b1)x)(g(b2)x)

= (f(b1)g(b2))x = ι(f ⊗ g)(b1 ⊗ b2)x

So, it is possible to compose ι| and Δ, and obtain in this way an associative multiplication in 
HomA′−A(B, k). �

Now we will describe several natural quotients of B, each of them give rise to a subcomplex of the 
cohomological complex of X with trivial coefficients that are not only subcomplexes but also subalgebras; 
in particular they are associative algebras.

3.1. Square-free case

A very interesting type of solutions are the so-called square-free ones. A solution (X, σ) of YBeq is 
called square-free if σ(x, x) = (x, x) for all x ∈ X. For instance, if X is a rack, then this condition is 
equivalent to X being a quandle, but the property σ(x, x) = (x, x) makes sense for general solutions of the 
YBeq. The name comes from the fact that for each x ∈ X such that σ(x, x) = (x, x) one has a nontrivial 
condition for x2 in the semigroup MX . The square-free type was first considered by T. Gateva-Ivanova and 
M. Van den Bergh for involutive solutions in [10], in the study of what they call semigroups of I-type and 
semigroups of skew-polynomial-type. Later on, numerous works on that direction were published, for instance 
Gateva-Ivanova proved in [9] that all these three notions introduced in [9] were equivalent, and conjecture 
that every involutive square-free solution is retractable (in the sense of Etingof, Schedler and Soloviev [8]). 
This conjecture was proved to be true in some cases by Cedó, Jespers and Okniński [6] but developing the 
theory of extensions for involutive solutions L. Vendramin [15] found a family of counter-examples, so even 
in the involutive case, this family of solutions is far from being understood.

In the square-free situation, but not necessarily involutive, namely when X is such that σ(x, x) = (x, x)
for all x, one may add to the d.g. bialgebra B the relation exex ∼ 0. If (X, σ) is a square-free solution of 
the YBeq, let us denote sf the two sided ideal of B generated by {exex}x∈X .

Proposition 3.2. sf is a differential Hopf ideal. More precisely,

d(exex) = 0 and Δ(exex) = x′x′ ⊗ exex + exex ⊗ xx.
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In particular B/sf is a differential graded bialgebra. We may identify HomA′A(B/sf, k) ⊂ HomA′A(B, k)
as the elements f such that f(. . . , x, x, . . . ) = 0. If X is a quandle, this construction leads to the quandle-
complex. We have HomA′A(B/sf, k) ⊂ HomA′A(B, k) is not only a subcomplex, but also a subalgebra.

3.2. Biquandles

In [11], a generalization of quandles is proposed (we recall it with different notation), a solution (X, σ)
is called non-degenerated, or birack if in addition,

1. for any x, z ∈ X there exists a unique y such that σ1(x, y) = z, (if this is the case, σ1 is called left 
invertible),

2. for any y, t ∈ X there exists a unique x such that σ2(x, y) = t, (if this is the case, σ2 is called right 
invertible).

A birack is called biquandle if, given x0 ∈ X, there exists a unique y0 ∈ X such that σ(x0, y0) = (x0, y0). In 
other words, if there exists a bijective map s : X → X such that

{(x, y) : σ(x, y) = (x, y)} = {(x, s(x)) : x ∈ X}

Remark 3.3. Every quandle solution is a biquandle, moreover, given a rack (X, �), then σ(x, y) = (y, x � y)
is a biquandle if and only if (X, �) is a quandle.

If (X, σ) is a biquandle, for all x ∈ X we add in B the relation exes(x) ∼ 0. Let us denote bQ the two 
sided ideal of B generated by {exesx}x∈X .

Proposition 3.4. bQ is a differential Hopf ideal. More precisely, d(exesx) = 0 and Δ(exesx) = x′s(x)′ ⊗
exesx + exesx ⊗ xs(x).

In particular B/bQ is a differential graded bialgebra. We may identify

HomA′A(B/bQ, k) ∼= {f ∈ HomA′A(B, k) : f(. . . , x, s(x), . . . ) = 0} ⊂ HomA′A(B, k)

In [4], the condition f(. . . , x0, s(x0), . . . ) = 0 is called the type I condition, because of its relation with 
Reidemeister move of type I, they prove that they form a subcomplex and they define biquandle cohomology 
as the homology of this subcomplex. A consequence of the above proposition is that the (cohomological) 
biquandle subcomplex is not only a subcomplex, but also a subalgebra. Before proving this proposition we 
will review some other similar constructions.

3.3. Identity case

The two cases above may be generalized in the following way:
Consider S ⊆ X ×X a subset of elements satisfying σ(x, y) = (x, y) for all (x, y) ∈ S. Define idS the two 

sided ideal of B given by idS = 〈exey/(x, y) ∈ S〉.

Proposition 3.5. idS is a differential Hopf ideal. More precisely, d(exey) = 0 for all (x, y) ∈ S and Δ(exey) =
x′y′ ⊗ exey + exey ⊗ xy.

In particular B/idS is a differential graded bialgebra.



M.A. Farinati, J. García Galofre / Journal of Pure and Applied Algebra 220 (2016) 3454–3475 3465
If one identifies HomA′A(B/sf, k) ⊂ HomA′A(B, k) as the elements f such that

f(. . . , x, y, . . . ) = 0 ∀(x, y) ∈ S

We have that HomA′A(B/idS, k) ⊂ HomA′A(B, k) is not only a subcomplex, but also a subalgebra.

3.4. Flip case

Consider the condition exey + eyex ∼ 0 for all pairs such that σ(x, y) = (y, x). For such a pair (x, y)
we have the equations xy = yx, xy′ = y′x, x′y′ = y′x′ and xey = eyx. Note that there is no equation for 
exey. The two sided ideal D = 〈exey + eyex : σ(x, y) = (y, x)〉 is a differential and Hopf ideal. Moreover, the 
following generalization is still valid.

3.5. Involutive case

Assume σ(x, y)2 = (x, y). This case is called involutive in [8]. Define Invo the two sided ideal of B given 
by Invo = 〈exey + ezet : (x, y) ∈ X, σ(x, y) = (z, t)〉.

Proposition 3.6. Invo is a differential Hopf ideal. More precisely, d(exey + ezet) = 0 for all (x, y) ∈ X (with 
(z, t) = σ(x, y)) and if ω = exey + ezet then Δ(ω) = x′y′ ⊗ ω + ω ⊗ xy.

In particular B/Invo is a differential graded bialgebra. If one identifies HomA′A(B/Invo, k) ⊂
HomA′A(B, k) then HomA′A(B/Invo, k) ⊂ HomA′A(B, k) is not only a subcomplex, but a subalgebra.

Conjecture 3.7. B/Invo is acyclic in positive degrees.

Example 3.8. If σ = flip and X = {x1, . . . , xn} then A = k[x1, . . . , xn] = SV , the symmetric algebra on 
V = ⊕x∈Xkx. In this case (B/Invo, d) ∼= (S(V ) ⊗ ΛV ⊗ S(V ), d) gives the Koszul resolution of S(V ) as 
S(V )-bimodule.

Example 3.9. If σ = Id, X = {x1, . . . , xn} and V = ⊕x∈Xkx, then A = TV the tensor algebra. If 1
2 ∈ k, 

then (B/invo, d) ∼= TV ⊗ (k⊕ V ) ⊗ TV gives the Koszul resolution of TV as TV -bimodule. Notice that we 
don’t really need 1

2 ∈ k, one could replace invo = 〈exey + exey : (x, y) ∈ X × X〉 by idX × X = 〈exey :
(x, y) ∈ X ×X〉.

The conjecture above, besides these examples, is supported by next result:

Proposition 3.10. If Q ⊆ k, then B/Invo is acyclic in positive degrees.

Proof. In B/Invo it can be defined h as the unique (super)derivation such that:

h(ex) = 0;h(x) = ex, h(x′) = −ex

Let us see that h is well defined:

h(xy − zt) = exy + xey − ezt− zet = 0

h(xy′ − z′t) = exy
′ − xey + ezt− z′et = 0

h(x′y′ − z′t′) = −exy
′ − x′ey + ezt

′ + z′et = 0

h(xey − ezt) = exey + ezet = 0
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Notice that in particular next equation shows that h is not well-defined in B.

h(exy′ − z′et) = exey + ezet = 0

h(zt′ − x′y) = ezt
′ − zet + exy − x′ey = 0

h(zet − exy) = ezet + exey = 0

h(ezt′ − x′ey) = ezet + exey = 0

h(exey + ezet) = 0

Since (super)commutator of (super)derivations is again a derivation, we have that [h, d] = hd + dh is also a 
derivation. Computations on generators:

h(ex) = 2ex, h(x) = x− x′, h(x′) = x′ − x

or equivalently

h(ex) = 2ex, h(x + x′) = 0, h(x− x′) = 2(x− x′)

One can also easily see that B/Invo is generated by ex, x±, where x± = x ± x′, and that their relations are 
homogeneous. We see that hd + dh is nothing but the Euler derivation with respect to the grading defined 
by

deg ex = 2, deg x+ = 0, deg x− = 2.

We conclude automatically that the homology vanish for positive degrees of the ex’s (and similarly for the 
x−’s). �

Next, we generalize Propositions 3.2, 3.4, 3.5 and 3.6.

3.6. Braids of order N

Let (x0, y0) ∈ X × X such that σN (x0, y0) = (x0, y0) for some N ≥ 1. If N = 1 we have the “identity 
case” and all subcases, if N = 2 we have the “involutive case”. Denote

(xi, yi) := σi(x0, y0) 1 ≤ i ≤ N − 1

Notice that the following relations hold in B:

	 xN−1yN−1 ∼ x0y0, xN−1y
′
N−1 ∼ x′

0y0, x′
N−1y

′
N−1 = x′

0y
′
0

	 xN−1eyN−1 ∼ ex0y0, exN−1y
′
N−1 ∼ x′

0ey0

and for 1 ≤ i ≤ N − 1:

	 xi−1yi−1 ∼ xiyi, xi−1y
′
i−1 ∼ x′

iyi, x′
i−1y

′
i−1 = x′

iy
′
i

	 xi−1eyi−1 ∼ exi
yi, exi−1y

′
i−1 ∼ x′

ieyi

Take ω =
∑N−1

i=0 exi
eyi

, then we claim that

dω = 0
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and

Δω = x0y0 ⊗ ω + ω ⊗ x′
0y

′
0

For that, we compute

d(ω) =
N−1∑
i=0

(xi − x′
i)eyi

− exi
(yi − y′i) =

N−1∑
i=0

(xieyi
− exi

yi) −
N−1∑
i=0

(x′
ieyi

− exi
y′i) = 0

For the comultiplication, we recall that

Δ(ab) = Δ(a)Δ(b)

where the product on the right hand side is defined using the Koszul sign rule:

(a1 ⊗ a2)(b1 ⊗ b2) = (−1)|a2||b1|a1b1 ⊗ a2b2

So, in this case we have

Δ(ω) =
N−1∑
i=0

Δ(exi
eyi

) =

N−1∑
i=0

(x′
iy

′
i ⊗ exi

eyi
− x′

ieyi
⊗ exi

yi + exi
y′i ⊗ xieyi

+ exi
eyi

⊗ xiyi)

the middle terms cancel telescopically, giving

=
N−1∑
i=0

(x′
iy

′
i ⊗ exi

eyi
+ exi

eyi
⊗ xiyi)

and the relation xiyi ∼ xi+1yi+1 gives

= x′
0y

′
0 ⊗ (

N−1∑
i=0

exi
eyi

) + (
n−1∑
i=0

exi
eyi

) ⊗ x0y0

= x′
0y

′
0 ⊗ ω + ω ⊗ x0y0

Then the two-sided ideal of B generated by ω is a Hopf ideal. If instead of a single ω we have several 
ω1, . . . ωn, we simply remark that the sum of differential Hopf ideals is also a differential Hopf ideal.

Remark 3.11. If X is finite, then for every (x0, y0) there exists N > 0 such that σN (x0, y0) = (x0, y0).

Remark 3.12. Let us suppose (x0, y0) ∈ X ×X is such that σN (x0, y0) = (x0, y0) and u ∈ X an arbitrary 
element. Consider the element

((Id × σ)(σ × Id)(u, x0, y0) = (x̃0, ỹ0, u
′′)

graphically
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u x y

x̃ u′ y

x̃ ỹ ũ′′

then σN (x̃0, ̃y0) = (x̃0, ̃y0).

Proof.

(σN × id)(x̃0, ỹ0, u
′′) = (σN × id)(id× σ)(σ × id)(u, x0, y0) =

(σN−1 × id)(σ × id)(id× σ)(σ × id)(u, x0, y0) =

using YBeq

(σN−1 × id)(id× σ)(σ × id)(id× σ)(u, x0, y0) =

repeating the procedure N − 1 times leaves

(id× σ)(σ × id)(id× σN )(u, x0, y0) = (id× σ)(σ × id)(u, x0, y0) = (x̃0, ỹ0, u
′′) �

4. Second application: comparison with Hochschild cohomology

B is a differential graded algebra, and on each degree n it is isomorphic to A ⊗ (TV )n ⊗ A, where 
V = ⊕x∈Xkex. In particular Bn is free as Ae-module. We have for free the existence of a comparison map

· · · Bn · · · B2
d

B1
d

B0

· · · A′(TX)nA
∼=

· · · ⊕x,y∈XA′exeyA

∼=

d ⊕x∈XA′exA
d

A′A

∼=

· · · A⊗ V ⊗n ⊗A

Ĩd

· · · A⊗ V ⊗2 ⊗A

Ĩd

d2
A⊗ V ⊗A

Ĩd

d1
A⊗A

Id

m
A

Id

0

· · · A⊗A⊗n ⊗A · · · A⊗A⊗2 ⊗A
b′

A⊗A⊗A
b′

A⊗A
m

A 0

Corollary 4.1. For all A-bimodule M , there exists natural maps

Ĩd∗ : HY B
• (X,M) → H•(A,M)

Ĩd
∗
: H•(A,M) → H•

Y B(X,M)

that are the identity in degrees zero and one.

Moreover, one can choose an explicit map with extra properties. For that we recall some definitions: there 
is a set theoretical section to the canonical projection from the Braid group to the symmetric group
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Bn Sn

Ts := σi1 . . . σik s = τi1 . . . τik

where

• τ ∈ Sn are transpositions of neighboring elements i and i + 1, so-called simple transpositions,
• σi are the corresponding generators of Bn,
• τi1 . . . τik is one of the shortest words representing s.

This inclusion factorizes trough

Sn ↪→ B+
n ↪→ Bn

It is a set inclusion not preserving the monoid structure.

Definition 4.2. The permutation sets

Shp1,...,pk
:= {s ∈ Sp1+···+pk

/s(1) < · · · < s(p1), · · · , s(p + 1) < · · · < s(p + pk)} ,

where p = p1 + · · · + pk−1, are called shuffle sets.

Remark 4.3. It is well known that a braiding σ gives an action of the positive braid monoid B+
n on V ⊗n, 

i.e. a monoid morphism

ρ : B+
n → EndK(V ⊗n)

defined on generators σi of B+
n by

σi �→ Id⊗(i−1)
V ⊗ σ ⊗ Id⊗(n−i+1)

V

Then there exists a natural extension of a braiding in V to a braiding in T (V ).

σ(v ⊗ w) = (σk . . . σ1) ◦ · · · ◦ (σn+k−2 . . . σn−1) ◦ (σn+k−1 . . . σn)(vw) ∈ V k ⊗ V n

for v ∈ V ⊗n, w ∈ V k and vw being the concatenation.
Graphically

. . . ⊗ . . .

. . . ⊗ . . .

Definition 4.4. The quantum shuffle multiplication on the tensor space T (V ) of a braided vector space (V, σ)
is the k-linear extension of the map

∃

σ = ∃ p,q
σ : V ⊗p ⊗ V ⊗q → V ⊗(p+q)

v ⊗ w �→ v

∃

σ w :=
∑

T σ
s (vw)
s∈Shp,q
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Notation: T σ
s stands for the lift Ts ∈ B+

n acting on V ⊗n via the braiding σ. The algebra Shσ(V ) := (TV, ∃ σ)
is called the quantum shuffle algebra on (V, σ)

It is well-known that ∃ σ is an associative product on TV (see for example [12] for details) that makes it 
a Hopf algebra with deconcatenation coproduct.

Definition 4.5. Let V be a braided vector space, then the quantum symmetrizer map ∃ σ : V ⊗n → V ⊗n

defined by

QSσ(v1 ⊗ · · · ⊗ vn) =
∑
τ∈Sn

T σ
τ (v1 ⊗ · · · ⊗ vn)

where T σ
τ is the lift T σ

τ ∈ B+
n of τ , acting on V ⊗n via the braiding σ.

In terms of shuffle products the quantum symmetrizer can be computed as

ω

∃

σ η :=
∑

τ∈Shp,q

T σ
τ (ω ⊗ η)

The quantum symmetrizer map can also be defined as

QSσ(v1 ⊗ · · · ⊗ vn) = v1

∃

σ · · · ∃ σ vn

With this notation, next result reads as follows:

Theorem 4.6. The A′–A-linear quantum symmetrizer map

A′V ⊗nA
Ĩd

A⊗A⊗n ⊗A

a′1ex1 · · · exn
a2 a1 ⊗ (x1

∃

−σ · · · ∃ −σ xn) ⊗ a2

is a chain map lifting the identify. Moreover, Ĩd : B → (A ⊗TA ⊗A, b′) is a differential graded algebra map, 
where in TA the product is ∃ −σ, and in A ⊗ TA ⊗ A the multiplicative structure is not the usual tensor 
product algebra, but the braided one. In particular, this map factors through A ⊗ B ⊗ A, where B is the 
Nichols algebra associated to the braiding σ′(x ⊗ y) = −z ⊗ t, where x, y ∈ X and σ(x, y) = (z, t).

Remark 4.7. The Nichols algebra B is the quotient of TV by the ideal generated by (skew)primitives that 
are not in V , so the result above explains the good behavior of the ideals invo, idS, or in general the ideal 
generated by elements of the form ω =

∑N−1
i=0 exi

eyi
where σ(xi, yi) = (xi+1, yi+1) and σN (x0, y0) = (x0, y0). 

It would be interesting to know the properties of A ⊗B ⊗A as a differential object, since it appears to be 
a candidate of Koszul-type resolution for the semigroup algebra A (or similarly the group algebra k[GX ]).

The rest of the paper is devoted to the proof of Theorem 4.6. Most of the Lemmas are “folklore” but we 
include them for completeness. The interested reader can look at [13] and references therein.

Lemma 4.8. Let σ be a braid in the braided (sub)category that contains two associative algebras A and C, 
meaning there exists bijective functions

σA : A⊗A → A⊗A, σC : C ⊗ C → C ⊗ C, σC,A : C ⊗A → A⊗ C
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such that

σ∗(1,−) = (−, 1) and σ∗(−, 1) = (1,−) for ∗ ∈ {A,C;C,A}

σC,A ◦ (1 ⊗mA) = (mA ⊗ 1)(1 ⊗ σC,A)(σC,A ⊗ 1)

and

σC,A ◦ (mC ⊗ 1) = (1 ⊗mC)(σC,A ⊗ 1)(1 ⊗ σC,A)

Diagrammatically

C A
mA

A

σC,A

A

A C
=[∗]

C
σC,A

A A

A C A

A A C

A C

and

C
mC

C A

C
σC,A

A

A C
=[∗∗]

C C A

C A C

A C C

A C

Assume that they satisfy the braid equation with any combination of σA, σC or σA,C . Then, A ⊗σC = A ⊗C

with product defined by

(mA ⊗mC) ◦ (IdA ⊗ σC,A ⊗ IdC) : (A⊗ C) ⊗ (A⊗ C) → A⊗ C

is an associative algebra. In diagram:

A C

σ

A C

A
mA

A C
mC

C

A C
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Proof. Take m ◦ (1 ⊗m)((a1 ⊗ c2) ⊗ ((a2 ⊗ c2) ⊗ (a3 ⊗ c3)) use [∗], associativity in A, associativity in C then 
[∗∗] and the result follows. �
Lemma 4.9. Let M be the monoid generated by X module the relation xy = zt where σ(x, y) = (z, t), then, 
σ : X ×X → X ×X naturally extends to a braiding in M and satisfies

M

m

M M

Id

M

σ

M

M M
=

M

Id

M

σ

M

M

σ

M M

M M

m

M

M M

M M M

m

M

σ

M

M M
=

M

σ

M M

M M

σ

M

M

m

M M

Id

M M

Proof. It is enough to prove that the extension mentioned before is well defined in the quotient. Inductively, 
it will be enough to see that σ(axyb, c) = σ(aztb, c) and σ(c, axyb) = σ(c, aztb) where σ(x, y) = (z, t), and 
this follows immediately from the braid equation:

A diagram for the first equation is the following:

a x y b c

z t

α β

=

a x y b c

α∗ β∗

As αβ = α∗β∗ the result follows. �
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Lemma 4.10. m ◦ σ = m, diagrammatically:

M M

M

m

M

M
=

M

m

M

M

Id

M

Proof. Using successively that m ◦ σi = m, we have:

m ◦ σ(x1 . . . xn, y1 . . . yk) = m
(
(σk . . . σ1) . . . (σn+k−1 . . . σn)(x1...xny1...yk)

)
= m

(
(σk−1 . . . σ1) . . . (σn+k−1 . . . σn)(x1...xny1...yk)

)
= . . .

= m(x1 . . . xn, y1 . . . yk) �
Corollary 4.11. If one considers A = k[M ], then the algebra A satisfies all diagrams in previous lemmas.

Lemma 4.12. If T = (TA, ∃ σ) there are bijective functions

σT,A := σ|T⊗A : T ⊗A → A⊗ T

σA,T := σ|A⊗T : A⊗ T → T ⊗A

that satisfies the hypothesis of Lemma 4.8, and the same for (TA, ∃ −σ).

Corollary 4.13. A ⊗ (TA, ∃ −σ) ⊗A is an algebra.

Proof. Use Lemma 4.8 twice and the result follows. �
Corollary 4.14. Taking A = k[M ], then the standard resolution of A as A-bimodule has a natural algebra 
structure defining the braided tensorial product as follows:

A⊗ TA⊗A = A⊗σ (T cA,

∃

−σ) ⊗σ A

Recall the differential of the standard resolution is defined as b′ : A⊗n+1 → A⊗n

b′(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

for all n ≥ 2. If A is a commutative algebra then the Hochschild resolution is an algebra viewed as 
⊕n≥2A

⊗n = A ⊗ TA ⊗ A, with right and left A-bilinear extension of the shuffle product on TA, and 
b′ is a (super) derivation with respect to that product (see for instance Prop. 4.2.2 [14]). In the braided-
commutative case we have the analogous result:

Lemma 4.15. b′ is a derivation with respect to the product mentioned in Corollary 4.14.

Proof. Recall the commutative proof as in Prop. 4.2.2 [14]. Denote ∗ the product

(a0 ⊗ · · · ⊗ ap+1) ∗ (b0 ⊗ · · · ⊗ bq+1) = a0b0 ⊗ ((a1 · · · ⊗ ap)

∃ (b1 ⊗ · · · ⊗ bq)) ⊗ ap+1bq+1
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Since ⊕n≥2A
⊗n = A ⊗TA ⊗A is generated by A ⊗A and 1 ⊗TA ⊗1, we check on generators. For a ⊗b ∈ A ⊗A, 

b′(a ⊗ b) = 0, in particular, it satisfies Leibnitz rule for elements in A ⊗ A. Also, b′ is A-linear on the left, 
and right-linear on the right, so

b′
(
(a0 ⊗ an+1) ∗ (1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)
= b′(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1)

= a0b
′(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)an+1 = (a0 ⊗ an+1) ∗ b′(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= 0 + (a0 ⊗ an+1) ∗ b′(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= b′(a0 ⊗ an+1) ∗ (1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1) + (a0 ⊗ an+1) ∗ b′(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

Now consider (1 ⊗a1⊗· · ·⊗ap⊗1) ∗ (1 ⊗ b1⊗· · ·⊗ bq⊗1), it is a sum of terms where two consecutive tensor 
terms can be of the form (ai, ai+1), or (bj , bj+1), or (ai, bj) or (bj , ai). When one computes b′, multiplication 
of two consecutive tensor factors will give, respectively, terms of the form

· · · ⊗ aiai+1 ⊗ · · · , · · · ⊗ bjbj+1 ⊗ · · · , · · · ⊗ aibj ⊗ · · · , · · · ⊗ bjai ⊗ · · ·

The first type of terms will recover b′((1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1)) ∗ (1 ⊗ b1 ⊗ · · · ⊗ bq ⊗ 1) and the second type 
of terms will recover ±(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1) ∗ b′((1 ⊗ b1 ⊗ · · · ⊗ bq ⊗ 1)). On the other hand, the difference 
between the third and forth type of terms is just a single transposition so they have different signs, while 
aibj = bjai because the algebra is commutative, if one take the signed shuffle then they cancel each other.

In the braided shuffle product, the summands are indexed by the same set of shuffles, so we have the 
same type of terms, that is, when computing b′ of a (signed) shuffle product, one may do the product of 
two elements in coming form the first factor, two elements of the second factor, or a mixed term. For the 
mixed terms, they will have the form

· · · ⊗AiBj ⊗ · · · , or · · · ⊗ σ1(Ai, Bj)σ2(Ai, Bj) ⊗ · · ·

As in the algebra A we have AiBj = σ1(Ai, Bj)σ2(Ai, Bj) then these terms will cancel leaving only the 
terms corresponding to b′(1 ⊗ a1 ⊗ · · · ⊗ ap ⊗ 1) ∃ −σ (1 ⊗ b1 ⊗ · · · ⊗ bq⊗) and ±(1 ⊗ a1 ⊗ · · · ⊗ ap ⊗ 1) ∃ −σ

b′(1 ⊗ b1 ⊗ · · · ⊗ bq ⊗ 1) respectively. �
Corollary 4.16. There exists a comparison morphism f : (B, d) → (A ⊗ TA ⊗ A, b′) which is a differential 
graded algebra morphism, f(d) = b′(f), simply defining it on ex (x ∈ X) and satisfying f(x′−x) = b′(f(ex)).

Proof. Define f on ex, extend k-linearly to V , multiplicatively to TV , and A′–A linearly to A′⊗TV ⊗A = B. 
In order to see that f commutes with the differential, by A′–A-linearity it suffices to check on TV , but since 
f is multiplicative on TV it is enough to check on V , and by k-linearity we check on basis, that is, we only 
need f(dex) = b′f(ex). �
Corollary 4.17. f |TX is the quantum symmetrizer map, and therefore Ker(f) ∩TX ⊂ B defines the Nichol’s 
ideal associated to −σ.

Proof.

f(ex1 · · · exn
) = f(ex1) ∗ · · · ∗ f(exn

) = (1 ⊗ x1 ⊗ 1) ∗ · · · ∗ (1 ⊗ xn ⊗ 1) = 1 ⊗ (x1

∃ · · · ∃ xn) ⊗ 1 �
The previous corollary explains why Ker(Id − σ) ⊂ B2 gives a Hopf ideal and also ends the proof of 

Theorem 4.6.

Question 4.18. Im(f) = A ⊗B ⊗A is a resolution of A as a A-bimodule? Namely, is (A ⊗B ⊗A, d) acyclic?
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This is the case for involutive solutions in characteristic zero, but also for σ = flip in any characteristic, and 
σ = Id (notice this Id-case gives the Koszul resolution for the tensor algebra). If the answer to that question 
is yes, and B is finite dimensional then A have necessarily finite global dimension. Another interesting 
question is how to relate generators for the relations defining B and cohomology classes for X.

Acknowledgements

The first author wishes to thank Dominique Manchon for fruitful discussion during a visit to Laboratoire 
de mathématiques de l’Université Blaise Pascal where a preliminary version of the bialgebra B for racks 
came up. He also wants to thank Dennis Sullivan for very pleasant stay in Stony Brook where the contents 
of this work were discussed in detail, in particular, the role of Proposition 2.12 in the whole construction. 
We also thank the referee for improvements in the presentation.

References

[1] G.M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (2) (1978) 178–218.
[2] J. Ceniceros, M. Elhamdadi, M. Green, S. Nelson, Augmented biracks and their homology, Int. J. Math. 25 (2014) 9, 19 

pages.
[3] J.S. Carter, M. Elhamdadi, M. Saito, Twisted quandle homology theory and cocycle knot invariants, Algebraic Geom. 

Topol. 2 (2002) 95–135.
[4] J.S. Carter, M. Elhamdadi, M. Saito, Homology theory for the set-theoretic Yang–Baxter equation and knot invariants 

from generalizations of quandles, Fundam. Math. 184 (2004) 31–54.
[5] S. Carter, D. Jelsovskyb, S. Kamada, M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure 

Appl. Algebra 157 (2001) 135–155.
[6] F. Cedó, E. Jespers, J. Okniński, Retractability of set theoretic solutions of the Yang–Baxter equation, Adv. Math. 224 (6) 

(2010) 2472–2484.
[7] F. Clauwens, The algebra of rack and quandle cohomology, J. Knot Theory Ramif. 20 (11) (2011) 1487–1535.
[8] P. Etingof, T. Schedler, A. Soloviev, On set-theoretical solutions of the quantum Yang–Baxter equation, Duke Math. J. 

100 (2) (1999) 169–209.
[9] T. Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation, J. Math. Phys. 

45 (10) (2004) 3828–3858.
[10] T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1) (1998) 97–112.
[11] L. Kauffman, D. Radford, Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links, in: 

Diagrammatic Morphisms and Applications, S. Francisco, CA, 2000, in: Contemp. Math., vol. 318, AMS, Providence, RI, 
2003, pp. 113–140.

[12] V. Lebed, Homologies of algebraic structures via braidings and quantum shuffles, J. Algebra 391 (2013) 152–192.
[13] V. Lebed, Braided systems: a unified treatment of algebraic structures with several operations, arXiv:1305.0944, 2013.
[14] J.L. Loday, Cyclic Homology, Springer Science and Business Media, 1998.
[15] L. Vendramin, Extensions of set-theoretic solutions of the Yang–Baxter equation and a conjecture of Gateva-Ivanova, 

J. Pure Appl. Algebra 220 (5) (2016) 2064–2076.

http://refhub.elsevier.com/S0022-4049(16)30018-4/bib42s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4345474Es1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4345474Es1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib74434553s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib74434553s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434553s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434553s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434A4B53s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434A4B53s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434A4Fs1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib434A4Fs1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib436Cs1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib455453s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib455453s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4749s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4749s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib47492D42s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4B52s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4B52s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4B52s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4C65s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4C6562656432s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib4Cs1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib56s1
http://refhub.elsevier.com/S0022-4049(16)30018-4/bib56s1

	A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation
	0 Introduction
	1 Basic deﬁnitions
	2 A d.g. bialgebra associated to (X,σ)
	3 First application: multiplicative structure on cohomology
	3.1 Square-free case
	3.2 Biquandles
	3.3 Identity case
	3.4 Flip case
	3.5 Involutive case
	3.6 Braids of order N

	4 Second application: comparison with Hochschild cohomology
	Acknowledgements
	References


