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Abstract. In this work we study the homogenization for eigenvalues of the

fractional p−Laplace operator in a bounded domain both with Dirichlet and

Neumann conditions. We obtain the convergence of eigenvalues and the ex-
plicit order of the convergence rates when periodic weights are considered.

1. Introduction

The purpose of this paper is to study the asymptotic behavior as ε → 0 of the
eigenvalues of the following non-local problem{

(−∆p)
su = λp,ερε(x)|u|p−2u in Ω ⊂ Rn

u = 0 Rn \ Ω
(1.1)

where for ε > 0, the parameter λp,ε is the eigenvalue and 1 < p <∞. The domain
Ω is assumed to be a bounded and open set in Rn, n ≥ 1. The weight functions
ρε are positive and bonded away from zero and infinity, i.e., for some constants ρ−
and ρ+ it holds that

(1.2) 0 < ρ− ≤ ρε(x) ≤ ρ+ <∞ x ∈ Ω.

Here, for s ∈ (0, 1) we denote by (−∆p)
s the fractional p−Laplace operator, which

is defined as

(−∆p)
su(x) = 2 p.v.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy.

As ε→ 0 in (1.1), the following limit problem is obtained{
(−∆p)

su = λpρ0(x)|u|p−2u in Ω

u = 0 in Rn \ Ω
(1.3)

where ρ0(x) is the weak* limit in L∞(Ω) as ε→ 0 of the sequence {ρε}ε.
For each fixed value of ε it is known that there exists a sequence of variational

eigenvalues {λεk,p}k≥1 of (1.1) such that λεk,p → ∞ as k → ∞. Analogously, for

the limit problem (1.3), there exists a sequence of variational eigenvalues {λ0
k,p}k≥1

such that λ0
k,p →∞ as k →∞ (see Section 2).

We are interested in studying the behavior of the sequence {λεk,p}k≥1 as ε→ 0.

When s = 1 and p = 2, (1.1) becomes the eigenvalue problem for the laplacian
operator with Dirichlet boundary conditions. This problem has been extensively
studied and a complete description of the asymptotic behavior of its spectrum was
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obtained in the 70’s. Boccardo and Marcellini [3], and Kesavan [12] proved that for
each fixed k,

lim
ε→0

λεk,2 = λ0
k,2.

Later on, in [4] and [9] this result was extended to p−laplacian type operators.
One of the purposes of our paper is to extend this results to non-local eigenvalue

problems. Our first result states the convergence of the k−th eigenvalue of problem
(1.1) to the k−th eigenvalue of the limit problem (1.3) when a general family of
weight functions is considered.

Theorem 1.1. Let Ω ⊂ Rn be an open bounded domain and s ∈ (0, 1) and let ρε
satisfying (1.2) such that ρε

∗
⇀ ρ0 weakly* in L∞(Ω) as ε → 0. Let λεk,p and λ0

k,p

be the k−th (variational) eigenvalues of (1.1) and (1.3), respectively. Then

(1.4) lim
ε→0

λεk,p = λ0
k,p

for each fixed k ≥ 1.

A slight modification in the arguments of the proof in the previous result allow
us to deal with the following non-local Neumann eigenvalue problem considered
recently in [7] {

Ls,pu+ |u|p−2u = Λp,ερε(x)|u|p−2u in Ω

u ∈W s,p(Ω)
(1.5)

where Ls,p denotes the regional fractional p−laplacian defined as

(1.6) Ls,p := 2 p.v.

∫
Ω

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy

for which, again, the min-max theory provides a sequence of variational eigenvalues
tending to +∞, denoted by {Λεk,p}k≥1. Analogously to the Dirichlet case, as ε→ 0,

a limit problem is obtained in terms of ρ0, the weak* limit of ρε in L∞(Ω),{
Ls,pu+ |u|p−2u = Λpρ0(x)|u|p−2u in Ω

u ∈W s,p(Ω)
(1.7)

which has a sequence of variational eigenvalues denoted by {Λ0
k,p}k≥1. HereW s,p(Ω)

stands for a fractional order Sobolev space, which is defined in Sections 2. The cor-
responding convergence result is stated as follows.

Theorem 1.2. Let Ω ⊂ Rn be an open bounded domain and s ∈ (0, 1) and let ρε
satisfying (1.2) such that ρε

∗
⇀ ρ0 weakly* in L∞(Ω) as ε → 0. Let Λεk,p and Λ0

k,p

be the k−th (variational) eigenvalues of (1.5) and (1.7), respectively. Then

(1.8) lim
ε→0

Λεk,p = Λ0
k,p

for each fixed k ≥ 1.

Homogenization theory dates back to the late sixties with the works of Spagnolo
and de Giorgi and it developed very rapidly during the last two decades. Homoge-
nization theory tries to get a good approximation of a macroscopic behavior of the
heterogeneous material by letting the parameter ε → 0. A case of relevant impor-
tance is the study of periodic homogenization problems due to the many applica-
tions to physics and engineering. The main references for the homogenization theory
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of (local) periodic structures are the books by Bensoussan-Lions-Papanicolaou [1],
Sanchez–Palencia [17], Olĕınik-Shamaev-Yosifian [16] among others.

An interesting issue in the homogenization theory is to estimate the rates of
convergence of the eigenvalues in (1.4) and (1.8), that is, to find bounds for the
differences |λεk,p−λ0

k,p| and |Λεk,p−Λ0
k,p|. Since it is desirable to obtain the explicit

dependence on ε , we restrict our study to periodic weights, i.e., we consider a family
of weight functions ρε given in terms of a single-bounded Q−periodic function ρ in
the form

ρε(x) := ρ(x/ε), ε > 0,

Q being the unit cube of Rn. The function ρ is assumed to satisfy the bounds (1.2).
Under these assumptions it is well-known that

ρε
∗
⇀ ρ̄ in L∞(Ω) as ε→ 0,

ρ̄ being the average of ρ on Q.

In the local case, the rates of convergence for the eigenvalues of the p−Laplace
operator were studied in several papers. The authors in [16] proved some estimates
for the Dirichlet and the Neumann case when p = 2 by using tools from functional
analysis in Hilbert spaces. Assuming that Ω is a Lipschitz domain they showed
that there exists a constant C depending on k and Ω such that

|λεk,2 − λ0
k,2| ≤ Cε

1
2 .

Later on, under the same assumptions on Ω it was proved in [13] the following
bounds for both Dirichlet and Neumann boundary conditions,

|λεk,2 − λ0
k,2| ≤ Cε| log ε| 12 +γ

for any γ > 0, C depending on k and γ. When the domain is more regular (C1,1

is enough) in [11] explicit dependence of the constant C on k was obtained. It was
proved that

|λεk,2 − λ0
k,2| ≤ Cεk

3
n ε| log ε| 12 +γ

for any γ > 0, C depending on γ. In both cases, when the domain Ω is smooth,
the logarithmic term can be removed.

Finally, in [9] the results were extended to the local p−Laplace operator via non-
linear techniques and the dependence on the constant was improved. The authors
in [9] proved that

(1.9) |λεk,p − λ0
k,p| ≤ Ck

p+1
n ε, |Λεk,p − Λ0

k,p| ≤ Ck
2p
n ε

where C is a constant independent on k and ε which can be explicitly computed.

Up to our knowledge, no investigation was made on the homogenization and
convergence rates for the weighted fractional p−laplacian eigenvalue problem. In
contrast with the p−laplacian operator, the non-local nature of (1.1) makes more
difficult to deal with the convergence rates. The main obstacle is how to manage the
boundedness of fractional norms in order to obtain relations between the variational
characterization of eigenvalues.

In the two next results we obtain the rates of the convergence of the eigenvalues
of problems (1.1) and (1.5) when periodicity assumptions are made on the weight
family.
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Theorem 1.3. Let Ω ⊂ Rn be an open and bounded domain and ρ ∈ L∞(Rn) be
a Q−periodic function satisfying (1.2), Q being the unit cube of Rn. Let λεk,p and

λ0
k,p be the k−th variational eigenvalues of (1.1) and (1.3), respectively. Then

|λεk,p − λ0
k,p| ≤ Cεs(λk,p)

1+ 1
p

for every k ∈ N and s ∈ (0, 1), λk,p being the k−th variational eigenvalue of the
Dirichlet fractional p−laplacian of order s. The constant C depends only on Ω, s,
n, p and the bounds of ρ. In the case p = 2 the previous inequality becomes

|λεk,2 − λ0
k,2| ≤ Cεsk

3s
n

for every k ∈ N and s ∈ (0, 1).

Theorem 1.4. Let Ω ⊂ Rn be an open and bounded set with C1 boundary and
ρ ∈ L∞(Rn) be a Q−periodic function satisfying (1.2), Q being the unit cube of
Rn. Let Λεk,p and Λ0

k,p be the k−th variational eigenvalues of (1.5) and (1.7),
respectively. Then

|Λεk,p − Λ0
k,p| ≤ Cεs(Λk,p)2

for every k ∈ N and s ∈ ( 1
p , 1), Λk,p being the k−th variational eigenvalue of

the regional Neumann fractional p−laplacian (1.7) with ρ0 ≡ 1. The constant C
depends only on Ω, s, n and the bounds of ρ. In the case p = 2 the previous
inequality becomes

|Λεk,2 − Λ0
k,2| ≤ Cεsk

4s
n

for every k ∈ N and s ∈ ( 1
p , 1).

Although the rates obtained in the two previous results are similar, in the Neu-
mann case the range of allowed values for s is smaller, and more assumptions on
the boundary of Ω have to be made. Such restrictions arise from the use of trace
arguments in the proof.

Observe that the rates obtained in Theorems 1.3 and 1.4 are the natural gener-
alization of the results for the local case stated in (1.9).

This paper is organized as follows: in Section 2 we introduce some definitions
and properties of the eigenvalues of non-local problems meanwhile that in Section
3 we prove the results before stated.

2. Fractional Sobolev spaces and fractional eigenvalues

In this section we present some well-known results about fractional Sobolev
spaces and the eigenvalues of non-local problems. For more detailed information
we refer to the reader, for instance to [8].

Let Ω be a subset of Rn, n ≥ 1. For any s ∈ (0, 1) and p ≥ 1 we denote W s,p(Ω)
the fractional Sobolev space defined as follows

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

u(x)− u(y)

|x− y|
n
p+s

∈ Lp(Ω× Ω)

}
endowed with the norm

‖u‖pW s,p(Ω) := ‖u‖pLp(Ω) + [u]pW s,p(Ω),
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where [u]W s,p(Ω) is the so-called Gagliardo semi-norm of u defined as

[u]pW s,p(Ω) =

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy.

Hereafter we denote X s,p0 (Ω) := {u ∈W s,p(Rn) : u = 0 in Rn \ Ω}.

It is a well-known fact that the space W s′,p is continuously embedded in W s,p

when s ≤ s′, (see for instance [8]).

Lemma 2.1. Let p ∈ [1,∞) and 0 < s < s′ < 1. Let Ω be an open set in Rn and
u a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some positive constant C = C(n, s, p).

A useful tool to be used is the following fractional Poincaré inequality on cubes
of side ε. Here we denote (v)U the average of the function v on the set U .

Lemma 2.2. Let Q be the unit cube in Rn, n ≥ 1. Then, for every u ∈W s,p(Qε),
1 < p <∞ we have

‖u− (u)Qε‖Lp(Qε) ≤ cε
s[u]W s,p(Qε),

where Qε = εQ and c is a constant depending only on n.

Proof. Given u ∈W s,p(Qε), by using Jensen’s inequality it follows that∫
Qε

|u− (u)Qε |pdx =

∫
Qε

∣∣∣∣–∫–
Qε

(u(x)− u(y)) dy

∣∣∣∣p dx
≤
∫
Qε

–

∫
–
Qε

|u(x)− u(y)|p dy dx

≤ cεsp
∫
Qε

∫
Qε

|u(x)− u(y)|p

|x− y|n+sp
dy dx,

from where the result follows. �

In particular, it is readily seen that the following Poincaré-type inequality holds:

‖u‖Lp(Qε) ≤ cε
s[u]W s,p(Qε)

for all u ∈ X s,p0 (Qε), from where it follows that [·]W s,p(Ω) is an equivalent norm in
the space X s,p0 .

Another result we will use is the trace’s inequality for fractional spaces proved
in [18], which it is necessary for our auxiliary computations.

Proposition 2.3. Let Ω be a bounded C1 domain and 1
p < s < 1. Then

‖u‖
W
s− 1

p
,p

(∂Ω)
≤ C‖u‖W s,p(Ω),

where C is a constant depending on s, p and Ω.
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2.1. Fractional eigenvalues. Let Ω ⊂ Rn be an open bounded domain. Given a
weight function ρ bounded away from zero and infinity, we consider the following
Dirichlet eigenvalue problem

(−∆p)
su = λDρ|u|p−2u in Ω, u = 0 Rn \ Ω.(2.1)

Due to the non-local nature of the problem it is needed to consider the boundary
condition not only on ∂Ω but in Rn \ Ω.

This problem has a variational structure. We say that u ∈ X s,p0 (Ω) is a weak
solution of (2.1) if∫

Rn×Rn

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+sp
= λD

∫
Ω

ρ(x)|u|p−2uv

for every v ∈ X s,p0 (Ω).
The following non-local Neumann eigenvalue problem for the regional p−laplacian

defined in (1.6) was considered recently in [7]

Ls,pu+ |u|p−2u = λNρ(x)|u|p−2u in Ω, u ∈W s,p(Ω).(2.2)

In this case, we say that a function u ∈ W s,p(Ω) is a weak solution of (2.2) if it
holds that∫

Ω×Ω

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+sp
+

∫
Ω

|u|p−2uv = λN

∫
Ω

ρ|u|p−2uv

for every v ∈W s,p(Ω).
As in [10], a non-decreasing sequence of eigenvalues for (2.1) and (2.2) can be

defined by means of cohomological index. We will denote by {λDk,p}k≥1 and
{ΛNk,p}k≥1 such sequences, respectively. They can be written by using the fol-
lowing inf-sup characterization:

λDk,p = inf
C∈Dk

sup
u∈C

[u]pW s,p(Rn)

‖ρ
1
pu‖pLp(Ω)

, λNk,p = inf
C∈D̃k

sup
u∈C

‖u‖pW s,p(Ω)

‖ρ
1
pu‖pLp(Ω)

,(2.3)

where Dk = {W ⊂ X s,p0 (Ω) : i(W) ≥ k} and D̃k = {W ⊂ W s,p(Ω) : i(W) ≥ k}.
Here i denotes the cohomological index, see for instance [15] for the definition and
further properties. These formulas differ from the classical ones by the use of the
index instead of the genus, but they coincide in the lineal case. In fact, when p = 2
the sequence defined in (2.3) coincides with the sequence of variational eigenvalues
which uses dimension instead of index (see for instance [19])

λDk,2 = min
C∈Dk

max
u∈C

[u]2W s,2(Rn)

‖ρ 1
2u‖2L2(Ω)

, λNk,2 = min
C∈D̃k

max
u∈C

‖u‖2W s,2(Ω)

‖ρ 1
2u‖2L2(Ω)

,(2.4)

where Dk = {W ⊂ X s,20 (Ω) : dimW = k} and D̃k = {W ⊂ W s,2(Ω) : dimW =
k}.

The variational characterization of eigenvalues plays a fundamental role in our
analysis and the proof of our results since it allows to reduce the eigenvalues con-
vergence to the study of oscillating integrals.

Bounds for the eigenvalues (2.3) are also necessary for our arguments. When the
weight function ρ satisfy (1.2), it is easy to see that

(2.5) (ρ+)−1λk,p ≤ λDk,p ≤ (ρ−)−1λk,p,
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where λk,p is the k−th eigenvalue of the Dirichlet fractional laplacian, i.e., it satisfies
the following equation

(−∆p)
su = λ|u|p−2u in Ω, u = 0 Rn \ Ω.(2.6)

Moreover, observe that for any u ∈W s,p(Rn), u 6≡ 0, (1.2) gives

‖u‖pW s,p(Ω)

‖ρ
1
pu‖pLp(Ω)

≤ 1

ρ−

(
1 +

[u]pW s,p(Rn)

‖u‖pLp(Ω)

)
,

and using that X s,p0 (Ω) ⊂W s,p(Ω) it is straightforward to see that Neumann eigen-
values can be bounded with the Dirichlet ones, i.e.,

(2.7) ΛNk,p ≤ (ρ−)−1(1 + λk,p).

Since the sequences (2.3) are bounded in terms of the eigenvalues of (2.6), it is
desirable to estimate such eigenvalues.

For p > 1, s ∈ (0, 1) and sp > n, the authors in [10] proved that for k large the
following bounds hold

(2.8) c1|Ω|−
sp
n k

sp−n
n ≤ λk,p ≤ c2|Ω|−

sp
n k

np−n+sp
n

for some positive constants c1 and c2 depending on s, p and n. Nevertheless,
they suspect that these estimates are not optimal. However when p = 2, precise
estimates for this sequences are known. In 1959, Blumenthal and Getoor [2] proved
a Weyl’s formula for λk,2 in the context of s−stable symmetric processes, whose
generators are the fractional laplacians, more precisely, they proved the following
asymptotic formula

λk,2 ∼ (4π)s
(
k|Ω|−1Γ(1 +

n

2
)
) 2s
n

, k → +∞.

Moreover, in [6] it was proved that there exists some constant c independent on
k such that c(µ̃k,2)s ≤ λk,2 ≤ (µ̃k,2)s, where µ̃k,2 is the k−th eigenvalue of the
laplacian with Dirichlet boundary conditions on ∂Ω. Since it is well-known that
there exist constants c1 and c2 independent on k such that c1k

2
n ≤ µ̃k,2 ≤ c2k

2
n

(see for instance [5]), for the case p = 2, inequality (2.5) reads as

(2.9) C1k
2s
n ≤ λk,2 ≤ C2k

2s
n

where C1 and C2 are two constant independent on k and s.

3. Proof of the results

The convergence of the sequence of Dirichlet and Neumann eigenvalues is a
consequence of the following simple lemma concerning oscillating integrals. When
periodicity is not assumed on the weight functions, the result does not provide any
information about the order of the convergence.

Lemma 3.1. Let Ω ⊂ Rn be a bounded domain. Let {gε}ε>0 be a set functions
such that 0 < g− ≤ gε ≤ g+ < +∞ for g± constants and gε ⇀ g weakly* in L∞(Ω).
Then

lim
ε→0

∫
Ω

(gε − g)|u|p = 0

for every u ∈W s,p(Ω), 0 < s < 1.
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Proof. The weak* convergence of gε in L∞(Ω) says that
∫

Ω
gεϕ →

∫
Ω
gϕ for all

ϕ ∈ L1(Ω). In particular, since u ∈ W s,p(Ω), we have that |u|p ∈ L1(Ω) and the
result is proved. �

Proof of Theorem 1.1. Let δ > 0 and Ck,δ ⊂ X s,p0 (Ω) be a set of index greater or
equal than k such that

λ0
k,p = inf

C∈Dk
sup
u∈C

[u]pW s,p(Rn)∫
Ω
ρ0|u|p

= sup
u∈Ck,δ

[u]pW s,p(Rn)∫
Ω
ρ0|u|p

+O(δ)

where Dk = {W ∈ X s,p0 (Ω) : i(W) ≥ k}.
We use now the set Ck,δ, which is admissible in the variational characterization

of the kth–eigenvalue of (1.1), in order to find a bound for it as follows,

λεk,p ≤ sup
u∈Ck,δ

[u]pW s,p(Rn)∫
Ω
ρε|u|p

= sup
u∈Ck,δ

[u]pW s,p(Rn)∫
Ω
ρ0|u|p

∫
Ω
ρ0|u|p∫

Ω
ρε|u|p

.(3.1)

To bound λεk,p we look for bounds of the two quotients in (3.1). For every
function u ∈ Ck,δ we have that

[u]pW s,p(Rn)∫
Ω
ρ0|u|p

≤ sup
v∈Ck,δ

[v]pW s,p(Rn)∫
Ω
ρ0|v|p

= λ0
k,p +O(δ).(3.2)

Since u ∈ Ck,δ ⊂ X s,p0 (Ω), by Lemma 3.1 we obtain that∫
Ω
ρ0|u|p∫

Ω
ρε|u|p

≤ 1 +O(ε).(3.3)

Then, combining (3.1), (3.2) and (3.3) we find that λεk,p ≤ (λ0
k,p +O(δ))

(
1 +O(ε)),

from where it follows that

λεk,p − λ0
k,p ≤ O(ε, δ).

In a similar way, interchanging the roles of λ0
k,p and λεk,p, we obtain that λ0

k,p−λεk,p ≤
O(ε, δ). Gathering both inequalities and letting δ → 0 and ε→ 0 it is obtained the
desired result. �

Proof of Theorem 1.2. The proof of the Neumann case it follows with an analogous
argument to that of Theorem 1.1 by considering the Rayleigh quotients related to
Λ0
k,p and Λεk,p and by applying Lemma 3.1. �

When periodicity assumptions are made on the weight functions, beside the con-
vergence of the eigenvalues, estimates on the rates of the convergence are obtained.
The proofs of Theorems 1.3 and 1.4 follow the ideas introduced by Olĕınik et al.
in [16], where the problem of obtaining rates on the eigenvalues is reduced to the
study of the convergence rates of oscillating integrals. First we prove the Dirichlet
case. Later, since the Neumann case involves estimates on the boundary of the
domain, it will be necessary to assume some additional hypothesis; nevertheless the
main idea in the proof still being the same.

The following inequality will be useful to prove our next lemma. We refer to [14]
for the proof.

Lemma 3.2. For p > 1 and x, y ∈ Rn, x 6= y,

|x|p − |y|p ≤ p|x|p−2x · (x− y).
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Lemma 3.3. Let Ω ⊂ Rn be a bounded domain and denote by Q the unit cube in
Rn. Let g ∈ L∞(Rn) be a Q-periodic function such that ḡ = 0. Then the inequality∣∣∣∣∫

Ω

g(xε )|v|p
∣∣∣∣ ≤ cεs[v]W s,p(Rn)‖v‖p−1

Lp(Ω)

holds for every v ∈ X s,p0 (Ω) with s ∈ (0, 1). The constant c depends only on Ω, n,
p and the bounds of g.

Proof. Denote by Iε the set of all z ∈ Zn such that Qz,ε ∩Ω 6= ∅, Qz,ε := ε(z+Q).
Given v ∈ X s,p0 (Ω) we consider the function v̄ε given by the formula

v̄ε(x) =
1

εn

∫
Qz,ε

v(y) dy

for x ∈ Qz,ε. We denote by Ω1 = ∪z∈IεQz,ε ⊃ Ω. Thus, we can write∫
Ω

gε|v|p =

∫
Ω1

gε(|v|p − |v̄ε|p) +

∫
Ω1

gε|v̄ε|p,

and we can bound the previous expression as follows

(3.4)

∫
Ω

gε|v|p ≤ g+

∫
Ω1

||v|p − |v̄ε|p|+
∣∣∣∣∫

Ω1

gε|v̄ε|p
∣∣∣∣ .

The first integral in (3.4) can be split as∫
Ω1

||v|p − |v̄ε|p| =
∫
I1

|v|p − |v̄ε|p +

∫
I2

|v̄ε|p − |v|p(3.5)

where I1 = {x ∈ Ω : |v|p − |v̄ε|p ≥ 0} and I2 = {x ∈ Ω : |v|p − |v̄ε|p < 0}. Then, by
using Lemma 3.2 we can bound (3.5) as

(3.6) p

∫
Ω1

|v|p−1|v − v̄ε|+ p

∫
Ω1

|v̄ε|p−1|v − v̄ε|.

In order to bound (3.6) first, observe that by using Lemma 2.2 we have∫
Ω1

|v − v̄ε|p =
∑
z∈Iε

∫
Qz,ε

|v − v̄ε|pdx

≤ cpεsp
∑
z∈Iε

[v]pW s,p(Qz,ε)

= cpεsp
∑
z∈Iε

∫
Qz,ε×Qz,ε

|v(x)− v(y)|p

|x− y|n+sp
dxdy

≤ cpεsp
∑
z∈Iε

∑
z̃∈Iε

∫
Qz,ε×Qz̃,ε

|v(x)− v(y)|p

|x− y|n+sp
dxdy

= cpεsp[v]pW s,p(Ω1)

≤ cpεsp[v]pW s,p(Rn).

(3.7)

Secondly, if 1
p + 1

p′ = 1 we have that∫
Ω1

|v|(p−1)p′ =

∫
Ω1

|v|p.(3.8)
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Moreover, since |v̄ε| ≤
∫
Q
|v| ≤ C

( ∫
Ω1
|v|p
) 1
p

we get∫
Ω1

|v̄ε|(p−1)p′ ≤ C
∫

Ω1

|v|p.(3.9)

Then, mixing up (3.7), (3.8) and (3.9) we can bound (3.6) as(∫
Ω1

|v − v̄ε|p
) 1
p
((∫

Ω1

|v|(p−1)p′
) 1
p′

+
(∫

Ω1

|v̄ε|(p−1)p′
) 1
p′
)

≤ cεs[v]W s,p(Rn)‖v‖p−1
Lp(Ω).

(3.10)

Finally, since ḡ = 0 and since g is Q−periodic, we get

(3.11)

∫
Ω1

gε|v̄ε|p =
∑
z∈Iε
|v̄ε|p

∫
Qz,ε

gε = 0.

Now, combining (3.10) and (3.11) we can bound (3.4) by∣∣∣ ∫
Ω

gε|v|p
∣∣∣ ≤ Cεs[v]W s,p(Rn)‖v‖p−1

Lp(Ω),

and the proof finishes. �

Now we are ready to prove the main result.

Proof of Theorem 1.3. Let δ > 0 and let Ck,δ ⊂ X s,p0 (Ω) be a set of index greater
or equal then k such that

λ0
k,p = inf

C∈Dk
sup
u∈C

[u]pW s,p(Rn)

ρ̄
∫

Ω
|u|p

= sup
u∈Ck,δ

[u]pW s,p(Rn)

ρ̄
∫

Ω
|u|p

+O(δ)

where Dk = {W ∈ X s,p0 (Ω) : i(W) ≥ k}.
We use now the set Ck,δ, which is admissible in the variational characterization

of the k−th eigenvalue of (1.1), in order to find a bound for it as follows,

λεk,p ≤ sup
u∈Ck,δ

[u]pW s,p(Rn)∫
Ω
ρε|u|p

= sup
u∈Ck,δ

[u]pW s,p(Rn)

ρ̄
∫

Ω
|u|p

ρ̄
∫

Ω
|u|p∫

Ω
ρε|u|p

.(3.12)

To bound λεk,p we look for bounds of the two quotients in (3.12). For every
function u ∈ Ck,δ we have that

[u]pW s,p(Rn)

ρ̄
∫

Ω
|u|p

≤ sup
v∈Ck,δ

[v]pW s,p(Rn)

ρ̄
∫

Ω
|v|p

= λ0
k,p +O(δ).(3.13)

Since u ∈ Ck,δ ⊂ X s,p0 (Ω), by Lemma 3.3 we obtain that

ρ̄
∫

Ω
|u|p∫

Ω
ρε|u|p

≤ 1 + cεs
[u]W s,p(Rn)‖u‖p−1

Lp(Ω)∫
Ω
ρε|u|p

≤ 1 + cεs
ρ+

ρ−

[u]W s,p(Rn)‖u‖p−1
Lp(Ω)

ρ̄
∫

Ω
|u|p

≤ 1 + cεs
ρ+

ρ−

[u]W s,p(Rn)

ρ̄
( ∫

Ω
|u|p

) 1
p

≤ 1 + Cεs(λ0
k,p +O(δ))

1
p .

(3.14)
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Then, combining (3.12), (3.13) and (3.14) we find that

λεk,p ≤ (λ0
k,p +O(δ))

(
1 + Cεs(λ0

k,p)
1
p
)
.

Letting δ → 0 we get

λεk,p − λ0
k,p ≤ Cεs(λ0

k,p)
1+ 1

p .(3.15)

In a similar way, interchanging the roles of λ0
k,p and λεk,p, we obtain that

λ0
k,p − λεk,p ≤ Cεs(λεk,p)

1+ 1
p .(3.16)

Hence, from (3.15) and (3.16), we arrive at

|λεk,p − λ0
k,p| ≤ Cεs max{λ0

k,p, λ
ε
k,p}

1+ 1
p ,

and by using the bounds given (2.5) and (2.9) the result follows. �

The following Lemma is necessary to deal with the convergence rates of functions
in W s,p(Ω).

Lemma 3.4. Let Ω ⊂ Rn be a bounded domain with C1 boundary and, for δ > 0,
let Gδ be a tubular neighborhood of ∂Ω, i.e. Gδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Then
there exists δ0 > 0 such that for every δ ∈ (0, δ0) and every v ∈W s,p(Ω) we have

‖u‖Lp(Gδ) ≤ cδ
1
p ‖u‖W s,p(Ω).

whenever 1
p < s < 1.

Proof. Given Gδ, the sets ∂Gδ are uniformly smooth surfaces. By the trace’s in-
equality stated in Proposition 2.3 and the continuous inclusion given in Lemma 2.1
we have

‖u‖Lp(∂Gδ) ≤ ‖u‖W s− 1
p
,p

(∂Gδ)

≤ c‖u‖W s,p(Gδ)

≤ c‖u‖W s,p(Ω), δ ∈ (0, δ0)

provided that 1
p < s < 1, where c is a constant independent on δ and u. Integrating

this inequality with respect to δ we get

‖u‖pLp(Gδ)
=

∫ δ

0

(∫
∂Gτ

|u|p dS
)
dτ ≤ cδ‖u‖pW s,p(Ω)

and the result is proved. �

The proof of the next Lemma follows with a slight modification to that of Lemma
3.3, and it is essential in order to handle the convergence rates of eigenvalues of the
Neumann problem (1.5).

Lemma 3.5. Let Ω ⊂ Rn be a bounded domain with C1 boundary and denote by
Q the unit cube in Rn. Let g ∈ L∞(Rn) be a Q-periodic function such that ḡ = 0.
Then the inequality ∣∣∣∣∫

Ω

g(xε )|v|p
∣∣∣∣ ≤ cεs‖v‖pW s,p(Ω)

holds for every v ∈W s,p(Ω) with 1
p < s < 1. The constant c depends only on Ω, p,

n and the bounds of g.



12 A M SALORT

Proof. The proof is quite similar to that of Lemma 3.3, however there are some
details to have into account. Denote by Iε the set of all z ∈ Zn such thatQz,ε∩Ω 6= ∅
and Qz,ε is completely contained in Ω, being Qz,ε := ε(z +Q). Given v ∈W s,p(Ω)
we consider the function v̄ε given by the formula

v̄ε(x) =
1

εn

∫
Qz,ε

v(y) dy

for x ∈ Qz,ε. We denote by Ω1 = ∪z∈IεQz,ε. Thus, we can write∫
Ω

gε|v|p =

∫
G

gε|v|p +

∫
Ω1

gε(|v|p − |v̄ε|p) +

∫
Ω1

gε|v̄ε|p.(3.17)

where G = Ω \ Ω̄1.
As in the Dirichlet Lemma we have that∫

Ω1

gε(|v|p − |v̄ε|p) +

∫
Ω1

gε|v̄ε|p ≤ cεs[v]W s,p(Ω)‖u‖p−1
Lp(Ω).(3.18)

The set G is contained in a δ−neighborhood of ∂Ω with δ = cε for some constant
c, and therefore, according to Lemma 3.4 we have

(3.19)

∫
G

gε|v|p ≤ cε‖v‖pW s,p(Ω).

Since ε and s are lower than 1, gathering (3.17), (3.18) and (3.19) we obtain that∣∣∣ ∫
Ω

gε|v|p
∣∣∣ ≤ Cεs[v]W s,p(Ω)‖u‖p−1

Lp(Ω) + Cε‖v‖pW s,p(Ω)

≤ Cεs‖v‖pW s,p(Ω)

and the proof finishes. �

Having been proved Lemma 3.5, the proof of Theorem 1.4 is analogous to that
of Theorem 1.3 by using Lemma 3.5 instead of Lemma 3.3 together with the bound
given in (2.7).
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