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Abstract
Reissner–Nordström black holes have two static regions: r > ro and
0 < r < ri , where ri and ro are the inner and outer horizon radii, respectively.
The stability of the exterior static region was established a long time ago. In this
work we prove that the interior static region is unstable under linear gravitational
perturbations, by showing that field perturbations compactly supported within
this region will generically excite a mode that grows exponentially in time. This
result gives an alternative reason to mass inflation to consider the spacetime
extension beyond the Cauchy horizon as physically irrelevant, and thus provides
support to the strong cosmic censorship conjecture, which is also backed by
recent evidence of a linear gravitational instability in the interior region of Kerr
black holes found by the authors. The use of intertwiners to solve the evolution
of initial data plays a key role, and adapts without a change to the case of
super-extremal Reissner–Nordström black holes, allowing us to complete the
proof of the linear instability of this naked singularity. A particular intertwiner
is found such that the intertwined Zerilli field has a geometrical meaning—it
is the first-order variation of a particular Riemann tensor invariant. Using this,
calculations can be carried out explicitly for every harmonic number.

PACS numbers: 04.50.+h, 04.20.−q, 04.70.−s, 04.30.−w

1. Introduction

In the course of a program [1–4] to study the stability under linear gravitational perturbations
of the most notable nakedly singular solutions of Einstein’s field equations, namely negative
mass Schwarzschild’s solution [1, 4, 6], |Q| > M > 0 Reissner–Nordström spacetime [2]
and |J | > M2 Kerr spacetime [2, 3] (see also [7]), we noted that the stationary interior
region beyond the inner horizon of a Kerr black hole is unstable [3, 5]. The existence
of an initially bounded and exponentially growing solution of Teukolsky equations in the
‘super-extreme’ case |J | > M2, of which some numerical evidence had been given earlier
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in [2], was established in [3], where it was shown that there are actually infinitely many
unstable modes. It was also shown in [3] that the stationary region beyond the inner horizon
of a Kerr black hole (i.e. |J | � M2) is linearly unstable under gravitational perturbations.
These results show that linear perturbation theory is a valuable tool to study not only weak
cosmic censorship (impossibility of formation of naked singularities), but also strong cosmic
censorship (impossibility of formation of Cauchy horizons).

For the Kerr spacetime, an explicit expression for the unstable modes is not given in
[3], since they involve solutions of complicated second-order ordinary differential equations,
which can at best be written in terms of Heun functions, providing little extra information.
This, added to the complexity of the reconstruction of the perturbed metric from a solution of
Teukolski’s equations, makes it extremely difficult to evaluate the physical meaningfulness of
these unstable modes.

The situation is different for the negative mass Schwarzschild and the super-extremal
Reissner–Nordström spacetimes, where explicit expressions for some unstable modes, which
involve only elementary functions, are given in [1, 4] and [2], respectively. Since the metric
reconstruction process in the spherically symmetric case is much simpler, it is possible to
study the effect of perturbations on the singularity, by calculating the perturbed Riemann
tensor invariants. We use these to select appropriate boundary conditions at the singularity
that ensure the self-consistency of the linear perturbation scheme, by requiring that curvature
scalars do not get corrections that diverge faster at the singularity than the zeroth-order term.
As an example, in the case of the Schwarzschild negative mass naked singularity, there are
infinitely many possible boundary conditions at the singularity, parameterized by S1 [1, 6],
only one of which satisfies the above requirement. Thus, besides assuring the self-consistency
of the perturbative treatment, the above procedure solves the problem of having a unique,
well-defined evolution of perturbations in a non-globally hyperbolic background.

The unstable modes in [1] were recognized by Cardoso and Cavaglia [7] to correspond
to Chandrasekar’s ‘algebraic special’ (AS) solutions of the linearized Einstein’s equations
[8, 9]. This observation hinted in the right direction where to look for the unstable modes
of super-extremal Reissner–Nordström black holes [2, 7]. As shown in [2], some of the
Reissner–Nordström algebraic special modes (ASMs) grow exponentially in time while
keeping appropriate spatial boundary conditions in the super-extremal case, as happens in
the negative mass Schwarzschild case. With no exception, the AS solutions are irrelevant to
the stability problem of the exterior region of black holes, since they do not satisfy suitable
boundary conditions, a probable reason why they remained unnoticed for such a long time.
For the Kerr solution, the ASMs do not satisfy appropriate boundary conditions, neither for
the black hole stationary regions nor for the naked singularity. However, it was proved in
[3] that unstable modes exist for every harmonic (i.e. spin-weighted spheroidal harmonic) of
the Teukolski equations in the super-extreme case. Moreover, in [3] a connection was spot
between the unstable modes of Kerr naked singularities and unstable modes for the interior
stationary region (r < ri) of a Kerr black hole. Given the similarities in the structures of the
maximal analytic extensions of Kerr and Reissner–Nordström black holes, and the fact that
both are affected by Cauchy horizon issues, one is naturally led to ask whether the interior
region of a Reissner–Nordström black hole is also unstable. In this paper we show that this is
the case. We give a detailed proof of the instability of the inner region of a Reissner–Nordström
black hole under linear gravitational perturbations initially restricted to a compact subset of
the inner region.

This provides an alternative reason to the mass inflation mechanism to disregard the
extension of the spacetime manifold beyond the Cauchy horizon: since the inner region is
static but unstable, it cannot be the endpoint of an evolving spacetime. A similar result for the
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Kerr black hole would imply cutting off the inner region of this spacetime, which has closed
timelike curves and other pathologies.

We concentrate on type 1 (also called ‘gravitational’, as opposed to type 2 or
‘electromagnetic’) scalar (also called ‘polar’) linear perturbations of the metric and
electromagnetic fields around the Reissner–Nordström solution, since it is in this sector that
we have found explicit unstable modes. The linearized Einstein’s equations for these types of
perturbations can be reduced to a 1 + 1 wave equation on a field �+

1 in a semi-infinite domain
bounded by the singularity worldline, with a time-independent potential (Zerilli’s equation
[10–12]). This formalism was used to prove the stability of the exterior static region [10] of
the Reissner–Nordström black hole. In this case, Zerilli’s equation can be written as a wave
equation in a complete 1 + 1 Minkowski spacetime, with a nonsingular potential which, being
positive definite, guarantees the stability under this kind of gravitational perturbations [10].

When applied to the static black hole inner region r < ri , instead, one gets a wave
equation on a half 1 + 1 fiducial Minkowski spacetime bounded by the singularity worldline,
and the potential has an unexpected second-order pole at an inner point in the domain (that
we call ‘kinematic singularity’), besides the expected divergence at the singularity. This
makes the initial value problem for the inner region far more difficult than that for r > ro.
These technical difficulties, however, are entirely analogous to those that arise in the linear
perturbation problem of a negative mass Schwarzschild spacetime, a problem which was
solved recently in [4]. As in the Schwarzschild case, the second-order pole in the potential
can be traced back to the fact that the Zerilli field �+

1 , as defined, is a singular function
of the perturbed metric and electromagnetic fields at the kinematic singularity (from where
the name ‘kinematic’ comes). Thus, an alternative field �̂ has to be introduced to properly
analyze perturbations [4]. This is related to �+

1 by an intertwiner operator: �̂ = I�+
1 , where

I = ∂/∂x +g and x is a tortoise radial coordinate. In terms of �̂, the type 1 scalar gravitational
perturbation equation is a 1 + 1 wave equation ∂2�̂/∂t2 + Ĥ�̂ = 0, Ĥ = ∂2/∂x2 + V̂ (x), with
a potential V̂ that is regular everywhere. Once an appropriate self-adjoint extension of Ĥ is
chosen—and, as explained above, there is a unique physically motivated choice—the evolution
of initial data is unambiguously defined by means of an Ĥ mode expansion of the data. This
gives a dynamics in spite of the fact that the background is non-globally hyperbolic (see [14]
for a similar approach). The intertwining technique and choice of self-adjoint extension is
explained in detail in section 3. Previously, in section 2, we review the basics of the Reissner–
Nordström solution, its linear perturbations, the factorization of Zerilli’s Hamiltonian, and
Chandrasekhar’s ASM.

Several technical aspects of the problem are dealt with in the appendices. In particular,
we include an algebraic procedure for the explicit construction of the vector and scalar zero
modes considered in this paper.

2. Linear perturbations of a Reissner–Nordström black hole

This section contains all the material required for the proof of instability in section 3. We
first review some basic facts on the maximal analytic extension of the Reissner–Nordström
solution to the Einstein–Maxwell equations (section 2.1), and on the reduction of the linearized
field equations around this solution to decoupled 1+1 wave equations (section 2.2). Then in
section 2.3 we calculate the perturbed Riemann tensor invariants to determine the appropriate
boundary conditions at the singularity for the self-consistency of the perturbation method.
In section 2.4 we review from [8, 9] the factorization of the Regge–Wheeler and Zerilli
Hamiltonians, and its connection to Chandrasekhar’s ASM, which are central in the proof of
instability that follows.
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2.1. The Reissner–Nordström spacetime and its maximal analytic extension

The Reissner–Nordström spacetime metric

ds2 = −f dt2 +
dr2

f
+ r2(dθ2 + sin2 θ dφ2) =: gab dya dyb + r2ĝij dxi dxj (1)

is a warped product N ×r2 S2 of a two-dimensional Lorentzian ‘orbit” manifold times a unit
2 sphere. The Maxwell field on this spacetime is

F = Q

r2
dt ∧ dr. (2)

In (1), f is the norm of the Killing vector ka = ∂/∂t ,

f = 1 − 2M

r
+

Q2

r2
= (r − ro)(r − ri)

r2
, (3)

the latter form being useful when |Q| < M , in which case the roots of f are positive real
numbers, 0 < ri < ro, and correspond to the horizon radii. It is useful to keep in mind the
relation between the alternative two-parameter descriptions of (1)

ri = M −
√

M2 − Q2, ro = M +
√

M2 − Q2 (4)

M = 1
2 (ri + ro), Q2 = riro. (5)

ka is timelike in the exterior (r > ro) and interior 0 < r < ri regions. As long as we
restrict to a region where r �= ri, ro, the coordinates in (1) are appropriate. These coordinates
become singular at ri and ro, yet the Reissner–Nordström spacetime can be extended through
the horizons, and new regions isometric to I: r > ro, II: ri < r < ro and III: 0 < r < ri arise
ad infinitum, giving rise to the Penrose diagram displayed in figure 1. The stability of those
regions isometric to III is the subject of this paper.

Given a complete spacelike surface such as S in figure 1, a Cauchy horizon (thicker
ri horizon in the figure) develops at ri. This is the boundary of the maximal domain of
development of the data, and it is connected to S by timelike curves of finite proper time.
The solution of the Einstein–Maxwell equations is unique only up to the Cauchy horizon, and
although the spacetime is C

∞ extensible beyond it—as shown in figure 1—the extension is
not determined by the data in S, and is non-unique. This lack of predictability in a classical
theory of fields moved Penrose [15] to postulate what is known as the strong cosmic censorship
conjecture, according to which, for generic initial data in an appropriate class, the maximal
domain of development is inextensible (thus guaranteeing the preservation of predictability).
The idea that under more realistic assumptions than perfect spherical symmetry a Cauchy
horizon would not develop is supported by the finding that certain natural derivatives of a
perturbation field diverge as the Cauchy horizon is approached from region II [17] and by
the Israel and Poisson ‘mass inflation’ model [18]. An alternative, non-perturbative approach
was carried out by Dafermos [19]. In [19], spherical symmetric solutions to the Einstein–
Maxwell-scalar field system are studied. The (uncharged) scalar field was added to get around
the uniqueness Birchoff theorems in the spherically symmetric case. A characteristic problem
is solved combining Reissner–Nordström data at the event horizon with generic matching data
at the other null edge coming out the bifurcation sphere at ro. It is shown that, generically, the
Hawking mass diverges at the Cauchy horizon, and thus the spacetime fails to be C1 extendible
beyond it.

The results in this paper contribute to the idea that the extended spacetime depicted in
figure 1 is an irrelevant solution of the Einstein–Maxwell equations. We show that a linear
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Figure 1. Penrose diagram for the maximal analytic extension of the Reissner–Nordström
spacetime. All regions labeled I are isometric, and so are those labeled II and III. Regions I
and III are stationary and region I is known to be linearly stable. The function r is globally defined,
with ro < r in I , ri < r < ro in II , and 0 < r < ri in III. Also r → ∞ at the conformal boundaries
J ±. The r = ri horizon drawn thicker is a Cauchy horizon for the initial data surface S, the C

∞
extension beyond it (in particular, the two copies of region III just above it) being non-unique,
unless analyticity of the metric is required.

perturbation of the metric and Maxwell fields in region III, compactly supported away from
the Cauchy horizon and the singularity, will grow exponentially in time, showing that region
III is in fact an unstable static solution of the Einstein–Maxwell equations.

2.2. Linearized gravity around the Reissner–Nordström solution

The linearized Einstein–Maxwell equations around (2) have been analyzed by many authors,
starting with the papers by Regge, Wheeler and Zerilli [11], generalized to higher dimensional
charged black holes with constant curvature horizons by Kodama and Ishibashi [12, 13]. For
polar (scalar in [12, 13], here denoted by (+) following [8, 9]) and axial (vector in [12, 13],
here denoted by (−) following [8, 9]) modes with harmonic number � (� = 2, 3, . . .), the
metric and electromagnetic perturbations of a Reissner–Nordström spacetime can be encoded
in two functions, �±

α (t, r), α = 1, 2, that satisfy the wave equations [8, 13]

0 = ∂�±
α

∂t2
− ∂�±

α

∂x2
+ V ±

α �±
α =:

∂�±
α

∂t2
+ H±

α �±
α , (6)

with potentials

V ±
α = ±βα

dfα

dx
+ βα

2fα
2 + κfα, (7)
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where κ = (� − 1)�(� + 1)(� + 2), βα = 3M + (−1)α
√

9M2 + 4Q2(� − 1)(� + 2),

fα = f

rβα + (� − 1)(� + 2)r2
, (8)

with f given in (3) (equation (8) corrects a typo in [2]) and x is a ‘tortoise’ coordinate, defined
by dx/dr = 1/f . equation (6) admits the separation of variables �±

α (t, r) = exp(−iωt)ψ±
α (r),

leading to the Schrödinger-like equation

ω2ψ±
α = H±

α ψ±
α . (9)

Unstable modes correspond to the purely imaginary ω, and thus to negative eigenvalues of the
‘Hamiltonian’ H.

We are interested in the case M > |Q| and 0 < r < ri ; then

x = r +
r2
o

ro − ri

ln

(
ro − r

ro

)
+

r2
i

ri − ro

ln

(
ri − r

ri

)
, (10)

where the integration constant was chosen so that x ranges from zero to infinity as r goes from
zero to ri. In these limits

x �

⎧⎪⎪⎨⎪⎪⎩
1

3riro

r3 +
ri + ro

(2riro)2
r4 + O(r5), r → 0+

r2
i

ri − ro

ln

(
ri − r

ri

)
+ · · · , r → ri

−.

(11)

Note from (8) that f 1 has a singularity at

rc =
√

9M2 + 4Q2(� − 1)(� + 2) − 3M

(� − 1)(� + 2)
; (12)

then, from (7), we expect a singularity at rc in V ±
1 . However, the divergences from the different

terms cancel out and the vector potential V −
1 is smooth at rc. This is not the case for the scalar

mode V +
1 , which has a quadratic pole at rc, with a positive coefficient. The singularities at

r = 0 and r = rc have very different origins. The first one is due to the spacetime singularity
at this point, whereas the second one can be traced back to the definition of �+

1 , which happens
to be a singular function of the metric and Maxwell field first-order variations at this point
(see, e.g., (63)–(57)), this being the reason why we refer to it as a ‘kinematic’ singularity. We
should stress here that the way �+

1 is defined in terms of the perturbed metric and Maxwell
fields is crucial to disentangle the linearized Einstein–Maxwell equations, and that rc happens
to fall outside the domain of interest r > ro when the stability of the exterior region is studied.
Note that rc is a decreasing function of � and an increasing function of Q. Thus, for large
enough �, we have 0 < rc < ri , and V +

1 is singular in the inner region, the one that we study in
this paper. The ‘safest’ mode is � = 2, for which rc > ri , and therefore the potential regular
for 0 < r < ri , as long as Q/M <

√
7/4 � 0.66. For larger Q/M rate, rc < ri for every

harmonic mode.
Figure 2 depicts the � = 2 scalar potentials V +

α for some particular values of the parameters.
The behavior of the potentials near the spacetime singularity and the inner horizon is

V +
α �

⎧⎪⎪⎨⎪⎪⎩
− 2

9x2
+ · · · x � 0

C+
α exp

(
− (ro − ri)x

r2
i

)
x → ∞,

(13)

where

C+
α =

(
ro − ri

ri
4

)[
κri

2 − βα(ro − ri)

βα + (� − 1)(� + 2)ri

]
. (14)

6
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The local solutions of the equation

H+
α ψ+

α = −k2 ψ+
α (15)

near the inner horizon and the singularity are (for both α = 1 and α = 2) of the form

ψ+
α �

{
A cos(θ)

[
x1/3 ∑

n�0 a(1)
n xn/3

]
+ A sin(θ)

[
x2/3 ∑

n�0 a(2)
n xn/3

]
for x � 0

b1[ exp(−kx) + · · ·] + b2[ exp(kx) + · · ·] for x → ∞,

(16)

where we have set a
(1)
0 = 1 = a

(2)
0 . The differential equation (15), rewritten using r as the

independent variable, has a regular singular point at r = 0, whose indicial equation has roots
1 and 2. The terms within square brackets above are just the Frobenius series solution for
this equation, written in terms of x by inverting (11) (thus the powers of x1/3). The two
arbitrary constants in front of them were parameterized with A > 0 and θ ∈ [0, 2π) for later
convenience. Similar expansions are made for local solutions of differential equations near
the singularity at different points below.

Figure 3 depicts the � = 2 vector potentials V −
α for the same parameter values as those in

figure 2.
The behavior of the potentials near the spacetime singularity and the inner horizon is

V −
α �

⎧⎪⎪⎨⎪⎪⎩
4

9x2
+ · · · x � 0

C−
α exp

(
− (ro − ri)x

r2
i

)
x → ∞,

(17)

where

C−
α =

(
ro − ri

ri
4

) [
κri

2 + βα(ro − ri)

βα + (� − 1)(� + 2)ri

]
. (18)

The local solutions of the equation

H−
α ψ−

α = −k2 ψ−
α , (19)

which correspond to a mode ω = ±ik, are, for both α = 1, 2, of the form

ψ−
α �

{
A cos(θ)

[
x−1/3 ∑

n�0 a(1)
n xn/3

]
+ A sin(θ)

[
x4/3 ∑

n�0 a(2)
n xn/3

]
for x � 0

b1[exp(−kx) + · · ·] + b2[exp(kx) + · · ·] for x → ∞,

(20)

where we have set a
(1)
0 = 1 = a

(2)
0 .

2.3. Consistency of the linearized analysis

In the linearized approach, a solution gab, Aa of the Einstein–Maxwell equations is replaced
with a ‘perturbed’ metric and electromagnetic field potential gab +εhab, Aa +εBa , and the field
equations are then required to hold to first order in ε. Given that the background solution we
are interested in, region III of the Reissner–Nordström spacetime, has a curvature singularity as
r → 0+, the perturbation treatment will certainly be inconsistent if we find that the first-order
correction to a perturbed divergent curvature scalar diverges faster than the unperturbed piece
in the r → 0+ limit, since in this case the notion of a ‘uniformly small metric perturbation’ is
lost. This is why the first-order piece of the Kretschmann or some other invariant is usually
computed. Here we take a systematic approach to make sure that none of the algebraic invariant
made out of the Riemman tensor acquires a correction diverging faster than the corresponding
background metric invariant.
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Figure 2. Scalar potentials V +
1 (top) and V +

2 (bottom) for � = 2, ri = 1, ro = 2 plotted against
x. The x range was chosen in each case to exhibit the relevant details; beyond these ranges the
behavior is that captured in equations (13).

Any algebraic polynomial invariant of the Riemann tensor Rabcd can be written as a
polynomial on a set of basic invariants, the basic invariants being generically subject to
syzygies (constraints). The basic invariants are more compactly written in terms of the Ricci
tensor Rab := Rc

acb, the Ricci scalar R = Ra
a , the trace free Ricci tensor Sab = Rab−gabR/4,

the Weyl tensor

Cabcd := Rabcd − 2

n − 2
(ga[cSd]b − gb[cSd]a) − 2

n(n − 1)
Rga[cgd]b

8
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Figure 3. Vector potentials V −
1 (top) and V −

2 (bottom) for � = 2, ri = 1, ro = 2 plotted against x.

and its dual C∗
abcd := 1

2εabef Cef
cd , or just using the Ricci and Weyl spinors �ABȦḂ and �ABCD,

respectively. In the case of spacetimes with a perfect fluid or a Maxwell field, the basic
invariants are those given in table 1 (from [16]).

In the Maxwell case, R = R2 = 0, and the syzygies among the remaining invariants are
[16]

R1
2 = 4R3, m4 = 0, m1m̄2 = R1m̄5, m2m̄2m3 = R1m5m̄5. (21)

9
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Table 1. Basic Riemann tensor invariants for perfect fluid or Maxwell-field spacetimes.

R := Ra
a

R1 := �ABȦḂ�ABȦḂ = 1
4 Sa

bS
b
a

R2 := �A
B

Ȧ
Ḃ�B

C
Ḃ

Ċ�C
A

Ċ
Ȧ = − 1

8 Sa
bS

b
cS

c
a

R3 := �A
B

Ȧ
Ḃ�B

C
Ḃ

Ċ�C
D

Ċ
Ḋ�D

A
Ḋ

Ȧ = 1
16 Sa

bS
b
cS

c
dS

d
a

w1 := �ABCD�ABCD = 1
8 (Cabcd + iC∗

abcd )C
abcd

w2 := �AB
CD�CD

EF �EF
AB = − 1

16 (Cab
cd + iC∗

ab
cd )Ccd

ef Cef
ab

m1 := �ABCD�ABȦḂ�CD
ȦḂ = 1

8 SabScd(Cacdb + iC∗
acdb)

m2 := �ABCD�AB
EF �CDȦḂ�EF

ȦḂ

m3 := �ABCD�̄ȦḂĊḊ�ABȦḂ�CDĊḊ

m4 := �ABCD�̄ȦḂĊḊ�ABĊĖ�CEȦḂ�D
E

Ḋ
Ė

m5 := �ABCD�CDEF �̄ȦḂĖḞ �AB
ȦḂ�EFĖḞ

For Reissner–Nordström R1 and m2 do not vanish; then the syzygies imply that, as long as
R1, w1, w2,m1 and m2 behave properly (correction does not diverge faster than the unperturbed
term), the same will happen to any curvature invariant, of any degree. Using [11, 12], we have
reconstructed the perturbed metric for each mode, and then calculated the perturbed invariants
with the help of the grtensor symbolic manipulation package1. For the vector (axial) modes
we could reduce all expressions, by repeatedly applying (6), to

R1 = Q4

r8

w1 = 6(Q2 − Mr)2

r8
+ iε

6(Q2 − Mr)Z
r8

Y�m(θ, φ)

w2 = 6(Q2 − Mr)3

r12
+ iε

9(Q2 − Mr)2Z
r12

Y�m(θ, φ) (22)

m1 = 2(Q2 − Mr)Q4

r12
+ iε

Q4Z
r12

Y�m(θ, φ)

m2 = 4(Q2 − Mr)2Q4

r16
− iε

4(Q2 − Mr)Q4Z
r16

Y�m(θ, φ),

where

Z :=
[
κ(β2r − 4Q2)ψ−

2

2(β2 − β1)
+

2Q(β2 + (� + 2)(� − 1)r)�(� + 1)ψ−
1

β2 − β1

]
. (23)

From (20), (22) and (23), it is clear that an unstable vector mode gives an inconsistent
perturbation unless a

(1)
0 = b2 = 0 in (20). It is only in this case that the perturbation can be

uniformly bounded in the whole of region III.
For the scalar modes, the invariants can be expressed entirely in terms of the Zerilli field

and its first r-derivative but we were not able to reduce the resulting expressions to a reasonably
compact form, except for R1, for which we found that

R1 = Q4

r8

[
1 − 4ε

(
f

∂ψ+
1

∂r
− f

∂χ+
1

∂r

ψ+
1

χ1

)
Y�m(θ, φ) − 4ε

(
f

∂ψ+
2

∂r
− f

∂χ+
2

∂r

ψ+
2

χ2

)
Y�m(θ, φ)

]
,

(24)

1 See http://grtensor.phy.queensu.ca/
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where χ+
α is one of Chandrasekhar’s algebraic special modes, introduced in the following

section (see equation (26)). The above formula will turn out to be very useful in the following
sections.

2.4. Factorization of Zerilli’s Hamiltonian and algebraic special modes

Chandrasekhar’s ASMs are the solutions of equations (15) and (19) with real k, i.e. unstable
modes of the perturbation equations. These modes do not satisfy appropriate boundary
conditions as linear perturbations of region I of the Reissner–Nordström black hole, in
agreement with the fact that this region is linearly stable. However, some ASMs were shown in
[2, 7] to satisfy appropriate boundary conditions as perturbations of the Reissner–Nordström
naked singularity, showing that this spacetime is unstable. In this section we consider ASMs
as perturbations of region III of a Reissner–Nordström black hole, and analyze their behavior
near the singularity and the inner horizon. Following [8], we introduce χ±

α defined by

d

dx
ln χ±

α = ±
(

βαfα +
κ

2βα

)
; (25)

the general solution of this equation being the irrelevant constant times

χ+
α =

Mr exp
(

κx
2βα

)
βα + (� − 1)(� + 2)r

χ−
α = M exp

(−κx

2βα

)
(βα + (� − 1)(� + 2)r)

r
. (26)

In terms of the functions χ±
α , equation (9) reads

1

ψ±
α

d2ψ±
α

dx2
+

[
ω2 +

κ2

4(βα)2

]
= 1

χ±
α

d2χ±
α

dx2
, (27)

which can easily be integrated if

ω = ±ikα, kα := κ

2|βα| > 0. (28)

Equation (28) defines the ASM, which give unstable solutions �±
α (t, r) = exp(kαt)ζ±

α (r)

of the perturbation equations, with ζ±
α a solution of (27) when the term between brackets

vanishes:

ζ±
α = A±

α χ±
α + B±

α τ±
α,R∗ , τ±

α,R∗ := χ±
α

∫ x

R∗

M dx[
χ±

α (x)
]2 . (29)

Note that a change of choice of R∗ amounts to adding a constant times χ to τ , and thus the
constants A and B in (29) are unambiguously defined only after R∗ has been chosen.

Alternatively, ASMs can be obtained from the factorization property of the Hamiltonians
H±

α

H+
α = AαBα −

(
κ

2βα

)2

(30)

H−
α = BαAα −

(
κ

2βα

)2

, (31)

where

Aα := ∂

∂x
+

(
βαfα +

κ

2βα

)
(32)

11
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Bα := − ∂

∂x
+

(
βαfα +

κ

2βα

)
. (33)

ζ +
α span the kernel of AαBα , with χ+

α in ker Bα , whereas ζ−
α span the kernel of BαAα , with χ−

α

in ker Aα .

2.4.1. Algebraic special vector modes. The asymptotic behavior of χ−
α near the spacetime

singularity and the inner horizon is

χ−
α �

⎧⎪⎪⎨⎪⎪⎩
Mβα

(3riro)1/3
x−1/3 + · · · x � 0

M

ri

[βα + (� − 1)(� + 2)ri] exp

(
− κx

2βα

)
+ · · · x → ∞.

(34)

The vector τ modes are

τ−
α,R∗ :=

[
βα + (� − 1)(� + 2)r

r exp
(

κx
2βα

) ] ∫ x

R∗

r2 exp
(

κx
βα

)
dx

[βα + (� − 1)(� + 2)r]2
. (35)

Since β1 < 0 and 0 < β2, for α = 2 the integral in (35) near x = ∞ (r = ri) diverges; we can
give R∗ any finite value, and the asymptotic behavior will depend on whether R∗ = 0 or not:

τ−
α=2,R∗=0 �

⎧⎨⎩
x4/3 + · · · x � 0

exp

(
κx

2β2

)
+ · · · x → ∞ (36)

τ−
α=2,R∗ �=0 �

⎧⎨⎩
x−1/3 + · · · x � 0

exp

(
κx

2β2

)
+ · · · x → ∞.

(37)

Since those type 2 vector ASMs that grow slower than r0 as r → 0+ blow up at the inner
horizon, it follows from the analysis of invariants in the previous subsection (equations (22)
and (23)), that a pure mode �−

2 = ek2t ζ−
2 = ek2t [A−

2 χ−
2 + B−

2 τ−
2,R∗ ] cannot be consistently

treated as a first-order perturbation on the entire Reissner–Nordström region III.
If α = 1 the integral in (35) near infinity converges; thus, we can give R∗ any finite value,

or take R∗ = ∞. The asymptotic behavior will be

τ−
α=1,R∗=0 �

⎧⎨⎩
x4/3 + · · · x � 0

exp

(−κx

2β1

)
+ · · · x → ∞ (38)

τ−
α=1,R∗ �=0 �

⎧⎨⎩
x−1/3 + · · · x � 0

exp

(
− κx

2β1

)
+ · · · x → ∞ (39)

τ−
α=1,R∗=∞ �

⎧⎨⎩
x−1/3 + · · · x � 0

exp

(
κx

2β1

)
+ · · · x → ∞.

(40)

It follows again from equations (22) and (23) that a pure AS mode �−
1 = ek1t ζ−

1 =
ek1t

[
A−

1 χ−
1 + B−

1 τ−
1,R∗

]
cannot be consistently treated as a first-order perturbation in the

entire Reissner–Nordström region III.

12
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Note that some care is required when interpreting equation (35) for the α = 1 vector
mode, due to the singularity of the integrand at rc. Take, e.g., the case R∗ = ∞. The one form
under the integral sign in

τ−
1,∞ :=

[
(rc − r)

(� − 1)(� + 2)r exp
(

κx
2β1

)] ∫ ∞

x

r2

(r − rc)2
exp

(
κx

β1

)
dx (41)

can be written as
[

A
(r−rc)2 + B

r−rc
+ Z(r)

]
dr , with Z(r) the regular function obtained by

subtracting the second- and first-order poles. The integration constants at both sides of rc can
then be adjusted such that

τ−
1,∞ =

A − B(r − rc) ln |r − rc| +
(
B ln |ri − rc| − A

ri−rc

)
(r − rc) + (r − rc)

∫ ri

r
Z(r) dr

(� − 1)(� + 2)r exp
(

κx
2β1

) .

This is well defined across rc.

2.4.2. Algebraic special scalar modes. The asymptotic behavior of χ+
α near the spacetime

singularity and the inner horizon is

χ+
α �

⎧⎪⎪⎨⎪⎪⎩
M

βα

(3riro)
1/3 x1/3 + · · · x � 0

Mri

βα + (� − 1)(� + 2)ri

exp

(
κx

2βα

)
+ · · · x → ∞.

(42)

The asymptotic behavior of τ±
α,R∗ depends on the choice of R∗ in

τ +
α,R∗ :=

[
r exp

(
κx
2βα

)
βα + (� − 1)(� + 2)r

] ∫ x

R∗

[βα + (� − 1)(� + 2)r]2 dx

r2 exp
(

κx
βα

) . (43)

If α = 1 the integral (43) diverges near infinity; then, R∗ is restricted to finite values, and

τ +
α=1,R∗=0 �

⎧⎨⎩
x2/3 + · · · x � 0

exp

(
− κx

2β1

)
+ · · · x → ∞ (44)

τ +
α=1,R∗ �=0 �

⎧⎨⎩
x1/3 + · · · x � 0

exp

(
− κx

2β1

)
+ · · · x → ∞.

(45)

If α = 2 there are three possibilities:

τ +
α=2,R∗=0 �

⎧⎨⎩
x2/3 + · · · x � 0

exp

(
κx

2β2

)
+ · · · x → ∞,

(46)

τ +
α=2,R∗ �=0 �

⎧⎨⎩
x1/3 + · · · x � 0

exp

(
κx

2β2

)
+ · · · x → ∞,

(47)

τ +
α=2,R∗=∞ �

⎧⎨⎩
x1/3 + · · · x � 0

exp

(
− κx

2β2

)
+ · · · x → ∞.

(48)

The only scalar ASMs that behave appropriately near the inner horizon are χ+
α=1 and τ +

α=2,R∗=∞.
Since the integrals defining the latter one are non-elementary, we proceed with χ+

α=1, for

13
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which an explicit reconstruction of the perturbed metric and invariants is relatively simple. No
invariant that is trivial at zeroth order develops a first-order correction. The nonzero invariants
to first order for the χ+

1 perturbation are

R1 = Q4

r8
(49)

w1 = 6(Mr − Q2)2

r8
− ε

[
3Mβ2 �(� + 1) (Mr − Q2)

2β1r7

]
Y�m(θ, φ) e− κ

2β1
(t−x) (50)

w2 = −6(Mr − Q2)3

r12
+ ε

[
9Mβ2 �(� + 1) (Mr − Q2)2

4β1r11

]
Y�m(θ, φ) e− κ

2β1
(t−x) (51)

m1 = −2(Mr − Q2)Q4

r12
+ ε

[
MQ4β2 �(� + 1)

4β1r11

]
Y�m(θ, φ) e− κ

2β1
(t−x) (52)

m2 = m3 = 4(Mr − Q2)2Q4

r16
− ε

[
MQ4β2 �(� + 1) (Mr − Q2)

β1r15

]
Y�m(θ, φ) e− κ

2β1
(t−x)

.

(53)

This AS mode satisfies all our requirements for a self-consistent first-order formalism in this
singular spacetime. Thus, we will restrict to type 1 scalar perturbations from now on. χ+

1 is
an example of a spatially uniformly bounded perturbation that grows exponentially in time,
and thus a signal of a gravitational instability. In the following section, we will show that
this mode can be excited by a generic perturbation that is initially compactly supported within
region III. The treatment will follow closely the case of the Schwarzschild naked singularity
treated in [4].

3. Proof of the linear instability of the inner static region

The linear instability of a static spacetime is established once an unstable mode is found. We
have shown in the previous section that, out of the four modes existing for every harmonic pair
(�,m), the type 1 scalar mode admits an unstable solution to the linearized Einstein–Maxwell
equations—Chandrasekhar’s AS mode—that can consistently be treated to first order in the
whole domain of region III, 0 < r < ri . The purpose of this section is to show how generic
initial data with compact support in region III excite this mode. Although this problem is
trivial for perturbations in region I, it exhibits a number of unexpected difficulties when dealing
with perturbations of region III. Zerilli’s wave equation for this mode,

0 = ∂�+
1

∂t2
− ∂�+

1

∂x2
+ V +

1 �+
1 =:

∂�+
1

∂t2
+ H+

1�
+
1, (54)

has a potential with a singularity at rc given in equation (12), that generically falls in region III
(see the left panel in figure 2). The origin of this singularity (a second-order pole) in V +

1 can
be traced back to the definition of �+

1 [11, 12]. The first-order variation of the electromagnetic
field has

δFrθ = ∂A
∂t

∂Y�m

∂θ
f −1, (55)

δFtθ = ∂A
∂r

∂Y�m

∂θ
f ; (56)

14
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then A must be smooth for δF to be smooth. Since

A = β2(r − rc)

8Qr
�+

1(t, r), (57)

we conclude that, for generic smooth perturbations, �+
1 has a first-order pole at r = rc, and

can be Laurent expanded around rc as

�+
1 =

∑
k�−1

ck(r − rc)
k. (58)

The variation of gtr can be simplified to the form [11, 12]

δgtr = Y�m

∂

∂t

[
r
∂�+

1

∂r
+ B�+

1

]
, (59)

where

B

= ((�− 1)(� + 2)r4−3M(−3 + �2 + �)r3 + (2(�−1)(� + 2)Q2 − 12M2)r2 + 13Q2Mr − 4Q4)

(r2 − 2Mr + Q2)((�− 1)(� + 2)r2 + 6Mr − 4Q2)

+
r
√

9M2 + 4Q2(� − 1)(� + 2)

((� − 1)(� + 2)r2 + 6Mr − 4Q2)
. (60)

It can be checked that the (r − rc)
−2 coefficient of the series expansion of (59) vanishes. The

(r − rc)
−1 coefficient will vanish if

c0

c−1
= − (� − 1)2(� + 2)2(2M − β1)

β1(2(� − 1)(� + 2)M + (�2 + � + 2)β1)
. (61)

It turns out that (58) and (61) are not only necessary but also sufficient conditions for the
perturbations of the metric and electromagnetic fields to be smooth. Thus, we have proved
that the Zerilli functions �+

1 corresponding to smooth type 1 scalar perturbations are those
admitting, at any fixed time, a Laurent expansion (58) around rc satisfying condition (61).

We also need to check that the perturbation does not change the character of the singularity.
As explained in the previous section, this guarantees the self-consistency of the linearized
theory. It then follows from equation (24) that we must demand that, for some positive δ and
N, ∣∣∣∣∣f ∂�+

1

∂r
− f

∂χ1

∂r

�+
1

χ1

∣∣∣∣∣ � N, if 0 < r < δ. (62)

We show in the following section that this condition is also sufficient to assure that all the
invariants behave properly. Thus, we arrive at

Lemma 1. In order that the metric and electromagnetic scalar type 1 perturbations be
smooth and the linearized approach be self-consistent, the Zerilli function �+

1 has to satisfy
(58) and (61) whenever rc < ri . It also has to satisfy condition (62) and decay properly as
r → ri . In particular, both the initial data functions �+

1(t = 0, r) and �̇+
1(t = 0, r) must

satisfy all these conditions.

The rather odd initial value problem that these conditions pose is in fact very similar to
that of the propagation of scalar gravitational perturbations on a negative mass Schwarzschild
background, which also has a ‘kinematic’ singularity. This latter problem was worked out in
[4] using an intertwiner operator [21]. We apply the same technique in what follows.
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3.1. Basics of the intertwining technique

Consider a wave equation with a time-independent potential,

∂�

∂t2
− ∂�

∂x2
+ V � =:

∂�

∂t2
+ H� = 0, (63)

on a domain t ∈ R, x ∈ (a, b), where a = −∞ and/or b = ∞ is a possibility. An intertwiner
for this equation has the form [4, 21]

I = ∂

∂x
− g, g = 1

ψI

dψI

dx
, (64)

with ψI satisfying

HψI = EIψI . (65)

The above equations neither assume that H is self-adjoint in L2((a, b), dx) nor that ψI is an
eigenfunction of such an operator. ψI in equation (65) is just any solution of this differential
equation, without any consideration on boundary conditions, boundedness or finiteness of
some L2 norm.

In terms of

�̂ := I�, (66)

equation (63) reads

0 = ∂�̂

∂t2
+ Ĥ�̂

Ĥ := − ∂�̂

∂x2
+ V̂ (67)

V̂ := V − 2
dg

dx
.

That is, if � is a solution of (63) with initial data

(�(t = 0, x), �̇(t = 0, x)), (68)

then I� =: �̂ is a solution of (67) with initial data

(�̂(t = 0, x), ˙̂�(t = 0, x)) = (I�(t = 0, x), I�̇(t = 0, x)). (69)

The general idea of the intertwiner technique is to use this fact to search for an appropriate
intertwiner such that V̂ is simpler than the potential in the original problem.

The operator I has a nontrivial kernel spanned by ψI , so information is lost when
switching from � to �̂ := I�.

The operator

Î = ∂

∂x
+ g (70)

can easily be seen to map solutions of (67) onto solutions of (63). A straightforward
computation shows that

Î I = EI − H. (71)

Since I and Î have nontrivial kernels, information is lost when applying these operators.
However, in the case of a solution of the wave equation, (71) implies that

Î�̂ = Î I� = (EI − H)� = EI� +
∂2�

∂t2
. (72)
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Thus the information lost is precisely the � initial data. The above equation can be regarded
as a t-ODE on �̂ for every x, and can easily be integrated to give � back:

if EI > 0,

�(t, x)= 1√
EI

∫ t

0
sin(

√
EI(t − t ′)) Î�̂(t ′, x) dt ′ + cos(

√
EI t)�(0, x) +

sin(
√

EI t)√
EI

�̇(0, x);
(73)

if EI < 0,

�(t, x) = 1√−EI

∫ t

0
sinh(

√
−EI(t − t ′)) Î�̂(t ′, x) dt ′ + cosh(

√
−EI t)�(0, x)

+
sinh(

√−EI t)√−EI
�̇(0, x); (74)

if EI = 0,

�(t, x) =
∫ t

0
(t − t ′) Î�̂(t ′, x) dt ′ + �(0, x) + t �̇(0, x)

=
∫ t

0

(∫ t ′

0
Î�̂(t ′′, x) dt ′′

)
dt ′ + t�̇(0, x) + �(0, x). (75)

We conclude that we can solve equation (63) subject to (68) by means of the following
procedure.

(1) From the initial � data (68) construct initial �̂ data using (69).
(2) Find the solution �̂ of equation (67) with initial data (69).
(3) Apply (73)–(75) to obtain the solution � to the original equation.

Note that the evolution problem is solved in step 2, and that the initial � data are used
twice: in steps 1 and 3.

3.2. The initial value problem for perturbations of region III

Why would one be interested in solving (63) using the complicated intertwiner method? The
intertwiner is certainly useful if V̂ is simpler than V. Our motivation, however, comes from a
deeper problem: there is no available theory to deal with the initial value problem posed in
lemma 1. Unless rc > ri , which may only happen for a finite number of harmonic numbers �,
the function space in lemma 1 is unrelated to any recognizable Hilbert space, and the Zerilli
wave equation has singular coefficients in region III (on top of this, there is the issue of
non-global hyperbolicity of region III, even when rc > ri). A similar situation is found when
studying perturbations of a negative mass Schwarzschild spacetime. In this case, the problem
was solved using intertwiners [4]. Less sophisticated approaches, such as using algebraic
redefinitions of the variables, can be shown to fail.

As we show in appendix A, for any (even complex) EI , the intertwiner (64)–(65) produces
a V̂ that is smooth at r = rc, while sending functions satisfying (58) and (61) onto functions
which are smooth at r = rc. Also, there are options for ψI for which I sends initial data
(as characterized in lemma 1) onto a subspace D ⊂ L2((0,∞), dx) where Ĥ is a self-adjoint
operator. This allows us to use the resolution of the identity for Ĥ to solve the hat wave equation
by separation of variables, by expanding the initial data using normalized eigenfunctions of
Ĥ, Ĥψ̂E = Eψ̂E :

�̂(t, x) =
∑
E

aE(t, x)ψ̂E(x) (76)
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�̂(0, x) =
∑
E

a0
Eψ̂E(x) (77)

˙̂�(t, x) =
∑
E

ȧ0
Eψ̂E(x). (78)

Here the coefficients are obtained by integrating against the complex conjugate of ψ̂E(x), and
the wave equation then reduces to an infinite set of ODEs:

äE = −EaE

ȧE(0) = ȧ0
E :=

∫
ψ̂E

˙̂�(t = 0, x) dx (79)

aE(0) = a0
E :=

∫
ψ̂E �̂(t = 0, x) dx,

whose solution is

aE(t) =

⎧⎪⎨⎪⎩
a0

E cos(
√

Et) + ȧ0
E E−1/2 sin(

√
Et), E > 0

a0
E + t ȧ0

E, E = 0

a0
E cosh(

√−Et) + ȧ0
E (−E)−1/2 sinh(

√−Et), E < 0.

(80)

The above equations define the evolution of the fields outside the domain of dependence
of the initial data. This same technique was applied, e.g., in [4, 14], in similar contexts. A
subtle issue is that of defining the domain D ⊂ L2((0,∞), dx) where Ĥ is self-adjoint. This
problem is identical to that of quantum mechanics on a half axis, treated in detail in the first
reference in [20]. Consider the two-dimensional vector space of local (Frobenius) solutions
of the eigenvalue equation Ĥψ̂ = Eψ̂, ψ̂ �= 0, near x = 0. Given that an overall factor on
ψ̂ is irrelevant, the space of local solutions can be regarded as a circle (this is why we used
A cos(θ) and A sin(θ) for the two arbitrary constants in equations (16), (20), etc. θ ∈ [0, 2π)

labels points in this circle).
If any eigenfunction is square integrable near x = 0 we say, following [20], that Ĥ belongs

to the ‘limit circle case’. In this case, Ĥ will be a self-adjoint operator only after restricting to
a subspace Dθo

⊂ L2((0,∞), dx) of functions behaving near x = 0 as local eigenfunctions
with a fixed θ = θo. Equations (76)–(80) will then hold in Dθo

, for initial data in this space.
Note, however, that initial data of compact support belong to Dθ for any θ , and evolve in a
different way if some θ ′

o �= θo is chosen in (76)–(80). Of course, the solution will be different
only outside the domain of dependence of the initial data, but still there is an ambiguity, which
must be resolved. Physical input must then dictate what the right choice of θ is in order to get
rid of this ambiguity.

The other possibility is that the Hamiltonian piece of the wave equation belongs to the
‘limit point case’, i.e. there is a single θ value giving local solutions which are square integrable
near x = 0. In this case we say that Ĥ is ‘essentially self-adjoint’ (since it is only self-adjoint
in the domain defined by this particular θ value) and there is no ambiguity in the dynamics.
This would be the case if one of the roots of the indicial equation of of the Frobenius local
solution of the Hamiltonian eigenfunction was less than −1/2.

For the scalar gravitational perturbation problem, the situation is that of a limit circle
Hamiltonian. The self-consistency condition (62), however, singles out a unique θ . With
this choice, the degree of divergency as x → 0+ not only of R1, but also of all the remaining
algebraic invariants of the Riemann tensor, gets controlled, and, since the evolution (76)–
(80) preserves the local behavior at x = 0, the invariants will stay properly bounded near
the singularity at later times. The dynamics is thus unambiguous once we enforce the self-
consistency condition (62).
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In [4], a ‘zero mode’ (EI = 0) was used to construct the intertwiner and produce a self-
adjoint Ĥ. The resulting Hamiltonian has a negative energy eigenvalue, and thus exhibits the
instability of the spacetime. The Zerilli field is then recovered using equation (74), from where
it is clear that the exponential growing in time of �̂ shows up in the metric and electromagnetic
field perturbations. We have tried this same approach here, and found that an appropriate zero
mode can be explicitly constructed for � = 2, and as happens in the Schwarzschild naked
singularity case. Ĥ has a smooth potential and contains a negative energy eigenvalue, at least
for some Q/M values for which rc < ri (see section 3.3). Since generic perturbation initial
data with compact support in region III will have a nonzero projection onto the � = 2 type 1
scalar mode, this is certainly enough to show that such initial data will excite unstable mode
in these cases.

However, we were not able to prove that for arbitrary � and Q/M such that rc < ri there
is a zero-mode intertwiner which does not introduce a new singularity in V̂ (although it is still
trivial to show that any intertwiner washes out the singularity at r = rc, see appendix A). A
new singularity would be introduced if ψI had a zero for r ∈ (0, rc) ∪ (rc, ri).

For this reason, in section 3.4 we exhibit an alternative intertwiner for which computations
can be carried out explicitly for any �. This uses ψI = χ+

1 , Chandrasekhar’s mode, and gives,
for any Q/M and �, Ĥ = H−

1 (the Hamiltonian for type 1 vector perturbations). Since Ĥ is
positive definite in this case, the hat wave equation is stable, and the scalar instability shows
up only when reconstructing the Zerilli field using (74). This is so because those factors inside
the integral which are exponential in t do not cancel the exponential factors outside the integral
(as it would happen if the original wave equation were stable). These factors will then show
up in the metric and electromagnetic field perturbations, the Riemann tensor and its invariants.

3.3. The � = 2 zero-mode intertwiner

In [4], a ‘zero mode’ (solution of Hψ = 0 that is not necessarily normalizable or well behaved
at the boundaries) was used to construct an intertwiner to deal with the initial value problem
for the scalar mode negative mass Schwarzschild perturbations, which has difficulties similar
to those found in the present case.

We may try the same approach here; however, given the complexity of the potential in
H+

1 , it is rather difficult to obtain the solutions of

H+
1ψ

+
o = 0 (81)

for ψI = ψ+
o required to construct the EI = 0 intertwiner I (64). One possibility is to use

relations (30) and (31) to obtain scalar zero modes from vector ones, since, for ψ−
o a vector

zero mode,

H−
1 ψ−

o = 0, (82)

it follows from (30) and (31) that A1ψ
−
o is a scalar zero mode. Since the vector potential V −

1
is much simpler than V +

1 , there is some hope that we could carry on calculations in a more
explicit way using this idea. This is indeed the case for � = 2, for which the general solution
of equation (82) (see appendix B) can be shown to be

ψ−
o = A cos(α)

{
r3 +

β2

4
(Q2 − r2) − Q4

r

}
+ A sin(α)

{
3

(
4r − β2 + 4

Q2

r

) (
r2 − Q2

2
√

M2 − Q2

)
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Figure 4. � = 2 potential V̂ —continuous line—for the transformed Zerilli equation (67), and the
transformed of the unstable mode χ+

1 . In this example ri = 1 and ro = 2.

×
[

ln

(
−r + M√
M2 − Q2

− 1

)
− ln

(
−r + M√
M2 − Q2

+ 1

)]

−
(

12r2 + 3(β1 − 2M)r + (3Mβ1 − 2(M2 + 2Q2))

+
12M3 − 2(β2 − β1)(M

2 − Q2)

r

)}
, (83)

where A and α are the arbitrary constants. Note that the � = 2 intertwiner operator constructed
using ψI = ψ+

o = A1ψ
−
o in (64) will depend on α but certainly not on A. It can be easily

shown, however, that V̂ is smooth at r = rc irrespective of the choice of α, the first- and
second-order poles in V +

1 being canceled by the poles in dg/dx (figure 4). This, of course, is
to be expected from the more general considerations in appendix A. The asymptotic behavior
of V̂ near the singularity and the inner horizon is also independent of α:

V̂ �

⎧⎪⎪⎨⎪⎪⎩
4

9x2
+ · · · , x � 0

C exp

(
− (ro − ri)x

r2
i

)
, x → ∞.

(84)

Near the singularity the eigenfunctions of Ĥ behave as

ψ̂ = A cos(θ)

[
x−1/3

∑
n�0

a(1)
n xn/3

]
+ A sin(θ)

[
x4/3

∑
n�0

a(2)
n xn/3

]
. (85)

Thus Ĥ belongs to the limit circle case, and only restricting to a subspace Dθo
of functions

behaving as (85) with a fixed θ = θo value does Ĥ become self-adjoint.
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We will make the choice θ = π/2 of slowest decaying functions. This condition is
certainly preserved by the hat wave equation (see (76)), and implies

Î�̂ =
∑
k�1

akr
k, a2 = β2

4Q2
a1, (86)

near r = 0. If �+
1(0, r), �̇+

1(0, r) also admit expansions like those in (86), then using (74)
follows that

�+
1(t, r) =

∑
k�1

ak(t)r
k, a2(t) = β2

4Q2
a1(t), (87)

for all t, a condition that can be shown to guarantee that all algebraic invariants of the Riemann
tensor behave properly near the singularity.

Regarding the choice of α in (83), although the results do not depend on the intertwiner
that we use, it is certainly easier to understand how the instability is excited by an initially
compactly bounded perturbation if we use

tan(α) = 2Q2 β2

√
M2 − Q2

3Q2β2 ln
(M−

√
M2−Q2

M+
√

M2+Q2

)
+ 2(3Mβ2 − 16(M2 − Q2))

√
M2 − Q2

, (88)

since in this case the resulting intertwiner will send χ+
1 onto the Hilbert space Dπ/2 selected

by the self-consistency argument, and thus Iχ+
1 will be one of the eigenfunctions of Ĥ (it

will actually be the only negative energy Ĥ eigenfunction). The transformed potential V̂ ,
together with Iχ+

1 for this choice, is given in figure 4 for some specific Q and M values. An
explicit expression for V̂ can be readily obtained using equations (64), (67), ψo = A1ψ

−
o , (83)

and (88).
Now suppose some perturbation data

(
�+

1(t = 0, x), �̇+
1(t = 0, x)

)
of compact support

are given. The hat wave equation data
(
I�+

1(t = 0, x), I�̇+
1(t = 0, x)

)
will be of compact

support and then they will belong to Dπ/2. Expanding it using (77) and (78) will generically
give a nonzero projection onto the fundamental, unstable Ĥ eigenfunction Iχ+

1 , and thus, from
(80), an exponentially growing term in (76), which survives when �+

1 is reconstructed using
(75) and shows up in the metric and electromagnetic-field perturbations.

The use of a zero mode intertwiner has some drawbacks: although we can show that the
kinematic singularity is absent from V̂ (see appendix B), we do not have a complete proof,
even for � = 2, that the zero mode ψI = ψ+

o has no zeros in (0, rc) ∪ (rc, ri), which would
introduce new singularities in V̂ . However, for � = 2, we have numerically verified that this
is the case for a range of values of Q/M . A particular example of a smooth V̂ for � = 2 is
that given in figure 4.

In the following section, we show that all these issues can be avoided by using an
alternative intertwiner that allows explicit calculations for every harmonic number and charge
and mass values.

3.4. Intertwining using Chandrasekhar’s algebraic special mode

We can apply the intertwining technique using Chandrasekhar’s AS mode χ+
1 in (64), for

which

EI = −
(

κ

2β1

)2

. (89)
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Using this intertwiner has a number of advantages. Contrary to what happens for the zero
mode, we have an explicit expression for χ+

1 for every harmonic number �, equation (26). It
is also simple to construct V̂ using (7) and (25) (a prime denotes derivative with respect to x):

V̂ = V +
1 − 2

(
χ+

1
′

χ+
1

)′
= V +

1 −
(

β1f1 +
κ

2β1

)′
= V −

1 = f

r4
(�(� + 1)r2 − β1r + 4Q2). (90)

(This relation between the scalar and vector modes was first noted by Chandrasekhar [8, 9].)
The fact that V̂ = V −

1 , the type 1 vector potential, simplifies the analysis considerably, since
it is clear that V −

1 is smooth in (0, ri) for any value of Q/M .
From the first line in (20) it follows that Ĥ = H−

1 belongs to the limit circle case. As
explained above, a choice θo has to be made to fix the domain Dθo

⊂ L2((0,∞), dx) where Ĥ
is self-adjoint. However, for type 1 scalar perturbation the consistency requirement (62) (see
also lemma 1) reduces to∣∣I�+

1

∣∣ � N, if 0 < r < δ, (91)

which rules the x−1/3 piece of (20), and forces θ = π/2. Once again, this condition is preserved
by the hat wave equation (see (76)), and implies (86) and (87) for initial data satisfying this
condition (where now I has to be understood as the intertwiner made using Chandrasekhar’s
mode). Condition (87) guarantees that all algebraic invariants of the Riemann tensor behave
properly near the singularity at later times.

Since V̂ (and thus Ĥ) is positive definite, the hat wave equation is stable and its modes
oscillate in time. The instability of �+

1 arises as a consequence of the fact that, generically, the
exponential terms in the integrand of (74) do not cancel out with those outside the integral. As
a trivial example, take �+

1(t = 0, x) and �̇+
1(t = 0, x) both proportional to χ+

1 (this certainly
passes all the requirements in lemma 1). Since Iχ+

1 = 0, the initial data in hat space are
trivial; then �̂(t, x) = 0 for all t, and (74) reduces to the last two terms, which are generically
exponentially growing for large t.

A final observation is the nontrivial fact that, unlike the Zerilli field, the intertwined
variable has a geometrical significance, as, from (24), it gives the first-order variation of the
Riemann invariant R1:

I�+
1 = �̂ = − r8

4Q2
δR1. (92)

This gives further significance to the dual relation between vector and scalar modes first
found by Chandrasekhar, which was limited to some observations on their mode spectra.
Equations (24) and (90) prove that the field giving the first-order variation of R1 (times Q4/r8)
associated with a scalar mode perturbation is a solution of the vector mode perturbation
equation of the same harmonic number.

4. Conclusions

We have proved that the inner static region 0 < r < ri of a Reissner–Nordström black hole
is unstable under linear perturbations of the metric and electromagnetic field. More precisely,
we have shown that a perturbation with compact support within this region will excite unstable
type 1 polar modes, one of which is for every harmonic number (�,m). This instability is
relevant to the strong cosmic censorship conjecture, according to which this region of the black
hole, lying beyond the Cauchy horizon (of a Cauchy surface like the one in figure 1), should
be disregarded, as it could not arise as a result of the collapse of ordinary matter departing
from spherical symmetry.
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This result has implications on some simple models of halted collapse of a pressure-less
charged perfect fluid star [22], according to which the world tube of the surface of the star
traces a path going from the (right copy of) region I in figure 1, through region II, into the
left copy of region III, upper copy of region II, then upper-right copy of region I. To the right
of this curve, this spacetime agrees with the extended Reissner–Nordström spacetime, which
contains an entire copy of region III, thus being unstable. We are currently studying these
models in more detail.

The difficulty in establishing in a rigorous way the Reissner–Nordström instability lies
in the fact that the field variable which succeeds in disentangling the linearized equations,
the Zerilli field �+

1 , happens to be a singular function of the perturbed fields in region III.
This cannot be cured by any simple field redefinition, but requires the use of an intertwiner
operator I = ∂/∂x + g that maps onto a smooth field �̂ := I�+

1 . The information lost due
to the nontrivial kernel of I is entirely contained in the initial data, and thus is available.
The evolution of perturbations on the non-globally hyperbolic background is well defined by
using the spectral theorem and a unique self-adjoint extension of the spatial piece of the wave
operator that gives the dynamics of the �̂ field. We should comment here that intertwiners
in the context of linear perturbations were first considered in [21] while they were first used
to deal with the issue of the singularities of the Zerilli field in the proof of the instability of
the Schwarzschild naked singularity in [4]. The idea of defining dynamics on non-globally
hyperbolic backgrounds by using a suitable self-adjoint extension of the spatial piece of the
wave equation together with the spectral theorem was first suggested in [14]. The main
difference between the cases considered in [14], and the Reissner–Nordström and negative
mass Schwarzschild cases, lies in the fact that the spatial operators (‘Hamiltonian’) in the last
two cases are not positive definite. A difference between the negative mass Schwarzschild and
the Reissner–Nordström cases is that the intertwiner used in the first case gives a Hamiltonian
with a single self-adjoint extension (limit point case in [20]), whereas the one for Reissner–
Nordström corresponds to the limit circle case in [20].

Two different intertwiners were used: one constructed out of a zero mode, the other
using one of Chandrasekhar’s ASMs. The first intertwiner has the advantage of exhibiting
the instability in a rather obvious way, and the drawback that we lack explicit expressions for
the intertwined potential, or a proof of its smoothness within the relevant parameter range.
The intertwiner that uses Chandrasekhar’s ‘hides’ the instability, which is made explicit in
the metric reconstruction process through the original Zerilli field. This mode allows explicit
calculations for every harmonic number and Q and M values. It also exhibits a very interesting
connection between vector and scalar modes: the intertwined field �̂ gives the first-order
variation of the Riemann invariant R1 (see equation (92). An alternative way of stating this is
that the first-order variation δR1 of R1 under scalar perturbations is a solution of the Zerilli
vector perturbation equation.

The results presented here adapt easily to the case of a super-extreme (|Q| > M) Reissner–
Nordström spacetime, and thus can be used to fill in the details left untreated in [2] to show
that a perturbation of an overcharged Reissner–Nordström spacetime, compactly supported
away from the singularity, will excite modes that grow exponentially in time. This, of course,
is relevant to weak cosmic censorship, this being the original motivation for our work.
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Appendix A. Intertwined potential

In this section we analyze the local behavior of the intertwined potential and ψ̂ given in
equations (64), (65) and (67) as the singularity, inner horizon and r = rc are approached. This
is done by studying the behavior of generic solutions of the equation

H+
1ψI = −f

d

dr

(
f

dψI

dr

)
+ V +

1 ψI = EIψ
+
1 (A.1)

for r � 0, r � rc and r � ri .
Note that V +

1 may be written as

V +
1 = f

r (β1 + (� − 1)(� + 2)r)2

×
[(

κ + β1
df

dr

)
(β1 + (� − 1)(� + 2)r) − 2f (r)β1(� − 1)(� + 2)

]
(A.2)

showing explicitly the double pole at

r = rc = − β1

(� − 1)(� + 2)
. (A.3)

A.1. Behavior of V̂

Near r = rc, the general solution of (A.1) is of the form

ψI = 1

r − rc

[
c0 − (� − 1)2(� + 2)2(2M − β1) c0

β1(2(� − 1)(� + 2)M + (�2 + � + 2)β1)
(r − rc)

+
8EIβ

2
1c0

(2(� − 1)(� + 2)M + (�2 + � + 2)β1)2

× (r − rc)
2 + c3(r − rc)

3 + c4(r − rc)
4 + · · ·

]
, (A.4)

where c0 and c3 are the arbitrary constants, and c4 and higher coefficients in the series are the
linear combinations of c0 and c3 with coefficients that depend on EI,Q,M and �. Note that
the generic local eigenfunction above satisfies the requirement (61).

If we use the generic ψI given above to construct the potential V̂ ,

V̂ = V − 2f
d

dr

(
f

ψI

d

dr
ψI

)
, (A.5)

a straightforward computation shows that, provided a0 �= 0, near r = rc,

V̂ = 8k2β4
1 + (� + 2)3(� − 1)3

[
(�2 + � + 4)β2

1 − 20Mβ1 − 12(� + 2)(� − 1)M2
]

4β4
1

+ O(r − rc).

(A.6)

This means that, for any EI , an arbitrary solution of (A.1) with a0 �= 0 gives an intertwined
potential V̂ that is smooth at r = rc. We also note that, as can be checked, if a0 = 0, the
second term on the RHS of (A.5) does not compensate the double pole in V, so that V̂ is also
singular.
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We consider next the local behavior near r = 0. The general solution of (A.1) admits an
expansion in powers of r of the form

ψI(r) = a1r + a2r
2 +

[
(� − 1)(� + 2)((� − 1)(� + 2)Q2 + Mβ1)

Q2β2
1

a1 +
M

Q2
a2

]
r3 + a4r

4 + · · · ,
(A.7)

where a1 and a2 are the arbitrary constants and the higher order coefficients depend linearly
on them. A dependence on EI appears first at order r7. This result implies that, near r = 0,
assuming a1 �= 0, we have

V̂ = 4

9
x−2 − 2

35/3

(
M

Q4/3
− 2a2Q

2/3

a1

)
x−5/3 + O(x−4/3), (A.8)

while, if a1 = 0,

V̂ = 10

9
x−2 +

32/3

108

(
10�(� + 1) − 12)

Q2/3
+

M(28M − 5β1)

Q8/3

)
x−4/3 + O(x−1). (A.9)

Finally we consider the behavior near r = ri . The cases EI �= 0 and EI = 0 require
separate treatment. For EI �= 0, since the potential vanishes for r = ri , the leading terms of
the two linearly independent parts of the solution for real EI are of the form

ψI = C1(ri − r)

(
r2
i

√
EI

ro−ri

)
+ C2(ri − r)

(
−r2

i

√
EI

ro−ri

)

= C̃1 exp(
√

EIx) + C̃2 exp(−
√

EIx), (A.10)

where C1, C2, C̃1 and C̃2 are the constants. For EI = 0, on the other hand, the general solution
admits an expansion of the form

ψ+
1 (r) = a0 +

(
(ri − ro)β1 + κr2

i

)
a0 − ri(β1 + (� + 2)(� − 1)((2�2 + 2� − 1)ri + 2ro))b0

ri(ri − ro)(β1 + ri(� + 2)(� − 1))

× (r − ri) + a2(r − ri)
2 + · · · + ln(ri − r)

×
[
b0 +

(
(ri − ro)β1 + κr2

i

)
b0

ri(ri − ro)(β1 + ri(� + 2)(� − 1))
(r − ri) + b2(r − ri)

2 + · · ·
]

,

(A.11)

where a2, b2 and higher order coefficients depend linearly on a0 and b0.
The EI = 0 transformed potential behaves as

V̂ (r) = 2(ro − ri)
2b2

0

(a0 + b0 ln(ri − r))2r4
i

+ · · · , (A.12)

where the dots indicate terms that vanish as (ri − r). In terms of x, for b0 �= 0, this implies

V̂ (x) = 2

x2
+ · · · . (A.13)

A.2. Behavior of ψ̂

We consider now the behavior of the intertwined field ψ̂ (64), which can be written as

ψ̂ = Iψ = f ψI
d

dr

(
ψ

ψI

)
. (A.14)

We will use the following result, whose proof is straightforward.
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Lemma 2. Assume that ψ and ψI admit a Laurent expansion

ψ = (r − ro)
p

∑
k�0

ak (r − ro)
k, ψI = (r − ro)

p
∑
k�0

aI
k (r − ro)

k, (A.15)

where a0 = 1 = aI
0 and p is any integer number. If s is the highest number for which ak = aI

k

for every k � s (s measures the degree of contact of these functions at ro, and, generically,
s = 0), then

ψI
d

dr

(
ψ

ψI

)
= (r − ro)

p
∑
k�s

dk(r − ro)
k, ds = s

(
as+1 − aI

s+1

)
. (A.16)

Consider first the action of the intertwiner on a function ψ satisfying (58) and (61).
Since, as follows from (A.4), ψI satisfies this same condition, generically ψ and ψI have
(as the functions of r) the degree of contact s = 2, in the notation of lemma 2, and thus
ψ̂ = f ψI

d
dr

(
ψ

ψI

)
will be smooth at r = rc.

The local solutions of H+
1ψ = Eψ are of the form ψ = ∑

k�1 akr
k with a2 and a1

arbitrary, ak independent of E up to k = 7. Consider the action of I on a function like this
further subject to condition (86). If the intertwiner also satisfies (86), the degree of contact
will be s = 5, then ψI

d
dr

(
ψ

ψI

)
will be O(r6), and thus ψ̂ will be O(r4) = O(x4/3).

Appendix B. The scalar and vector zero modes

In this appendix we describe a procedure that allows the construction of the zero-mode
solutions for both vector and scalar modes. We start with the vector zero modes by first
considering the differential equation they satisfy. In accordance with (6), (7) and (9) with
ω = 0, this is given by

−f 2 d2ψ−
0

dr2
− f

df

dr

dψ−
0

dr
+

f

r4
(�(� + 1)r2 − β1r + 4Q2)ψ−

0 = 0. (B.1)

We note that (B.1) has regular singular points for r = 0, r = ri and r = ro, and no other
singularity. From now on we will write simply ψ for ψ−

0 .
A simple analysis of the indicial equation shows that near r = 0 this equation has two

independent solutions, one behaving as r−1 and the other as r4, both admitting a power series
expansion. We consider therefore an expansion for ψ−

0 (r) of the form

ψ−
0 (r) = 1

r

∞∑
i=0

air
i . (B.2)

Replacing in (B.1) we find that we must set a2 = 0, and

a1 = − β2

4Q2
a0, a3 = �(� + 1)β2

24Q4
a0, a4 = �(�2 − 1)(� + 2)

24Q4
a0. (B.3)

The coefficient a5 can be chosen arbitrarily, in accordance with the indicial equation, and a6

is given by

a6 = −�(�2 − 1)(�2 − 4)(� + 3)

144Q6
a0 − β1 − 16M

6Q2
a5. (B.4)

For the remaining coefficients, including a6, we find a three-term recursion relation of the
form

− (� + j − 2)(� − j + 3)aj−1 + (β1 − 2(j − 1)(j − 3)M)aj + (j + 1)(j − 4)Q2aj+1 = 0,

(B.5)
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and, therefore, all the coefficients are determined once a0 and a5 are given. But this implies
that for any given �, and a0 �= 0, we may choose a5 such that a�+3 = 0, and then all coefficients
for j � � + 3 vanish. Calling ψa this solution we have

ψa(r) = 1

r
P�(r), (B.6)

where P�(r) is a polynomial of order � + 2. The lowest order polynomials are

P2(r) = 1 − β2

4Q2
r +

β2

4Q4
r3 − 1

Q4
r4

(B.7)
P3(r) = 1 − β2

4Q2
r +

β2

2Q4
r3 − 5

Q4
r4 +

30

(β2 + 10M)Q4
r5

P4(r) = 1 − β2

4Q2
r +

5β2

6Q4
r3 − 15

Q4
r4 +

21(24M + β2)

4(3Q2 + Mβ2 + 6M2)Q4
r5

− 42

(3Q2 + 6M2 + Mβ2)Q4
r6, (B.8)

where we have fixed, for simplicity, P�(r = 0) = 1. With this normalization, the polynomials
are positive and decreasing functions of r near r = 0. We shall now prove that they have no
zeros in the interval 0 � r � ri . We write (B.1) in the form

d2ψa

dr2
= (2riro − (ri + ro)r)

r(ro − r)(ri − r)

dψa

dr
+

(�(� + 1)r2 − β1r + 4riro)

r2(ro − r)(ri − r)
ψa, (B.9)

and note that ψa can have only simple zeros in 0 < r < ri because the coefficients in (B.9)
are regular functions of r in 0 < r < ri . Since sufficiently near r = 0 we have ψa > 0 and
dψa/dr < 0, and the coefficients on the RHS in (B.9) are both positive, the sign of d2ψa/dr2 is
not fixed. We note however that at the first zero of ψa for r > 0 we must have dψa/dr < 0, and
therefore, we also have d2ψa/dr2 < 0. Since to the right of such a zero, and as long as r < ri ,
(since the coefficients are still positive) we must have both dψa/dr < 0 and d2ψa/dr2 < 0,
and therefore ψa < 0, there can be no other zero for r < ri . This proves that there is at most
one zero for r ∈ (0, ri).

But now we note that near r = ri , equation (B.9) has a singular solution (diverging as
ln(ri − r)) and a unique regular solution of the form

ψ(r) = ψ(ri)

[
1 − (4ro + �(� + 1)ri − β1)

ri(ro − ri)
(r − ri) + O(r − ri)

2

]
. (B.10)

Since ψa is regular, it has the form (B.10), and this implies that close to r = ri the regular
solution and its first derivative have opposite signs. This contradicts the result obtained under
the assumption that there is a zero in 0 < r < ri . We conclude that ψa does not vanish for
r ∈ (0, ri).

Similarly, we find that near r = ro, equation (B.9) has a singular solution (diverging as
ln(ro − r)) and a unique non-vanishing regular solution. This implies that P�(r) cannot vanish
for r = ro.

We note in passing that for the extreme case Q = M , where ri = ro, we have the exact
(regular at the horizon) solutions

ψa(r) = C(�r + 2M)(r − M)(�+1)

r
, (B.11)

where C is a constant.
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Going back to (B.1), for any fixed �, given the solution (B.6), a linearly independent
solution is given by

ψb(r) = C
1

r
P�(r)

∫ r

0

y4

(y2 − 2My + Q2) (P�(y))2 dy, (B.12)

where C is a constant. It is easy to check that ψb is regular and non-vanishing in 0 < r < ri ,
and

ψb(r) ∼ C1r
4; r → 0+

(B.13)
ψb(r) ∼ C2 ln(ri − r); r → ri

−,

where C1 and C2 are the constants. We may obtain an expansion of this solution in powers of
r using (B.12), or directly from (B.1):

ψb(r) = r4 +
(16M − β1)r

5

6Q2
+

5((�2 + � − 8)Q2 + 4M(12M − β1))r
6

42Q4

+
((�(� + 1)(36M − β1) + 15β1 − 360M)Q2 + 30M2(32M − 3β1))r

7

84Q6
+ · · · ,
(B.14)

where we have set an arbitrary multiplicative constant so that the coefficient of r4 is equal to 1.
For � > 2 the integrals in (B.12) cannot be computed directly, because that would

require explicit expressions for the zeros of the polynomials of degree larger than 4. We may,
nevertheless, infer their general form as follows. We first note that P�(r) may be written in
the form

P�(r) =
∏�+2

k=1(r − rk)∏�+2
k=1(−rk)

, (B.15)

where rk are the zeros of P�(r), which, as indicated, are simple. Therefore, since
y2 − 2My + Q2 = (y − ri)(y − ro), we should have∫ r

0

y4

(y2 − 2My + Q2) (P�(y))2 dy = A ln(ri − r) + B ln(ro − r) + C

+
�+2∑
k=1

ai ln(r − rk) +
�+2∑
k=1

bi

(r − rk)
, (B.16)

where A, B, C, ak and bk are the constants that depend on M, Q and rk. The last term in (B.16)
may be written in the form

�+2∑
k=1

bi

(r − rk)
= U�(r)

P�(r)
, (B.17)

where U�(r) is a polynomial of order � − 1, or lower. Replacing in (B.12),

ψb(r) = 1

r
P�(r) (A ln(ri − r) + B ln(ro − r) + C) +

1

r
U�(r) +

1

r
P�(r)

�+2∑
k=1

ai ln(r − rk).

(B.18)

But we note that ψb(r) is a solution of (B.1), which can be singular only at the regular singular
points r = 0, r = ri and r = ro, and that the zeros rk do not coincide with these points.
Therefore, we must have ak = 0 for all k, and the last term in (B.18) vanishes identically.
This result implies that, for any �, we may construct algebraically the solution (B.12) as
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follows. We first compute the coefficients of P�(r) as indicated above and then replace in
(B.18) leaving A, B, C and the coefficients of U� arbitrary. Next we replace in (B.1) and
impose the condition that ψ is a solution of that equation, and that ψ ∼ r4 near r = 0. It can
be checked that this procedure determines all the coefficients, up to an arbitrary multiplicative
constant, a simple example being (83) for � = 2. Since by construction these solutions satisfy
the appropriate boundary condition at r = 0, the construction of the corresponding scalar
zero modes, and the associated intertwining potential, is now a simple algebraic procedure.
The resulting expressions are, unfortunately, very long and rather difficult to analyze in detail.
In particular, we have not been able to show explicitly that for 0 < rc < ri the scalar zero
modes that satisfy the required boundary condition at r = 0 are non-vanishing everywhere
in the interval 0 < r < ri , as required for the regularity of the intertwining potential. We
remark, nevertheless, that this appears to be the case in all the particular solutions analyzed
numerically after assigning definite numerical values for the parameters, as in the example
described in section 3.3.
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