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Cyclic Extensions Are Radical

The fact that finite Galois extensions with cyclic Galois group can be constructed by
adjoining a root of a well-chosen element of the base field is a basic result of Galois
theory and a key point in studying the problem of solvability by radicals. In text-
books on the subject, this result is usually obtained as a consequence of Hilbert’s
Theorem 90, which is itself deduced from Artin’s theorem on the independence
of characters. The very simple argument we present below sidesteps those require-
ments.

Theorem. If E/K is a cyclic extension of degree n of a field K which contains a
primitive nth root of unity ζ , then there exists an x ∈ E with xn ∈ K and E = K (x).

Notice that the existence of a primitive nth root of unity in K implies that the
characteristic of this field does not divide n.

Proof. Let σ be a generator of the Galois group G of the extension. Since σ n =
idE , the minimal polynomial of σ over K divides Xn − 1 in K [X ] and then, as this
polynomial has all its roots in K and they are all simple, σ is diagonalizable and its
eigenvalues are nth roots of unity.

Let � be the set of eigenvalues of σ . If λ, μ ∈ �, so that there are a, b ∈ E×
such that σ(a) = λa and σ(b) = μb, then λμ ∈ �, as σ(ab) = λμab. Since � is
contained in �n , the finite group of nth roots of unity, this is enough to conclude that
� is in fact a subgroup of �n . If m is the order of �, then we have that λm = 1 for
all λ ∈ � and, as σ is diagonalizable with eigenvalues in �, that σm = idE . As the
order of σ is n and m ≤ n, it follows from this that m = n.

All nth roots of unity are therefore eigenvalues of σ and, in particular, there is an
x ∈ E× such that σ(x) = ζ x . Then σ(xn) = ζ n xn = xn , so xn is in the fixed field
EG = K . We thus see that x is a root of the polynomial Xn − xn of K [X ], which
is irreducible over K : indeed, it has simple roots x , ζ x , . . . , ζ n−1x in E and these
are permuted transitively by σ . The degree of the subextension K (x)/K of E/K is
then n and, of course, this means that E = K (x).
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