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We introduce a general framework for modelling the dynamics of the propensity to offend in a

population of (possibly interacting) agents. We consider that each agent has an ‘honesty index’

which parameterizes his probability of abiding by the law. This probability also depends on a

composite parameter associated to the attractiveness of the crime outcome and of the crime

setting (the context which makes a crime more or less likely to occur, such as the presence or

not of a guardian). Within this framework we explore some consequences of the working hy-

pothesis that punishment has a deterrent effect, assuming that, after a criminal act, an agent’s

honesty index may increase if he is caught and decrease otherwise. We provide both analytical

and numerical results. We show that in the space of parameters characterizing the probability

of punishment, there are two ‘phases’: one corresponding to a population with a low crime

rate and the other to a population with a large crime rate. We speculate on the possible exist-

ence of a self-organized state in which, due to the society reaction against crime activities, the

population dynamics would be stabilized on the critical line, leading to a wide distribution of

propensities to offend in the population. In view of empirical works on the causes of the recent

evolution of crime rates in developed countries, we discuss how changes of socio-economic

conditions may affect the model parameters, and hence the crime rate in the population. We

suggest possible extensions of the model that will allow us to take into account more realistic

features.

1 Introduction

As put forward by the UCL Jill Dando Institute of Crime Science, ‘most criminal acts

are not undertaken by deviant psychopathic individuals, but are more likely to be carried

out by ordinary people reacting to a particular situation with a unique economic, social,

environmental, cultural, spatial and temporal context. It is these reactionary responses

to the opportunities for crime which attract more and more people to become involved
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in criminal activities rather than entrenched delinquency’ (Jill Dando Institute of Crime

Science, 2001). The goal of this paper is to discuss a simple multi-agent model of a society

where the agents’ law-abidingness is represented by an ‘honesty index’: the higher the

honesty index, the lower the propensity to offend, as detailed below. We will focus on the

effect of the punishment policy on the global crime rate, assuming that the propensity

to offend evolves according to the actual risk associated to criminal behaviour (either of

the own criminal activity, if any, and/or that of other agents). That is, we will consider

a learning dynamics whereupon each agent’s honesty index may increase or decrease

depending on whether criminal offences are punished or not.

We are not going to enter in a detailed discussion on the origins of crime, nor the

effectiveness of different kinds of punishments. There is an extensive and detailed literature

on crime from the fields of law, economics, politics, sociology, psychology, religion, and

even mathematics and physics. A brief review can be found in Gordon et al. (2009), where

we discuss common characteristics of criminal activity and some attempts to explain,

prevent and deter criminality. Here we will present only the main aspects needed to

motivate the model and relate it to the literature.

Societies try to cope with crime by both prevention and punishment. These issues are

not independent: prevention also partly relies on the fear of a penalty. Common sense

justice requires punishment to be commensurate with the gravity of the offence, and most

countries, and not only democratic ones, enforce in a way or another this basic principle.

One goal of the model is to discuss the link between the global level of criminal activity

and the probability distribution of being caught and punished conditioned on the gravity

of the offence. This issue is clearly related to the ‘zero-tolerance’ (Kelling et al., 1994)

debate (can crime be significantly reduced by imposing a policy of very low tolerance?),

which originated from the ‘broken-windows’ theory of crime developed by Kelling &

Coles (1996), and the controversial issue of whether or not such policy has had any role

in the decrease of criminality in some US cities during the 1990s. It has also been argued

that there is a link between the crime rate and the probability of conviction (rather than

with the severity of the punishment; see Langan & Farrington, 1998 and Eide, 1999).

However, the causality relationship behind this statistical correlation has been challenged

(see e.g. Smith, 1999), since some statistics show a decrease of criminality, whereas the

probability of punishment decreases as well. Yet drawing definite conclusions is difficult

since crime rates obviously do not depend on the risk of punishment alone, e.g. socio-

economic conditions play a major role, as discussed in Rosenfeld & Messner (2009). In

any case we will certainly not settle these issues here, yet we think that our approach

can bring new arguments in these debates, and be developed within more elaborated and

realistic models. In the present work we propose a simple model in order to explore the

consequences of a punishment policy, under the working hypothesis of a deterrent effect

of punishment. In Section 6 we will come back to this hypothesis and on how the model

can be adapted to include other assumptions.

The types of crimes we have in mind here are non-organized crimes, with grav-

ity ranking from petty crimes to violent crimes whenever they are of an economic

nature (hence excluding specific violent offences such as sexual ones). The issues evoked

above have been addressed within an economic approach, based on the assumption that

the decision to commit a crime results from a trade-off between the expected profit and
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the risk of punishment. In a now classical article, Becker (1968) presents, for the first time,

an economic analysis of costs and benefits of crime, with the aim of developing optimal

policies to combat illegal behaviour. Considering the social losses from offences, which

depend on their number and the produced harm, the cost of apprehension and conviction,

and the probability of punishment per offence, the model tries to determine how many

offences should be permitted and how many offenders should go unpunished, through

minimization of the social loss function. Using a similar point of view, Ehrlich (1975, 1996)

develops an economic theory to explain participation in illegitimate activities. He assumes

that a person’s decision to participate in an illegal activity is motivated by the relation

between cost and gain, or risks and benefits, arising from such activity. This model seems

to provide strong empirical evidence of the deterrent effectiveness of sanctions.

Recently, in Gordon et al. (2009) and Semeshenko et al. (2009) we presented a simple

economic model with crime and punishment that stands on the assumption that pun-

ishment has a deterrent effect on criminality. In the model, each agent’s law-abidingness

level is quantified by an honesty index, his inclination to abide by the law, which may

be psychological, ethical or a reflection of his educational level and/or socio-economical

environment, in a way similar to Bourguignon et al. (2003) and Fajnzylber et al. (2002)

(where a ‘moral stance’ parameter analogous to the honesty index is introduced). How-

ever, contrary to the latter works, we assume that this index is not a fixed idiosyncratic

characteristic of the agents: it evolves in time according to the risk of apprehension

upon performing a crime. We have studied the model (actually several variants of it)

through extensive numerical simulations. The main results are: (i) the existence of a sharp

phase transition, from a society with high crime rates to one with low crime rates as the

probability of punishment is increased; this transition exhibits a clear hysteresis effect,

suggesting that the cost of reversing a deteriorated situation might be much higher than

that of maintaining a relatively low level of criminal activity; (ii) tolerance with respect to

small felonies has a global negative consequence because it requires bigger efforts to cope

with important crimes in order to keep a given level of honesty. Or the other way round,

being relatively tolerant with important crimes (for example white-collar crimes) requires

a harsh policy towards minor crimes in order to keep a given honesty level. An avalanche

effect is also observed since a small change in the probability of punishment may reduce

or increase the average criminality significatively. In these works the consequences of

the criminal activity on the distribution of wealth in the society are also explored, an

aspect which will not be discussed here. In the present paper we focus on the analysis

of the honesty levels dynamics. Combining analytical and numerical results, this will, in

particular, allow us to discuss in a simpler setting the phase transition observed in Gordon

et al. (2009) and Semeshenko et al. (2009).

The paper is organized as follows. In Section 2 we describe the model. In Sections 3

and 4 we provide some analytical results, and in Section 5 we present some numerical

simulations. In Section 6 we discuss the results and present perspectives.

2 Model: Dynamics of the honesty index

We consider a population of N � 1 agents, where each agent’s law-abidingness level is

characterized by an honesty index. The higher the honesty index, the lower the propensity
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to offend of the agent. Here (contrary to Gordon et al., 2009 and Semeshenko et al.,

2009), we consider that the honesty index takes a number L of possible discrete values,

{H0, . . . , HL−1} (with Hk < Hk+1 for every k ∈ {0, . . . , L − 2}). In the following we

will indifferently denote the kth honesty level by Hk or simply by the level number k

(k ∈ {0, . . . , L − 1}).
Starting from initial values drawn at random, the agents’ honesty levels are modified

in the course of life according to the following dynamics. At each time step an agent is

picked at random. With some probability α he commits a crime, and with some probability

π he is caught and punished. Then, depending on whether he was or not punished, his

honesty index changes. Let us now specify our choices for the probabilities α and π, and

the detailed rules for the honesty dynamics.

2.1 Crime and punishment

The probabilities to offend (α) and to be punished (π) may depend on two important

ingredients. The first one is the attractiveness of the target for the potential offender: a

crime opportunity presents some expected payoff that we represent by an attractiveness

variable Sa. Essentially, one may think of Sa as quantifying the gravity of the crime

(petty crimes corresponding to small values of Sa and crimes with large potential loots to

large values of Sa). The other essential ingredient is the ‘setting’. The popular statement

‘opportunity makes the thief’ evokes key ingredients for the analysis and modelling of

criminal activities. Some criminologists have stressed that to prevent crime one should

focus on the setting preluding to the crime, rather than on the criminal himself. This is

particularly developed in the routine activity theory of L. Cohen and M. Felson, which

states that for a (possibly predatory) crime to occur, three elements must be present:

a target (a possible victim), a place (a given location at a given time, with/without a

guardian) and a possible offender (see Cohen & Felson, 1979 and Clarke & Felson, 1993).

Prevention of crime can be enhanced by limiting the settings which are more likely to see

the occurrence of a crime. In the present model, one may introduce the prevention effort

against crime by a scalar Ss � 0: the larger the Ss, the better the prevention (hence the

smaller the likeliness of a crime). One may also interpret Ss as a measure of the perceived

risk by the potential criminal.

We now have to specify how the probabilities to offend and to be caught depend on

Sa and Ss. To further simplify the analysis, we replace this pair of variables by a single

variable S � 0, which we will (partially improperly) call the ‘setting’ value. Thus, this

value of S aggregates the two features here: the intrinsic target attractiveness on one

side and the actual setting on the other side. A more elaborated model should separately

consider these two variables, as suggested below. The justification for our ‘amalgam’ is

that the behaviour of the quantities of interest, with respect to variations in Sa and Ss, are

qualitatively the same. In particular, situations with large values of Ss are less frequent

than those with small values, and likewise it is natural to assume that the opportunities

with a large attractiveness Sa are less frequent than those with a small one (petty crimes).

The probability of committing a crime should clearly decrease with increasing Ss, as well

as for increasing Sa, at least for large values of Sa. One may, however, note that if the

probability of offending results from a balance between expected profit and risk (see also
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below), one may expect this probability to increase with Sa at small Sa, up to some value

S∗
a , and then decrease only for Sa > S∗

a , with S∗
a depending on the honesty index of the

agent (a larger S∗
a for a smaller honesty index). Again, for simplicity, we will restrict to

the case of a decreasing probability for any value of Sa, and in the following we thus

consider that probabilities of committing a crime and of punishment depend on the single

composite variable S .

Thus, we assume that the likeliness ρ(S) of the occurrence of a setting (of an opportunity)

of a given level S decreases with S , e.g.

ρ(S) =
1

S0
exp −S/S0, S � 0. (2.1)

This setting distribution, which plays an important role in the following analysis, will be

assumed fixed, independent of the criminal activity (in Gordon et al., 2009 and Semeshenko

et al., 2009, the variable playing a role analogous to S is related to the potential loot of

the randomly encountered victim, and evolves with the economic characteristics of the

society).

We assume that the probability of committing an offence α(H, S) depends on both the

honesty index and the setting. As discussed above, one should have ∂α(H, S)/∂H � 0, and

we restrict the analysis to the case where ∂α(H, S)/∂S � 0 for all S .

Similarly, we can expect the probability π of being caught to be larger for a serious

crime, and even larger if the crime is done in the presence of a guardian. The probability

density function π(S) may be put in correspondence with the level of elucidation of crimes

(in France, about 14% for petty crimes and 40% for violent crimes). As a specific example,

we will consider

π(S) = p1 − (p1 − p0) exp −βS, (2.2)

for some β > 0, and 0 � p0 � p1 � 1, which satisfies dπ/dS � 0. In the rest of this paper

we will mainly consider how the global criminal activity depends on the parameters p0

and p1.

Hereafter we denote by απ,k and α1−π,k the conditional probabilities, given the honesty

index level Hk , to offend and, respectively, to be punished and to not be punished:

απ,k =

∫
π(S) α(Hk, S) ρ(S)dS, (2.3)

α1−π,k =

∫
(1 − π(S)) α(Hk, S) ρ(S)dS.

In the following we successively explore the following hypothesis of increasing com-

plexity:

(1) Neither honesty nor setting dependency (hereafter considered as the reference case):

In this case,

απ,k = α0 π, α1−π,k = α0 (1 − π), (2.4)

for some 0 < α0 < 1 and 0 < π < 1.



6 J.-P. Nadal et al.

(2) Probability of committing an offence function of the honesty index but not of the

setting: We consider, for some 0 < α0 < 1,

α(Hk) = αk+1
0 . (2.5)

The mean probability of being punished is π =
∫

π(S)ρ(S)dS , which gives

απ,k = αk+1
0 π, α1−π,k = αk+1

0 (1 − π). (2.6)

Since 0 < α0 < 1, the offending probability is a decreasing function of the honesty

index.

(3) Probability of offending and being punished function of the attractiveness of the

target and of the ‘setting’: One may envisage two different types of dependencies:

a separable case, α(H, S) = fh(H) fs(S), and a non-separable one. The preceding

cases are trivial examples of a separable function, with no S-dependency. Note

that for an arbitrary separable case, απ,k = fh(Hk)
∫

π(S)fs(S)ρ(S)dS and α1−π,k =

fh(Hk)
∫

(1−π(S))fs(S)ρ(S)dS . In what follows we use (2.2) for π(S), and for illustrative

purposes we consider the following non-separable case:

α(Hk, S) = α
(k+1)S
0 , (2.7)

for some 0 < α0 < 1. This leads to

απ,k =
p1

1 − S0(k + 1) ln α0
− p1 − p0

1 + S0(β − (k + 1) ln α0)
,

(2.8)

α1−π,k =
1 − p1

1 − S0(k + 1) ln α0
+

p1 − p0

1 + S0(β − (k + 1) ln α0)
.

(4) Finally, we mention a possible formulation which is more in the spirit of the economic

approaches of Fajnzylber et al. (2002), Bourguignon et al. (2003) and Gordon et al.

(2009), and which gives an example of a modelling where the attractivity Sa and the

setting Ss have distinct roles. Both the probabilities to offend and to be punished are

functions of the attractivity Sa and of the perceived risk, parametrized by Ss. Given

a probability of being punished π(S), with S = {Sa, Ss}, there is an expected cost

of punishment, c(H, S)π(S), where c(H, S) is typically an increasing function of the

honesty index H for each given value of S, and an increasing function of Sa and Ss for

each value of H . If one assumes for the criminal a utility U(Sa) (with U an increasing

function of Sa, e.g. U(Sa) = Sa), then we can consider that the offending probability α

is a function of U(Sa) − c(H, S)π(S). A reasonable hypothesis could be

α(H, S) = Θ(U(Sa) − c(H, S)π(S)) α0 exp −γ(H, Ss)Sa, (2.9)

where Θ is the Heavyside distribution (Θ(u) = 1 if u > 0, and 0 otherwise), and

γ(H, Ss) is larger for larger values of H as well as for larger values of Ss. Another

reasonable choice for α would be

α(H, S) = Θ(U(Sa)−c(H, S)π(S))
α1

1 + α1−α0

α0
exp −γ(H, Ss)(U(Sa) − c(H, S)π(S))

. (2.10)
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To keep the analysis simple enough, and to focus more specifically on the dynamics

of the honesty levels, we will not explore here the consequences of such a punishment

probability that is a function of the risk. The analysis of this more involved case will

be the subject of a future work.

2.2 Honesty dynamics

Let us now specify how the honesty index of an agent evolves according to his experience.

We will consider the following extreme cases:

A. No externalities (i.e. no social influence): The agent’s honesty index depends on his

own past experience alone. Whenever the agent commits a crime and is punished,

with probability ε+, his honesty index increases from its current level to the one

just above (no change if it is at the maximal value, HL−1). If he is not punished,

with probability ε−, his honesty index decreases to the level just below (no change

if it is at the minimal value, H0).

B1. Global social influence (instantaneous): At each time step, for each committed

crime, every agent updates his honesty level, depending on whether the crime has

been punished or not. For each agent the updating rule is the same as in case A,

so that for every punished (respectively non-punished) crime, there is a fraction ε+

(respectively ε−) of agents who increase (respectively decrease) their honesty index.

B2. Global social influence (variant: delayed, with threshold): Each agent is influenced

by the knowledge of the fraction of crimes which are punished in a period of N

elementary time steps, and updating of honesty levels occur only at the end of each

period. After one such period, if the fraction of punished crimes (which, in this

model, is equivalent to the elucidation rate) is larger than some threshold value, say

30%, then every agent increases his honesty index with probability ε+; otherwise,

every agent decreases his honesty index with probability ε−.

3 Mathematical analysis

We are mainly interested in the stationary states that result from these dynamics. In the

case without externalities (case A) and in the case with externalities (case B1), a simple but

crude argument, identical to the one given in Gordon et al. (2009), allows us to predict the

existence of a phase transition from a society with high crime rates to one with low crime

rates. Indeed, consider the simplest case of a uniform probability α0 and a probability

π of being punished (our reference case above). For each agent, the mean variation Δh

of its honesty index is proportional to: {[the number of crimes with arrest] times [the

probability of increasing the honesty level]} minus {[the number of crimes without arrest]

times [the probability of decreasing the honesty level]}, that is

Δh = (ε+π − ε−(1 − π)) C δh,

where δh is the difference between two successive honesty levels and C the typical number

of crimes between two updates of the honesty index (C = α0 for case A and C = α0N for
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case B1). There is thus a critical value:

πc =
ε−

ε− + ε+
. (3.1)

For π < πc, every agent’s honesty index will decrease, whereas if π > πc, every agent’s

honesty index will increase. We will see below a more rigorous analysis.

In case A, for finite L there is no sharp transition, but a crossover where the honesty

index stationary distribution changes continuously from a distribution biased towards the

small index values to a distribution biased towards the large index values.

Let us now turn to a more rigorous analysis of the dynamics.

3.1 Single-agent dynamics

We first consider case A: since agents’ behaviours are not coupled, we can consider the

dynamics for a single agent.

Let Pt(k) be the probability of having a honesty level k at time t. Starting from some

initial probability P0(k), one can easily write the master equations:

Pt+1(0) − Pt(0) = ε−α1−π,1Pt(1) − ε+απ,0Pt(0),

Pt+1(L − 1) − Pt(L − 1) = ε+απ,L−2Pt(L − 2) − ε−α1−π,L−1Pt(L − 1),

for k = 1, . . . , L − 2,

Pt+1(k) − Pt(k) = ε+

[
απ,k−1Pt(k − 1) − απ,kPt(k)

]
+ ε−

[
α1−π,k+1Pt(k + 1) − α1−π,kPt(k)

]
, (3.2)

where we recall that απ,k (respectively, α1−π,k) is the probability to commit an offence and

to be punished (respectively not punished), given the honesty level k.

3.2 Stationary distribution

Let us compute the stationary distribution P∞(k). From (3.2), one gets, for k = 0, . . . , L−2,

P∞(k) =

⎡
⎣ L−1∏
j=k+1

λj

⎤
⎦ P∞(L − 1), (3.3)

with, for k = 1, . . . , L − 1,

λk ≡ ε− α1−π,k

ε+ απ,k−1
, (3.4)

and the normalization constraint
∑

k P∞(k) = 1 gives

P∞(L − 1) = 1 /

⎡
⎣1 +

L−2∑
k=0

L−1∏
j=k+1

λj

⎤
⎦ . (3.5)
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Specific cases

(1) Reference case, απ,k = α0 π (equation (2.4)). Then

λk =
ε− (1 − π)

ε+ π
≡ λ, (3.6)

and for k = 0, . . . , L − 1,

P∞(k) = λL−k−1 1 − λ

1 − λL
. (3.7)

The occupation of honesty levels is thus either concentrated near the highest or near

the lowest level, depending on whether λ is smaller or greater than 1, respectively.

The critical value λc = 1 is obtained for

π = πc ≡ ε−
ε− + ε+

(3.8)

(which gives the transition at π = 1/2 for ε− = ε+). This gives the spirit of the

transition observed in the more involved models.

(2) Honesty-dependent probability of committing an offence, uniform probability of being

punished: With απ,k = αk+1
0 π (equation (2.6)) one gets exactly the same result as in

the previous case.

(3) Both probability of offending and of being punished functions of the setting S: If

α(H, S ) depends only on S but not on H , the result is again quite similar to the

previous cases. Here

λ =
ε− α1−π

ε+ απ
, (3.9)

with απ =
∫

π(S) α(S) ρ(S)dS and α1−π =
∫

(1 − π(S)) α(S) ρ(S)dS (see equation (2.4)).

For α(H, S ) depending on both H and S , under the specific hypotheses listed above,

with α given by equation (2.7), the probabilities απ,k and α1−π,k are given by equation

(2.9). This is the most interesting case which we analyze in what follows.

3.3 Alternative approach: population dynamics

Instead of considering the single-agent dynamics, one may consider the dynamics of the

population of honesty indices, that is of the fractions xk of honesty index of level k (with∑L−1
k=0 xk = 1). This approach can be easily adapted to cases with social interactions, as

discussed in the next section. Assume that at each time t one agent is picked at random

and the dynamics described in the previous section is applied. Then there is a probability

xk(t) of picking an honesty index of level k, and this level may loose one element, and

contribute to populate the level k+1 or the level k−1, depending on whether an offence is

committed and whether the criminal is punished or not. One can thus write the dynamics
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for the x(t) = {xk(t), k = 0, . . . , L − 1}:

with probability xk(t)απ,kε+ (k � L − 2), xk(t + 1) = xk(t) − 1/N,

xk+1(t + 1) = xk+1(t) + 1/N

(and for j � k, k + 1, xj(t + 1) = xj(t)),

with probability xk(t)α1−π,kε− (k � 1), xk(t + 1) = xk(t) − 1/N,

xk−1(t + 1) = xk−1(t) + 1/N

(and for j � k, k − 1, xj(t + 1) = xj(t)),

and otherwise for all j, xj(t + 1) = xj(t). (3.10)

One can write the expected value of x(t + 1) given x(t):

for k = 1, . . . , L − 2,

E[xk(t + 1)|x(t)] − xk(t) = − 1

N
xk(t)(απ,kε+ + α1−π,kε−)

+
1

N
xk+1(t)α1−π,k+1ε− +

1

N
xk−1(t)απ,k−1ε+,

and

E[x0(t + 1)|x(t)] − x0(t) = − 1

N
x0(t)απ,0ε+ +

1

N
x1(t)α1−π,1ε−,

E[xL−1(t + 1)|x(t)] − xL−1(t) = − 1

N
α1−π,L−1ε− +

1

N
xL−1(t)απ,L−2ε+. (3.11)

One gets the fixed-point equation for the mean value of x (average over all histories)

by setting to zero the left-hand side of the above equation. The solution is identical to

(3.3)–(3.5): for k = 0, . . . , L − 2,

xk =

⎡
⎣ L−1∏
j=k+1

λj

⎤
⎦ xL−1, (3.12)

with the λk given by (3.4), and

xL−1 = 1 /

⎡
⎣1 +

L−2∑
k=0

L−1∏
j=k+1

λj

⎤
⎦ . (3.13)

Figure 1 shows a simulation with five levels of honesty, and the απ,k randomly generated

(in such a way that the constraints 0 < απ,k+1 < απ,k < 1 are satisfied).

3.4 Critical line

At the beginning of this section we gave a simple argument predicting the existence of

a sharp transition from a society with high crime rates to one with low crime rates. In

these dynamics with no interaction between agents, for any finite L there is actually no

sharp transition but a continuous crossover from one regime to the other. It is only in
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Figure 1. (Colour online) Simulation with L = 5 levels of honesty, 100 agents. The plot shows

the time evolution of the fractions of agents having a given honesty index value. Horizontal lines:

theoretical means obtained from the numerical computation of (3.12) and (3.13).
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Figure 2. (Colour online) Dashed line: Transition line for the single-agent dynamics. Solid line:

Transition line in the case of interacting agents (model B1) for the same parameters: reaching the

non-criminal state, above the critical line, is harder with social influence.

the limit of L going to infinity that one gets a sharp transition, with only the first or the

last honesty level populated outside the transition line.

There is, however, for any finite L, a critical line where the stationary distribution of

honesty levels changes from a decreasing to an increasing function of the honesty level,

as already mentioned in Section 3.2. The line is obtained by writing λ = 1 in the simplest

cases where the value of λk is independent of k (see (3.6) and (3.9)), and in the more

general case, by the condition [
∏L−1

j=1 λj] = 1.

The critical line is shown in Figure 2 for the model characterized by p0 and p1 (see

equation (2.2)).

4 Global social influence

4.1 Model B1: Instantaneous global interactions

4.1.1 Stationary distribution

In the case B1 of a global social influence, assuming that every agent is influenced in the

same way by every criminal event in the society, and not only by his own past criminal
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history, one can easily adapt the previous calculation. Here, whenever a criminal is

punished (respectively not punished), there is a randomly chosen fraction ε+ (respectively

ε−) of the population which increases (respectively decreases) his honesty index (except

at the boundaries k = 0 and k = L − 1). More explicitly, with

〈απ〉(t) ≡
∫

π(S)
∑
k

xk(t) α(Hk, S) ρ(S)dS =
∑
k

xk(t) απ,k (4.1)

(and similarly for 〈α1−π〉(t)), one has

with probability ε+〈απ〉, xk(t + 1) = xk−1(t), k = 1, . . . , L − 2,

x0(t + 1) = 0,

xL−1(t + 1) = xL−1(t) + xL−2(t),

and

with probability ε−〈α1−π〉, xk(t + 1) = xk+1(t), k = 1, . . . , L − 2,

x0(t + 1) = x0(t) + x1(t),

xL−1(t + 1) = 0,

and otherwise (that is with probability 1 − ε+〈απ〉 − ε−〈α1−π〉) there is no change.

As in the previous case, one gets the fixed point considering the average over all possible

histories. Here the solution is

xk = λL−k−1 1 − λ

1 − λL
, (4.2)

with λ obtained as a solution of

λ =
ε−
ε+

∑L−1
j=0 α1−π,j λ

L−1−j

∑L−1
j=0 απ,j λL−1−j

. (4.3)

Note that whenever απ,j = παj and α1−π,j = (1 − π)αj for some π < 1, one recovers

the expression (3.6) for λ. Interestingly, since λ is obtained here as the solution of a

polynomial of degree L, there might exist several equilibria. However, the simulations

always converged to a single one, and we leave for further work the more detailed

analysis of this equation.

4.1.2 Critical line

In the space of parameters, which is the half-plane {p0 � p1}, there is the critical curve

which separates the domain where the honesty distribution is a decreasing function of the

honesty level, from the domain where the honesty distribution is an increasing function

of the honesty level. On the critical line the honesty levels are equally populated. This

curve is obtained by setting λ = 1 in (4.3). This critical condition can be written as

ᾱπ

ᾱ
= pc, (4.4)
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where

pc =
ε−

ε− + ε+
, (4.5)

and with ᾱπ =
∑

k απ,k , ᾱ =
∑

k (απ,k+α1−π,k). This equation can be understood as defining

a critical fraction of punished crimes when all honesty levels are equally populated. For

the specific choice of π(S) given by (2.2), the critical curve is a straight line:

a p0 + (1 − a) p1 = pc, (4.6)

where 0 � a � 1 is given by

a =
ᾱ[β]

ᾱ[0]
, (4.7)

with

ᾱ[β] ≡
∫

e−βS

L−1∑
k=0

α(Hk, S) ρ(S)dS. (4.8)

Note that pc is the critical value when the probability of being punished is independent

of the setting, that is for p0 = p1. An example of the critical line is shown in Figure 2,

together with the one for the model without social interaction.

The critical line depends through a on the probability distribution of the setting value

S . Analysis of this dependency gives reasonable results. Indeed, if there is almost no

situations benefiting from a good prevention, then the setting distribution is peaked near

the null value. As a result, the parameter a is close to 1, so that to enforce a non-criminal

state one has to increase the punishment probability p0 for the less serious crimes. On

the contrary, for a broad distribution of S , a will be smaller and thus one can afford a

smaller value for p0.

For an arbitrary π(S) (with ∂π/∂S � 0), the critical curve is no more a straight line.

However, (4.6) gives the spirit of what to expect in the general case: the smaller the p0,

the larger must be p1 to reach the critical line. This is also indeed what is found in the

simulations in Gordon et al. (2009) and Semeshenko et al. (2009).

On the critical line, the stationary distribution is the uniform distribution (all the honesty

levels are equally populated). Hence, for large L, far from the critical line, essentially only

the smallest or the largest level of honesty is present in the population, whereas near the

critical line there is a more or less flat distribution of the honesty index.

4.2 Model B2: Delayed global interactions (with threshold)

In the variant B2, one assumes that the updating of the honesty index depends on a

threshold on the fraction of punished crimes: if the elucidation rate is larger than some

threshold θ, the honesty index increases with probability ε+, otherwise it decreases with

probability ε−. In the reference case (equation (2.4)), the mean fraction of punished crimes

is simply equal to π. Hence, the critical value is obviously πc = θ: the punishment rate

has to match the psychological level which is necessary to provoke an increase in honesty

levels. In the general case, at each time t the condition for having (in average) an increase
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Figure 3. (Colour online) Critical line (solid line) in the half plane (p0 � p1), and the values

(crosses) at which the simulations corresponding to Figure 4 have been done.

of the honesty indices is

〈απ〉
〈α〉 > θ, (4.9)

with, as in the preceding section, 〈απ〉 =
∑

k xk απ,k , and 〈α〉 =
∑

k xk (απ,k + α1−π,k). The

critical line, where the change from a decreasing to an increasing distribution of honesty

levels occurs, is given by the equality 〈απ〉
〈α〉 = θ, with all honesty levels equally populated,

that is for
ᾱπ

ᾱ
= θ, (4.10)

with ᾱπ =
∑

k απ,k , ᾱ =
∑

k (απ,k + α1−π,k). This is the same condition as (4.4) obtained in

the case B1, but with θ in place of pc, that is here the critical condition is independent of

ε+ and ε−.

5 Simulations

We have performed numerical simulations, with results for the case of non-interacting

agents illustrated in Figures 3–7. These simulations correspond to the case (2.1), (2.2) and

(2.7), with L = 5 honesty levels, ε+ = ε− = 1/2, β0 ≡ βS0 = 20, γ = S0L ln(1/α0) = 5.

We considered N = 100 agents and applied the following protocol: starting with p0 =

0.2, p1 = 0.3, p0 and p1 increase by δp = 0.2 every 100 time steps (one time step = N

elementary events, one event being the selection of an agent at random and determining

whether he commits or not a crime and whether he is or not punished) up to t = 500;

then they decrease by δp = −0.2 every 100 time steps. Results of simulations with global

social influence (with same parameters and same protocol as for non-interacting agents)

are illustrated in Figures 8–10 for both variants, B1 and B2.

In contrast with what is observed in Semeshenko et al. (2009), there is no hysteresis.

Additional ingredients have to be taken into account in order to recover the hysteresis. In

Semeshenko et al. (2009), the economic characteristics of the population are affected by

the criminal activity. In the present model, the equivalent effect would be a slow evolution

of the distribution of S as the criminal activity varies. This would clearly lead to hysteresis

effects.
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Figure 4. (Colour online) Time evolution of the crime rate with probabilities p0 and p1 changing

every 100 time steps per agent. Simulation with five levels of honesty, 100 agents.
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Figure 5. (Colour online) Theoretical distribution of the honesty levels for particular values of p0

and p1 (in parameter space, the lower left point shown in Figure 3).
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Figure 6. (Colour online) Time evolution of the fractions of agents with a given honesty level,

with the same protocol as in Figure 4. Simulation with five levels of honesty, 100 (non-interacting)

agents. Horizontal lines: theoretical means for the initial values of (p0, p1), as shown in Figure 5.
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Figure 7. (Colour online) Stationary mean fractions of agents committing a crime (triangles), and

punished (squares), and not punished (diamonds), as function of ap0 + (1 − a)p1, which gives the

distance to the critical line (ap0 + (1 − a)p1 = pc, with pc = 1/2, a = 0.1442). Protocol: Sequential

increase (full symbols), then decrease (empty symbols) of p0 and p1. Simulation with five levels of

honesty, 100 agents, same parameters as for Figures 3–6. All shown quantities exhibit a smooth

behaviour with no hysteresis.

An interesting aspect which can be seen in Figures 8(b) and (d) and 9 (c) is that, as the

punishment probabilities increase according to the protocol described above, the number

of punished agents remains almost constant.

The results for the two variants of the model with social influence are quite similar,

except for the location of the transition line, which depends on pc = ε−/(ε− + ε+) in the

model B1 and on θ in the model B2, two independent parameters.

6 Discussion

We have presented a simple model of criminal behaviour in a society where the agents

are characterized by an ‘honesty index’ that evolves according to whether the crimes are

punished. The probability that an agent commits a crime is influenced both by his honesty

index and by the probability of being punished. The model allows us to reproduce the

main features observed in a more elaborated model discussed in Gordon et al. (2009) and

Semeshenko et al. (2009).

We have studied the dynamics of the honesty indices under different simplifying as-

sumptions. We have shown that there exists a critical line in the space of parameters of the

punishment probability: above this line the latter is large, and the honesty indices of the

overall population increase with time so that the crime rates decrease, eventually reaching

a stationary level. Below the critical line, crime rates soar because the honesty indices

decrease with time. On the critical line, the distribution of honesty index is uniform. Since

enforcing the law is costly, it is tempting to conjecture that many societies adapt police

and justice resources (in particular, through the adaptation of p0 and p1) in order to just

avoid the collapse into the criminal state. This would lead to a self-organized critical state,

with thus a more or less uniform distribution of honesty levels in the population.
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Figure 8. (Colour online) Case with social influence. (a and b) Model B1; (c and d) model B2

with θ = 0.3. (a and c) In the half plane (p0 � p1), critical line (solid line) and values of (p0, p1)

(crosses) chosen for the simulations. In the case of model B1, the dashed line shows the critical line

for the same parameters, without social influence. (b and d) Stationary mean fractions of agents

committing crime (triangles), and punished (squares), and not punished (diamonds) – in the case

of B1, the abscissa is ap0 + (1 − a)p1, which gives the distance to the critical line. Simulations

with five levels of honesty; same protocol as in Figure 7 (full symbols: increasing the punishment

probabilities; empty symbols: decreasing the punishment probabilities).

In the future, we plan to explore variants of the model taking into account more

realistic features. In particular, the case evoked at the end of Section 2, where the

offending probability depends on a balance between risk and expected profit. In such

case, the critical line in the plane p0, p1 will no more be a straight line. One may still write

the critical condition as (4.6); however, the parameter a defined by (4.7) depends now on

p0 and p1: the critical line is thus distorted, and it will be interesting to see how.

One may also consider local (instead of global) social influences. Glaeser et al. (1996)

study a simple case with next nearest neighbour interactions between agents ‘living’ in

a one-dimensional space. Although this allows them to make some comparison with

empirical data, the one-dimensional case has specific properties which make it non-

generic. In Barthelemy et al. (2010) some consequences of social influence are explored in

a related model but with agents located on a two-dimensional lattice (the willingness to

commit a crime of an agent being influenced by the behaviour of his four neighbours).

This allows us to discuss the stability of an ‘island’ of criminal activity. Other type of

connectivity patterns between agents should be explored, such as small-world networks

(see e.g. Newman, 2000), a structure frequently observed for social networks.
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Figure 9. (Colour online) Case with instantaneous social influence (B1). (a) In the half plane

(p0 � p1), critical line (solid line) and values of (p0, p1) (crosses) chosen for the simulations presented

here. (b) Fractions of agents with given honesty levels. (c) Mean fractions of agents committing a

crime, being punished and not punished. (d) Fraction of punished crimes. This fraction is 1/2 at

the transition.
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Figure 10. (Colour online) Case with delayed social influence and threshold (B2). (a) Critical line

(solid line) and values of (p0, p1) (crosses) chosen for the simulations whose results are presented

in (b). Threshold θ = 0.3, other parameters as for the case B1. (b) Fractions of agents with given

honesty levels.

We have studied a dynamics in which, in the long run, the initial value of each agent’s

honesty index is forgotten. A different approach would be to assume an idiosyncratic

reference value for the honesty index, which does not evolve in time – or evolves with a
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very slow dynamics. In the absence of any kind of deterrence policy or of social influence,

the honesty index would relax towards this idiosyncratic value. Such a case is studied in

this issue by Berestycki & Nadal (2010).

As mentioned in Section 2, a more refined model should consider both the attractiveness

and the setting instead of the composite variable S . Yet, as discussed shortly at the end

of Section 2.1, the model presented here already allows for some discussion of the role of

the setting and attractiveness distributions. As proposed by Rosenfeld & Messner (2009),

an upturn in economic conditions may explain the decrease in criminal activity observed

in the US and European burglary rates. In the context of the present model, a change

in the economic conditions can be translated into a change in the distribution of the

attractiveness distribution – the likeliness that a target appears as attractive becomes

smaller – as well as in the setting distribution – e.g. more parents are in position to exert

control on their children and more resources can be allocated to prevention. As a result,

the distribution of the setting value S becomes more peaked near the origin, which lowers

the critical line, that is the non-criminal state exists at smaller values of the punishment

probability. We draw this conclusion from the analysis done in Section 4.1.2, but more

work is needed in order to see whether this is a generic property or not.

In the model discussed here, the main working hypothesis is that depending on whether

an agent is punished or not, his honesty index decreases or increases. However, it is known

that juveniles who go through the criminal justice system may have a higher criminal

activity than those who are not caught (see e.g. Smith, 1999). Within our framework

one can study many different dynamical rules for the honesty index, by simply choosing

rules other than those postulated in Section 2.2. However, taking into account empirical

facts such as the effects of imprisonment may require to further complexify the model –

in particular, by introducing different types of punishments, and the associated risks of

having a higher propensity to offend after punishment.

Clearly, the presented results are preliminary, but the framework introduced in this

contribution allows us to test different scenarios by considering many possible variants.

Some of them, like the ones discussed here, are simple enough to allow for a rigorous

mathematical analysis.
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