VARIETIES OF COMPLEXES AND FOLIATIONS

FERNANDO CUKIERMAN
Dedicated to Xavier Gómez-Mont on his 60th Birthday.

Abstract

Let $\mathcal{F}(r, d)$ denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that $\mathcal{F}(r, d)$ may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of $\mathcal{F}(r, d)$.

Contents

1. Basics on varieties of complexes. 1
2. Moduli space of foliations. 9
3. Complexes associated to an integrable form. 10
References 13

1. Basics on varieties of complexes.

1.1. Let K be a field and let V_{0}, \ldots, V_{n} be vector spaces over K of finite dimensions

$$
d_{i}=\operatorname{dim}_{K}\left(V_{i}\right)
$$

Consider sequences of linear functions

$$
V_{0} \xrightarrow{f_{1}} V_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n}} V_{n}
$$

also written

$$
f=\left(f_{1}, \ldots, f_{n}\right) \in V=\prod_{i=1}^{n} \operatorname{Hom}_{K}\left(V_{i-1}, V_{i}\right)
$$

The variety of differential complexes is defined as

$$
\mathcal{C}=\mathcal{C}\left(V_{0}, \ldots, V_{n}\right)=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in V / f_{i+1} \circ f_{i}=0, i=1, \ldots, n-1\right\}
$$

It is an affine variety in V, given as an intersection of quadrics. We intend to study the geometry of this variety (see also e. g. [3], [6]).

[^0]1.2. Since the defining equations $f_{i+1} \circ f_{i}=0$ are bilinear, we may also consider, when it is convenient, the projective variety of complexes
$$
P \mathcal{C} \subset \prod_{i=1}^{n} \mathbb{P H o m}_{K}\left(V_{i-1}, V_{i}\right)
$$
as a subvariety of a product of projective spaces.
Denoting $V=\oplus_{i=0}^{n} V_{i}$, each complex $f \in \mathcal{C}$ may be thought as a degree-one homomorphism of graded vector spaces $f: V$. $\rightarrow V$. with $f^{2}=0$.
1.3. For each $f \in \mathcal{C}$ and $i=0, \ldots, n$ define
$$
B_{i}=f_{i}\left(V_{i-1}\right) \subset Z_{i}=\operatorname{ker}\left(f_{i+1}\right) \subset V_{i}
$$
and
$$
H_{i}=Z_{i} / B_{i}
$$
(we understand by convention that $B_{0}=0$)
From the exact sequences
\[

$$
\begin{gathered}
0 \rightarrow B_{i} \rightarrow Z_{i} \rightarrow H_{i} \rightarrow 0 \\
0 \rightarrow Z_{i} \rightarrow V_{i} \rightarrow B_{i+1} \rightarrow 0
\end{gathered}
$$
\]

we obtain for the dimensions

$$
b_{i}=\operatorname{dim}_{K}\left(B_{i}\right), \quad z_{i}=\operatorname{dim}_{K}\left(Z_{i}\right), \quad h_{i}=\operatorname{dim}_{K}\left(H_{i}\right)
$$

the relations

$$
d_{i}=b_{i+1}+z_{i}=b_{i+1}+b_{i}+h_{i}
$$

where $i=0, \ldots, n$ and $b_{0}=b_{n+1}=0$. Therefore,
Proposition 1. a) The h_{i} and the b_{j} determine each other by the formulas:

$$
\begin{gathered}
h_{i}=d_{i}-\left(b_{i+1}+b_{i}\right) \\
b_{j+1}=\chi_{j}(d)-\chi_{j}(h)
\end{gathered}
$$

where for a sequence $e=\left(e_{0}, \ldots, e_{n}\right)$ and $0 \leq j \leq n$ we denote

$$
\chi_{j}(e)=(-1)^{j} \sum_{i=0}^{j}(-1)^{i} e_{i}=e_{j}-e_{j-1}+e_{j-2}+\cdots+(-1)^{j} e_{0}
$$

the j-th Euler characteristic of e.
b) The inequalities $b_{i+1}+b_{i} \leq d_{i}$ are satisfied for all i.

Proof. We write down the b_{j} in terms of the h_{i} : from

$$
\sum_{i=0}^{j}(-1)^{i} d_{i}=\sum_{i=0}^{j}(-1)^{i}\left(b_{i+1}+b_{i}+h_{i}\right)
$$

we obtain

$$
b_{j+1}=(-1)^{j}\left(\sum_{i=0}^{j}(-1)^{i} d_{i}-\sum_{i=0}^{j}(-1)^{i} h_{i}\right)
$$

as claimed.

Notice in particular that since $b_{n+1}=0$, we have the usual relation

$$
\sum_{i=0}^{n}(-1)^{i} d_{i}=\sum_{i=0}^{n}(-1)^{i} h_{i}
$$

1.4. Now we consider the subvarieties of \mathcal{C} obtained by imposing rank conditions on the f_{i}.

Definition 2. For each $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n}$ define

$$
\mathcal{C}_{r}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in \mathcal{C} / \operatorname{rank}\left(f_{i}\right)=r_{i}, i=1, \ldots, n\right\}
$$

These are locally closed subvarieties of \mathcal{C}.

Proposition 3. a) $\mathcal{C}_{r} \neq \emptyset$ if and only if $r_{i+1}+r_{i} \leq d_{i}$ for $0 \leq i \leq n$ (we use the convention $r_{0}=r_{n+1}=0$)
b) In the conditions of a), \mathcal{C}_{r} is smooth and irreducible, of dimension

$$
\operatorname{dim}\left(\mathcal{C}_{r}\right)=\sum_{i=0}^{n}\left(d_{i}-r_{i}\right)\left(r_{i+1}+r_{i}\right)=\sum_{i=0}^{n}\left(d_{i}-r_{i}\right)\left(d_{i}-h_{i}\right)=\frac{1}{2} \sum_{i=0}^{n}\left(d_{i}^{2}-h_{i}^{2}\right)
$$

Proof. a) One implication follows from Proposition 1. Conversely, in the given conditions, we want to construct a complex with $\operatorname{rank}\left(f_{i}\right)=r_{i}$ for all i. Suppose we constructed

$$
V_{0} \xrightarrow{f_{1}} V_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} V_{n-1}
$$

We need to define $f_{n}: V_{n-1} \rightarrow V_{n}$ such that $f_{n} \circ f_{n-1}=0$ and $\operatorname{rank}\left(f_{n}\right)=r_{n}$, that is, a map $V_{n-1} / B_{n-1} \rightarrow V_{n}$ of rank r_{n}. Such a map exists since $\operatorname{dim}\left(V_{n-1} / B_{n-1}\right)=$ $d_{n-1}-r_{n-1} \geq r_{n}$.
b) Consider the projection (forgeting f_{n})

$$
\pi: \mathcal{C}\left(V_{0}, \ldots, V_{n}\right)_{r} \rightarrow \mathcal{C}\left(V_{0}, \ldots, V_{n-1}\right)_{\bar{r}}
$$

where $r=\left(r_{1}, \ldots, r_{n}\right)$ and $\bar{r}=\left(r_{1}, \ldots, r_{n-1}\right)$. Any fiber $\pi^{-1}\left(f_{1}, \ldots, f_{n-1}\right)$ is isomorphic to the subvariety in $\operatorname{Hom}\left(V_{n-1} / B_{n-1}, V_{n}\right)$ of maps of rank r_{n}; therefore, it is smooth and irreducible of dimension $r_{n}\left(d_{n-1}-r_{n-1}+d_{n}-r_{n}\right)$ (see [1]). The assertion follows by induction on n. The various expressions for $\operatorname{dim}\left(\mathcal{C}_{r}\right)$ follow by direct calculations.

Another proof of a): Given r such that $r_{i+1}+r_{i} \leq d_{i}$, put $h_{i}=d_{i}-\left(r_{i+1}+\right.$ $\left.r_{i}\right) \geq 0$ and $z_{i}=d_{i}-r_{i+1}=h_{i}+r_{i}$. Choose linear subspaces $B_{i} \subset Z_{i} \subset V_{i}$ with $\operatorname{dim}\left(B_{i}\right)=r_{i}$ and $\operatorname{dim}\left(Z_{i}\right)=z_{i}$. Since $\operatorname{dim}\left(V_{i-1} / Z_{i-1}\right)=\operatorname{dim}\left(B_{i}\right)$, choose an isomorphism $\sigma_{i}: V_{i-1} / Z_{i-1} \rightarrow B_{i}$ for each i. Composing with the natural projection $V_{i-1} \rightarrow V_{i-1} / Z_{i-1}$ we obtain linear maps $V_{i-1} \rightarrow B_{i}$ with kernel Z_{i-1} and rank r_{i}, as wanted.

Remark 4. In terms of dimension of homology, the condition in Proposition 8 a) translates as follows. Given $h=\left(h_{0}, \ldots, h_{n}\right) \in \mathbb{N}^{n+1}$, there exists a complex with dimension of homology equal to h if and only if $\chi_{i}(h) \leq \chi_{i}(d)$ for $i=1, \ldots, n-1$ and $\chi_{n}(h)=\chi_{n}(d)$.

Remark 5. The group $G=\prod_{i=0}^{n} G L\left(V_{i}, K\right)$ acts on $V=\prod_{i=1}^{n} \operatorname{Hom}_{K}\left(V_{i-1}, V_{i}\right)$ via

$$
\left(g_{0}, g_{1}, \ldots, g_{n}\right) \cdot\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left(g_{0} f_{1} g_{1}^{-1}, g_{1} f_{2} g_{2}^{-1}, \ldots, g_{n-1} f_{n} g_{n}^{-1}\right)
$$

This action clearly preserves the variety of complexes. It follows from the proof above that the action on each \mathcal{C}_{r} is transitive. Hence, the non-empty \mathcal{C}_{r} are the orbits of G acting on $\mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$.

Definition 6. For $r, s \in \mathbb{N}^{n}$ we write $s \leq r$ if $s_{i} \leq r_{i}$ for $i=1, \ldots, n$.

Corollary 7. If $\mathcal{C}_{r} \neq \emptyset$ and $s \leq r$ then $\mathcal{C}_{s} \neq \emptyset$. Also, $\operatorname{dim}\left(\mathcal{C}_{s}\right)>0$ if $s \neq 0$.

Proof. The first assertion follows from Proposition 3 a), and the second from Proposition 3 b).

Proposition 8. With the notation above,

$$
\overline{\mathcal{C}}_{r}=\bigcup_{s \leq r} \mathcal{C}_{s}=\left\{f \in \mathcal{C} / \operatorname{rank}\left(f_{i}\right) \leq r_{i}, i=1, \ldots, n\right\}
$$

Proof. Denote $X_{r}=\bigcup_{s \leq r} \mathcal{C}_{s}$. Since the second equality is clear, X_{r} is closed. It follows that $\overline{\mathcal{C}}_{r} \subset X_{r}$. To prove the equality, since $\mathcal{C}_{r} \subset X_{r}$ is open, it would be enough to show that X_{r} is irreducible. For this, consider $L=\left(L_{1}, \ldots, L_{n}\right)$ where $L_{i} \in \operatorname{Grass}\left(r_{i}, V_{i}\right)$ and denote

$$
X_{L}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in \mathcal{C} / \quad \operatorname{im}\left(f_{i}\right) \subset L_{i} \subset \operatorname{ker}\left(f_{i+1}\right), i=1, \ldots, n\right\}
$$

Consider

$$
\tilde{X}_{r}=\left\{(L, f) / f \in X_{L}\right\} \subset G \times \mathcal{C}
$$

where $G=\prod_{i=0}^{n}$ Grass $\left(r_{i}, V_{i}\right)$. The first projection $p_{1}: \tilde{X}_{r} \rightarrow G$ has fibers

$$
p_{1}^{-1}(L)=X_{L} \cong \operatorname{Hom}\left(V_{0}, L_{1}\right) \times \operatorname{Hom}\left(V_{1} / L_{1}, L_{2}\right) \times \cdots \times \operatorname{Hom}\left(V_{n-1} / L_{n-1}, V_{n}\right)
$$

which are vector spaces of constant dimension $\sum_{i=0}^{n}\left(d_{i}-r_{i}\right) r_{i+1}$. It follows that \tilde{X}_{r} is irreducible, and hence $X_{r}=p_{2}\left(\tilde{X}_{r}\right)$ is also irreducible, as wanted.

Remark 9. In the proof above we find again the formula

$$
\operatorname{dim}\left(X_{r}\right)=\operatorname{dim}\left(X_{L}\right)+\operatorname{dim}(G)=\sum_{i=0}^{n}\left(d_{i}-r_{i}\right) r_{i}+\sum_{i=0}^{n}\left(d_{i}-r_{i}\right) r_{i+1}
$$

Remark 10. The fact that $p_{1}: \tilde{X}_{r} \rightarrow G$ is a vector bundle implies that \tilde{X}_{r} is smooth. On the other hand, since $p_{2}: \tilde{X}_{r} \rightarrow X_{r}$ is birational (an isomorphism over the open set \mathcal{C}_{r}), it is a resolution of singularities.

The following two corollaries are immediate consequences of Proposition 8 .
Corollary 11. $\mathcal{C}_{s} \subset \overline{\mathcal{C}}_{r}$ if and only if $s \leq r$.

Corollary 12. $\overline{\mathcal{C}}_{r} \cap \overline{\mathcal{C}}_{s}=\overline{\mathcal{C}}_{t}$ where $t_{i}=\min \left(r_{i}, s_{i}\right)$ for all $i=1, \ldots, n$.

Definition 13. For $d=\left(d_{0}, \ldots, d_{n}\right) \in \mathbb{N}^{n+1}$ let
$R=R(d)=\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n} / r_{1} \leq d_{0}, r_{i+1}+r_{i} \leq d_{i}(1 \leq i \leq n-1), r_{n} \leq d_{n}\right\}$
We consider \mathbb{N}^{n} ordered via $r \leq s$ if $r_{i} \leq s_{i}$ for all i; the finite set R has the induced order. Notice that R is finite since it is contained in the box $\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n} / 0 \leq\right.$ $\left.r_{i} \leq d_{i}, i=1, \ldots, n\right\}$.

Proposition 14. With the notation above, the irreducible components of the variety of complexes $\mathcal{C}=\mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$ are the $\overline{\mathcal{C}}_{r}$ with $r \in R\left(d_{0}, \ldots, d_{n}\right)$ a maximal element.

Proof. From the previous Propositions, we have the equalities

$$
\mathcal{C}=\bigcup_{r \in R} \mathcal{C}_{r}=\bigcup_{r \in R} \overline{\mathcal{C}}_{r}=\bigcup_{r \in R^{+}} \overline{\mathcal{C}}_{r}
$$

where R^{+}denotes the set of maximal elements of R. The result follows because we know that each $\overline{\mathcal{C}}_{r}$ is irreducible and there are no inclusion relations among the $\overline{\mathcal{C}}_{r}$ for $r \in R^{+}$(see Corollary 11).
1.5. Morphisms of complexes. Tangent space of the variety of complexes. Now we would like to compute the dimension of the tangent space of a variety of complexes at each point.

With the notation of 1.1 we consider complexes $f \in \mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$ and $f^{\prime} \in$ $\mathcal{C}\left(V_{0}^{\prime}, \ldots, V_{n}^{\prime}\right)$ (the vector spaces V_{i} and V_{i}^{\prime} are not necessarily the same, but the lenght n we may assume is the same). We denote

$$
\operatorname{Hom}_{\mathcal{C}}\left(f, f^{\prime}\right)
$$

the set of morphisms of complexes from f to f^{\prime}, that is, collections of linear maps $g_{i}: V_{i} \rightarrow V_{i}^{\prime}$ for $i=0, \ldots, n$, such that $g_{i} \circ f_{i}=f_{i}^{\prime} \circ g_{i-1}$ for $i=1, \ldots, n$. It is a vector subspace of $\prod_{i=0}^{n} \operatorname{Hom}_{K}\left(V_{i}, V_{i}^{\prime}\right)$, and we would like to calculate its dimension.

For this particular purpose and for its independent interest, we recall the following from [2] ($\S 2-5$. Complexes scindés):
For $f \in \mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$, denote as in 1.1

$$
B_{i}(f)=f_{i}\left(V_{i-1}\right) \subset Z_{i}(f)=\operatorname{ker}\left(f_{i+1}\right) \subset V_{i}
$$

Since we are working with vector spaces, we may choose linear subspaces \bar{B}_{i} and \bar{H}_{i} of V_{i} such that

$$
V_{i}=Z_{i}(f) \oplus \bar{B}_{i} \quad \text { and } \quad Z_{i}(f)=B_{i}(f) \oplus \bar{H}_{i}
$$

Then $V_{i}=B_{i}(f) \oplus \bar{H}_{i} \oplus \bar{B}_{i}$ and clearly f_{i+1} takes \bar{B}_{i} isomorphically onto $B_{i+1}(f)$. Notice also that

$$
\operatorname{dim}\left(\bar{B}_{i}\right)=\operatorname{dim}\left(B_{i+1}(f)\right)=\operatorname{rank}\left(f_{i+1}\right)=r_{i+1}(f)
$$

and

$$
\operatorname{dim}\left(\bar{H}_{i}\right)=\operatorname{dim}\left(Z_{i}(f) / B_{i}(f)\right)=h_{i}(f)
$$

Next, define the following complexes:
$\bar{H}(i)$ the complex of lenght zero consisting of the vector space \bar{H}_{i} in degree i, the vector space zero in degrees $\neq i$, and all differentials equal to zero.
$\bar{B}(i)$ the complex of lenght one consisting of the vector space \bar{B}_{i-1} in degree $i-1$, the vector space $B_{i}(f)$ in degree i, with the map $f_{i}: \bar{B}_{i-1} \rightarrow B_{i}(f)$, and zeroes everywhere else.

Proposition 15. With the notation just introduced, $\bar{H}(i)$ and $\bar{B}(i)$ are subcomplexes of f and we have a direct sum decomposition of complexes:

$$
f=\bigoplus_{0 \leq i \leq n} \bar{H}(i) \oplus \bigoplus_{0 \leq i \leq n} \bar{B}(i)
$$

Proof. Clear from the discussion above; see also [2], loc. cit.

Now we are ready for the calculation of $\operatorname{dim}_{K} \operatorname{Hom}_{\mathcal{C}}\left(f, f^{\prime}\right)$.
Proposition 16. With the previous notation, we have:

$$
\begin{aligned}
\operatorname{dim}_{K} \operatorname{Hom}_{\mathcal{C}}\left(f, f^{\prime}\right) & =\sum_{i} h_{i} h_{i}^{\prime}+h_{i} r_{i}^{\prime}+r_{i} h_{i-1}^{\prime}+r_{i} r_{i}^{\prime}+r_{i} r_{i-1}^{\prime} \\
& =\sum_{i} h_{i}\left(h_{i}^{\prime}+r_{i}^{\prime}\right)+r_{i} d_{i-1}^{\prime}
\end{aligned}
$$

Proof. We may decompose f and f^{\prime} as in Proposition 15.

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}}\left(f, f^{\prime}\right)= & \operatorname{Hom}_{\mathcal{C}}\left(\oplus_{i} \bar{H}(i) \oplus \oplus_{i} \bar{B}(i), \oplus_{i} \bar{H}(i)^{\prime} \oplus \oplus_{i} \bar{B}(i)^{\prime}\right) \\
= & \oplus_{i, j} \operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{H}(j)^{\prime}\right) \oplus \oplus_{i, j} \operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{B}(j)^{\prime}\right) \oplus \\
& \oplus_{i, j} \operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{H}(j)^{\prime}\right) \oplus \oplus_{i, j} \operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{B}(j)^{\prime}\right)
\end{aligned}
$$

It is easy to check the following:

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{H}(j)^{\prime}\right) & =0 \text { for } i \neq j \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{H}(i)^{\prime}\right) & =\operatorname{Hom}_{K}\left(\bar{H}_{i}, \bar{H}_{i}^{\prime}\right) \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{B}(j)^{\prime}\right) & =0 \text { for } i \neq j \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{H}(i), \bar{B}(i)^{\prime}\right) & =\operatorname{Hom}_{K}\left(\bar{H}_{i}, \bar{B}_{i}^{\prime}\right)
\end{aligned}
$$

(the case $j=i+1$ requires special attention)

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{H}(j)^{\prime}\right) & =0 \text { for } i-1 \neq j \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{H}(i-1)^{\prime}\right) & =\operatorname{Hom}_{K}\left(\bar{B}_{i-1}, \bar{H}_{i-1}^{\prime}\right) \cong \operatorname{Hom}_{K}\left(\bar{B}_{i}(f), \bar{H}_{i-1}^{\prime}\right)
\end{aligned}
$$

(the case $j=i$ requires special attention)

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{B}(i)^{\prime}\right) & \cong \operatorname{Hom}_{K}\left(B_{i}(f), B_{i}^{\prime}(f)\right) \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{B}(i-1)^{\prime}\right) & =\operatorname{Hom}_{K}\left(\bar{B}_{i-1}, B_{i-1}^{\prime}\right) \cong \operatorname{Hom}_{K}\left(B_{i}(f), B_{i-1}^{\prime}\right) \\
\operatorname{Hom}_{\mathcal{C}}\left(\bar{B}(i), \bar{B}(j)^{\prime}\right) & =0 \text { otherwise }
\end{aligned}
$$

Taking dimensions we obtain the stated formula.

Now we deduce the dimension of the tangent space to a variety of complexes at any point.

Proposition 17. For $f \in \mathcal{C}=\mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$ we have a canonical isomorphism

$$
T \mathcal{C}(f)=\operatorname{Hom}_{\mathcal{C}}(f, f(1))
$$

where $T \mathcal{C}(f)$ is the Zariski tangent space to \mathcal{C} at the point f, and $f(1)$ denotes de shifted complex $f(1)_{i}=(-1)^{i} f_{i+1}, \quad i=-1,0, \ldots, n$.

Proof. Since \mathcal{C} is an algebraic subvariety of the vector space $V=$ $\prod_{i=1}^{n} \operatorname{Hom}_{K}\left(V_{i-1}, V_{i}\right)$, an element of $T \mathcal{C}(f)$ is a $g=\left(g_{1}, \ldots, g_{n}\right) \in V$ such that $f+\epsilon g$ satisfies the equations defining \mathcal{C} (i. e. a $K[\epsilon]$-valued point of \mathcal{C}), that is,

$$
(f+\epsilon g)_{i+1} \circ(f+\epsilon g)_{i}=0, \quad i=1, \ldots, n-1
$$

which is equivalent to

$$
f_{i+1} \circ g_{i}+g_{i+1} \circ f_{i}=0, \quad i=1, \ldots, n-1
$$

and this means precisely that $g \in \operatorname{Hom}_{\mathcal{C}}(f, f(1))$.

Corollary 18. For $f \in \mathcal{C}=\mathcal{C}\left(V_{0}, \ldots, V_{n}\right)$,

$$
\begin{aligned}
\operatorname{dim}_{K} T C(f) & =\sum_{i} h_{i}\left(h_{i+1}+r_{i+1}\right)+r_{i} d_{i} \\
& =\sum_{i}\left(d_{i}-r_{i}-r_{i+1}\right)\left(d_{i+1}-r_{i+2}\right)+r_{i} d_{i}
\end{aligned}
$$

Proof. From Proposition 17 we know that $\operatorname{dim}_{K} T \mathcal{C}(f)=\operatorname{dim}_{K} \operatorname{Hom}_{\mathcal{C}}(f, f(1))$. Next we apply Proposition 16 with $f^{\prime}=f(1)$, that is, replacing $d_{i}^{\prime}=d_{i+1}, r_{i}^{\prime}=r_{i+1}$, $h_{i}^{\prime}=h_{i+1}$, to obtain the result.
1.6. Varieties of exact complexes. Now we apply the previous results to the case of exact complexes.

Let us fix $\left(d_{0}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ so that

$$
\begin{gathered}
\chi_{j}(d)=(-1)^{j} \sum_{i=0}^{j}(-1)^{i} d_{i} \geq 0, \quad j=1, \ldots, n-1 \\
\chi_{n}(d)=(-1)^{n} \sum_{i=0}^{n}(-1)^{i} d_{i}=0
\end{gathered}
$$

Denoting $\chi=\chi(d)=\left(\chi_{1}(d), \ldots, \chi_{n}(d)\right) \in \mathbb{N}^{n}$, let us consider the variety \mathcal{C}_{χ} of complexes of rank χ as in Definition 2. Since $\chi_{i}(d)+\chi_{i+1}(d)=d_{i}$ for all i, it follows from Proposition 3 that \mathcal{C}_{χ} is non-empty of dimension

$$
\frac{1}{2} \sum_{i=0}^{n} d_{i}^{2}
$$

It follows from Proposition 1 that any complex $f \in \mathcal{C}_{\chi}$ is exact. Also, since $\chi \in R$ is clearly maximal (see Proposition 14), $\overline{\mathcal{C}}_{\chi}$ is an irreducible component of \mathcal{C}. Let us denote

$$
\mathcal{E}=\mathcal{E}\left(d_{0}, \ldots, d_{n}\right)=\overline{\mathcal{C}}_{\chi}=\left\{f \in \mathcal{C} / \operatorname{rank}\left(f_{i}\right) \leq \chi_{i}, \quad i=1, \ldots, n\right\}
$$

the closure of the variety \mathcal{C}_{χ} of exact complexes. Denote also, for $i=1, \ldots, n$

$$
\chi^{i}=\chi-e_{i}=\left(\chi_{1}, \ldots, \chi_{i-1}, \chi_{i}-1, \chi_{i+1}, \ldots, \chi_{n}\right)
$$

and

$$
\Delta_{i}=\overline{\mathcal{C}}_{\chi^{i}}=\left\{f \in \mathcal{C} / \operatorname{rank}(f) \leq \chi-e_{i}\right\}
$$

the variety of complexes where the i-th matrix drops rank by one.
Proposition 19. The codimension of Δ_{i} in \mathcal{E} is equal to one, and

$$
\mathcal{E}=\mathcal{C}_{\chi} \cup \Delta_{1} \cup \cdots \cup \Delta_{n}
$$

Proof. This follows from Proposition 8 and the fact that $s \in \mathbb{N}^{n}$ satisfies $s<\chi$ if and only if $s \leq \chi-e_{i}$ for some $i=1, \ldots, n$.

2. Moduli space of foliations.

2.1. Let X denote a (smooth, complete) algebraic variety over the complex numbers, let L be a line bundle on X and let ω denote a global section of $\Omega_{X}^{1} \otimes L$ (a twisted differential 1-form). A simple local calculation shows that $\omega \wedge d \omega$ is a section of $\Omega_{X}^{3} \otimes L^{\otimes 2}$. We say that ω is integrable if it satisfies the Frobenius condition $\omega \wedge d \omega=0$. We denote

$$
\mathcal{F}(X, L) \subset \mathbb{P} H^{0}\left(X, \Omega_{X}^{1} \otimes L\right)
$$

the projective classes of integrable 1-forms. The map

$$
\varphi: H^{0}\left(X, \Omega_{X}^{1} \otimes L\right) \rightarrow H^{0}\left(X, \Omega_{X}^{3} \otimes L^{\otimes 2}\right)
$$

such that $\varphi(\omega)=\omega \wedge d \omega$ is a homogeneous quadratic map between vector spaces and hence $\varphi^{-1}(0)=\mathcal{F}(X, L)$ is an algebraic variety defined by homogeneous quadratic equations.

Our purpose is to understand the geometry of $\mathcal{F}(X, L)$. In particular, we are interested in the problem of describing its irreducible components. For a survey on this problem see for example [7].
2.2. Let r and d be natural numbers. Consider a differential 1-form in \mathbb{C}^{r+1}

$$
\omega=\sum_{i=0}^{r} a_{i} d x_{i}
$$

where the a_{i} are homogeneous polynomials of degree $d-1$ in variables x_{0}, \ldots, x_{r}, with complex coefficients. We say that ω has degree d (in particular the 1 -forms $d x_{i}$ have degree one). Denoting R the radial vector field, let us assume that

$$
<\omega, R>=\sum_{i=0}^{r} a_{i} x_{i}=0
$$

so that ω descends to the complex projective space \mathbb{P}^{r} as a global section of the twisted sheaf of 1-forms $\Omega_{\mathbb{P}^{r}}^{1}(d)$. We denote

$$
\mathcal{F}(r, d)=\mathcal{F}\left(\mathbb{P}^{r}, \mathcal{O}(d)\right)
$$

parametrizing 1-forms of degree d on \mathbb{P}^{r} that satisfy the Frobenius integrability condition.

3. Complexes associated to an integrable form.

Let us denote

$$
H^{0}\left(\mathbb{P}^{r}, \Omega_{\mathbb{P}^{r}}^{k}(d)\right)=\Omega_{r}^{k}(d)
$$

and

$$
\Omega_{r}=\bigoplus_{d \in \mathbb{Z}} \bigoplus_{k=0, \ldots, r} \Omega_{r}^{k}(d)
$$

with structure of bi-graded commutative associative algebra given by exterior product \wedge of differential forms.

Definition 20. Gelfand, Kapranov and Zelevinsky defined in [5] another product in Ω_{r}, the second multiplication $*$, as follows:

$$
\omega_{1} * \omega_{2}=\frac{d_{1}}{d_{1}+d_{2}} \omega_{1} \wedge d \omega_{2}+(-1)^{\left(k_{1}+1\right)\left(k_{2}+1\right)} \frac{d_{2}}{d_{1}+d_{2}} \omega_{2} \wedge d \omega_{1}
$$

where $\omega_{i} \in \Omega_{r}^{k_{i}}\left(d_{i}\right)$ for $i=1,2$.
In particular, if ω_{1} is a 1 -form $\left(k_{1}=1\right)$ then

$$
\omega_{1} * \omega_{2}=\frac{d_{1}}{d_{1}+d_{2}} \omega_{1} \wedge d \omega_{2}+\frac{d_{2}}{d_{1}+d_{2}} \omega_{2} \wedge d \omega_{1}
$$

Remark 21. For $\omega_{i} \in \Omega_{r}^{k_{i}}\left(d_{i}\right)$ for $i=1,2$ as above,
a) $\omega_{1} * \omega_{2}$ belongs to $\Omega_{r}^{\left(k_{1}+k_{2}+1\right)}\left(d_{1}+d_{2}\right)$
b) $\omega_{1} * \omega_{2}=(-1)^{\left(k_{1}+1\right)\left(k_{2}+1\right)} \omega_{2} * \omega_{1}$.
c) It follows from an easy direct calculation that $*$ is associative (see [5).
d) For any $\omega \in \Omega_{r}^{1}(d)$ we have $\omega * \omega=\omega \wedge d \omega$. In particular, ω is integrable if and only if $\omega * \omega=0$.

Definition 22. For $\omega \in \Omega_{r}^{k}(d)$ we consider the operator δ_{ω}

$$
\delta_{\omega}: \Omega_{r} \rightarrow \Omega_{r}
$$

such that $\delta_{\omega}(\eta)=\omega * \eta$ for $\eta \in \Omega_{r}$.

Remark 23. From Remark 21 a), if $\omega \in \Omega_{r}^{k_{1}}\left(d_{1}\right)$ then

$$
\delta_{\omega}\left(\Omega_{r}^{k_{2}}\left(d_{2}\right)\right) \subset \Omega_{r}^{\left(k_{1}+k_{2}+1\right)}\left(d_{1}+d_{2}\right)
$$

In particular, if $\omega \in \Omega_{r}^{1}\left(d_{1}\right)$,

$$
\delta_{\omega}\left(\Omega_{r}^{k_{2}}\left(d_{2}\right)\right) \subset \Omega_{r}^{\left(k_{2}+2\right)}\left(d_{1}+d_{2}\right)
$$

Corollary 24. $\omega \in \Omega_{r}^{1}(d)$ is integrable if and only if $\delta_{\omega}^{2}=0$

Proof. The associativity stated in Remark 21 c) implies that $\delta_{\omega_{1}} \circ \delta_{\omega_{2}}=\delta_{\omega_{1} * \omega_{2}}$. In particular, $\delta_{\omega}^{2}=\delta_{\omega * \omega}$ and hence the claim follows from Remark 21d).

Definition 25. For $\omega \in \Omega_{r}^{1}(d)$ and $e \in \mathbb{Z}$ we define two differential graded vector spaces

$$
\begin{gathered}
C_{\omega}^{+}(e): \Omega_{r}^{0}(e) \rightarrow \Omega_{r}^{2}(e+d) \rightarrow \Omega_{r}^{4}(e+2 d) \rightarrow \cdots \rightarrow \Omega_{r}^{2 k}(e+k d) \rightarrow \ldots \\
C_{\omega}^{-}(e): \Omega_{r}^{1}(e) \rightarrow \Omega_{r}^{3}(e+d) \rightarrow \Omega_{r}^{5}(e+2 d) \rightarrow \cdots \rightarrow \Omega_{r}^{2 k+1}(e+k d) \rightarrow \ldots
\end{gathered}
$$

where all maps are δ_{ω} as in Remark 23.

Remark 26. It follows from Corollary 24 that $C_{\omega}^{+}(e)$ and $C_{\omega}^{-}(e)$ are differential complexes (for any $e \in \mathbb{Z}$) if and only if ω is integrable.

Remark 27. To fix ideas we shall mostly discuss $C_{\omega}^{-}(e)$, but similar considerations will apply to $C_{\omega}^{+}(e)$. If no confusion seems to arise we shall denote $C_{\omega}^{-}(e)=C_{\omega}(e)$.

Proposition 28. Let $\omega \in \Omega_{r}^{1}(d), e \in \mathbb{Z}$ and $k \in \mathbb{N}$ such that $k+2 \leq r$. Then $\omega * \eta=0$ for all $\eta \in \Omega_{r}^{k}(e)$ if and only if $\omega=0$. In other words, the linear map

$$
\delta: \Omega_{r}^{1}(d) \rightarrow \operatorname{Hom}_{K}\left(\Omega_{r}^{k}(e), \Omega_{r}^{k+2}(e+d)\right)
$$

sending $\omega \mapsto \delta_{\omega}$, is injective.

Proof. First remark that $\omega \wedge \eta=0$ for all $\eta \in \Omega_{r}^{k}(e)$ (with $k+1 \leq r$) easily implies $\omega=0$. Now suppose $\omega * \eta=0$, that is, $d \omega \wedge d \eta+e \eta \wedge d \omega=0$, for all $\eta \in \Omega_{r}^{k}(e)$. Take $\eta=x_{i_{1}}^{e-k} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ (here x_{i} denote affine coordinates and $\left.1<i_{1}<\ldots i_{k}<n\right)$. Since $d \eta=0$, we have $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \wedge d \omega=0$. Hence $d \omega=0$ by the first remark. Using the hypothesis again, we know $\omega \wedge d \eta=0$ for all $\eta \in \Omega_{r}^{k}(e)$. Now take $\eta=x_{i_{k+1}}^{e-k} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ (where $\left.1<i_{1}<\cdots<i_{k+1}<n\right)$. It follows that $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k+1}} \wedge \omega=0$ and hence $\omega=0$.

Theorem 29. Fix $e \in \mathbb{Z}$. Let us consider the graded vector space

$$
\Omega_{r}(e)=\bigoplus_{0 \leq k \leq\left[\frac{r-1}{2}\right]} \Omega_{r}^{2 k+1}(e+k d)
$$

(direct sum of the spaces appearing in $C_{\omega}^{-}(e)$ above). Define the linear map

$$
\delta(e)=\delta: \Omega_{r}^{1}(d) \rightarrow \prod_{k=1}^{\left[\frac{r-1}{2}\right]} \operatorname{Hom}_{K}\left(\Omega_{r}^{2 k-1}(e+(k-1) d), \Omega_{r}^{2 k+1}(e+k d)\right)
$$

such that $\delta(\omega)=\delta_{\omega}$ for each $\omega \in \Omega_{r}^{1}(d)$, and its projectivization

$$
\mathbb{P} \delta: \mathbb{P} \Omega_{r}^{1}(d) \rightarrow \prod_{k=1}^{\left[\frac{r-1}{2}\right]} \mathbb{P} \operatorname{Hom}_{K}\left(\Omega_{r}^{2 k-1}(e+(k-1) d), \Omega_{r}^{2 k+1}(e+k d)\right)
$$

Denote $\mathcal{C}=\mathcal{C}\left(\Omega_{r}^{1}(e), \Omega_{r}^{3}(e+d), \Omega_{r}^{5}(e+2 d), \ldots, \Omega_{r}^{2\left[\frac{r-1}{2}\right]+1}\left(e+\left[\frac{r-1}{2}\right] d\right)\right)$ the variety of complexes as in 1.1 and $\mathcal{F}(r, d)$ the variety of foliations as in 2.2. Then

$$
\mathcal{F}(r, d)=(\mathbb{P} \delta)^{-1}(\mathcal{C})
$$

In other terms, $\mathbb{P} \delta(\mathcal{F}(r, d))=L \cap \mathcal{C}$, that is, the variety of foliations $\mathcal{F}(r, d)$ corresponds via the linear map $\mathbb{P} \delta$ to the intersection of the variety of complexes with the linear space $L=\operatorname{im}(\mathbb{P} \delta)$.

Proof. The statement is a rephrasing of Corollary 24 or Remark 26.

Proposition 30. Let us denote

$$
d_{r}^{k}(e)=\operatorname{dim} \Omega_{r}^{k}(e)=\binom{r-k+e}{r-k}\binom{d-1}{k}
$$

(see [8]) and in particular

$$
d_{k}=d_{r}^{2 k+1}(e+k d)=\operatorname{dim} \Omega_{r}^{2 k+1}(e+k d), 0 \leq k \leq\left[\frac{r-1}{2}\right]
$$

For this $d=\left(d_{0}, d_{1}, \ldots, d_{\left[\frac{r-1}{2}\right]}\right)$ we consider the finite ordered set $R=R(d)$ as in Proposition 14. Then each irreducible component of the variety of foliations $\mathcal{F}(r, d)$ is an irreducible component of the linear section $(\mathbb{P} \delta)^{-1}\left(\overline{\mathcal{C}}_{r}\right)$ for a unique $r \in R^{+}$.

Proof. From Proposition 14, we have the decomposition into irreducible components

$$
\mathcal{C}=\bigcup_{r \in R^{+}} \overline{\mathcal{C}}_{r}
$$

From Theorem 29 we obtain:

$$
\mathcal{F}(r, d)=(\mathbb{P} \delta)^{-1}(\mathcal{C})=\bigcup_{r \in R^{+}}(\mathbb{P} \delta)^{-1}\left(\overline{\mathcal{C}}_{r}\right)
$$

and this implies that each irreducible component X of $\mathcal{F}(r, d)$ is an irreducible component of $(\mathbb{P} \delta)^{-1}\left(\overline{\mathcal{C}}_{r}\right)$ for some $r \in R^{+}$. This element r is the sequence of ranks of δ_{ω} for a general $\omega \in X$, hence it is unique.

References

[1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris Geometry of Algebraic Curves, vol. 1. Springer-Verlag, 1984.
[2] N. Bourbaki Algebre, Chapitre 10, Algebre Homologique. Masson, 1980.
[3] M. Brion Groupe de Picard et nombres caracteristiques des varietes spheriques. Duke Math. J., Vol. 58, (1989), 397-425.
[4] C. Camacho and A. Lins Neto, The topology of integrable differential forms near a singularity. Inst. Hautes Études Sci. Publ. Math. No. 55, (1982), 5-35.
[5] I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants. Birkhauser, 1994.
[6] G. Kempf, Images of homogeneous vector bundles and varieties of complexes. Bulletin of the AMS 81, (1975).
[7] A. Lins Neto, Componentes irredutiveis dos espaos de folheacoes. Rio de Janeiro, 2007.
[8] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces. Birkhauser, 1980.

Universidad de Buenos Aires / CONICET
Departamento de Matemática, FCEN
Ciudad Universitaria
(1428) Buenos Aires

ARGENTINA
fcukier@dm.uba.ar

[^0]: 1991 Mathematics Subject Classification. 14M99, 14N99, 37F75.
 Key words and phrases. Distribution, foliation, differential complex.
 Thanks to the anonymous referee for suggestions that helped improve the exposition.

