VALUATIONS OF SKEW QUANTUM POLYNOMIALS

Cristian Arturo Chaparro Acosta
crachaparroac@unal.edu.co
Seminario de Álgebra Constructiva - SAC².
Departamento de Matemáticas.
Universidad Nacional de Colombia.
Sede Bogotá.

Abstract
In this paper we extend some results obtained by Artamonov and Sabitov for quantum polynomials to skew quantum polynomials and quasi–commutative bijective skew PBW extensions. Moreover, we find a counterexample to the conjecture proposed in [6].

Keywords: Skew PBW extensions, skew quantum polynomials, Ore domains, valuations, completions.

Contents

1 Introduction 2
1.1 Valuations . 2
1.2 Valuations with values on Γ ∪ {∞} 2
1.3 Quantum polynomials . 3

2 Completions of quantum polynomials 4

3 Skew PBW extensions 6
3.1 Skew quantum polynomials 9
3.2 Some properties . 10
3.3 Valuations of skew quantum polynomials. 16
3.4 Valuations of skew PBW extension. 16

References 16
1 Introduction

This section is divided into three subsections, we recall the definition of Γ-valuation, valuation and quantum polynomials. We review some fundamental properties of valuations and valuations of quantum polynomials (see [4] and [6]).

1.1 Valuations

Let D be a division ring, D^* the multiplicative group and Γ is a totally ordered group (with additive notation and not necessarily commutative).

Definition 1.1. A function $\nu : D^* \to \Gamma$ is a Γ-valuation of D^* if:

i) ν is surjective,

ii) $\nu(ab) = \nu(a) + \nu(b)$,

iii) $\nu(a + b) \geq \min\{\nu(a), \nu(b)\}$.

Proposition 1.2. [14, 9] If ν is a Γ-valuation of D^*, then:

1) If $\nu(a) \neq \nu(b)$, then $\nu(a + b) = \min\{\nu(a), \nu(b)\}$.

2) $\Lambda_{\nu} := \{a \in D; a = 0 \text{ or } \nu(a) \geq 0\}$ is a subring of D.

3) The group of units $U_{\nu} := \{a \in D^*; \nu(a) = 0\}$ is a subgroup of D^*.

4) $W_{\nu} := \{a \in D, a = 0 \text{ or } \nu(a) > 0\}$ is a completely prime ideal of Λ_{ν} and $W_{\nu} = \Lambda_{\nu} - U_{\nu}$.

5) Λ_{ν} is a local ring with unique maximal ideal W_{ν}.

1.2 Valuations with values on $\Gamma \cup \{\infty\}$

Proposition 1.3. Let Γ be a totally ordered group with additive notation ordere. Then $\Gamma \cup \{\infty\}$ is an ordered additive monoid such that

$$x + \infty := \infty =: \infty + x, \text{ for all } \Gamma \cup \{\infty\},$$

and $\infty > x$ for all $x \in \Gamma$.

Definition 1.4 ([8]). Let R be a ring. By a valuation on R with values in a totally ordered group Γ, the value group, we shall understand a function ν on R with values in $\Gamma \cup \{\infty\}$ subject to the conditions:

i) $\nu(a) \in \Gamma \cup \{\infty\}$ and ν assumes at least two values,

ii) $\nu(ab) = \nu(a) + \nu(b)$,
Proposition 1.5. [8, 9] If ν is a valuation of R, then:

1) $\ker \nu := \{a \in R; \nu(a) = \infty\}$ is an ideal of R.

2) If $\nu(a + b) > \min\{\nu(a), \nu(b)\}$, then $\nu(a) = \nu(b)$.

3) $\Lambda_\nu := \{a \in R; \nu(a) \geq 0\}$ is a subring of R.

4) The group of units $U_\nu := \{a \in R^*; \nu(a) = 0\}$ is a subgroup of R^*.

5) $\mathcal{W}_\nu := \{a \in R, \nu(a) > 0\}$ is an ideal of Λ_ν.

6) $\ker \nu$ is a completely prime ideal of R and $R/\ker \nu$ is an integral domain.

Proposition 1.6 ([8]). If ν is a Γ—valuation of D. Then Γ is abelian, if and only if $\nu(a) = 0$ for all $a \in [D^*, D^*]$.

1.3 Quantum polynomials

Let D be a division ring with a fixed set $\alpha_1, \alpha_2, \ldots, \alpha_n, n \geq 2$, of automorphisms. Also, we have q_{ij} in D^* for $i, j = 1, 2, \ldots, n$ fix elements, satisfying the relations:

\[q_{ii} = q_{ij}q_{ji} = q_{ijr}q_{rij} = 1 \]
\[\alpha_i(\alpha_j(d)) = q_{ij}\alpha_j(\alpha_i(d)) q_{ji}, \]

where $q_{ijr} = q_{ij}\alpha_j(q_{ir})$ and $d \in D$. We set $q = (q_{ij}) \in \mathcal{M}(n, D)$ and $

\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$.

Definition 1.7. The elements q_{ij} of the matrix q are called system of multiparameters.

Definition 1.8 (Quantum polynomial ring). Denote by

\[\mathcal{O}_q := D_q,\alpha \left[x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n\right] \]

the associative ring generated by D and by elements $x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n$ subject to the defining relations

\[x_ix_i^{-1} = x_i^{-1}x_i = 1, 1 \leq i \leq r, \]
\[x_id = \alpha_i(d)x_i, d \in D, i = 1, 2, \ldots, n, \]
\[x_ix_j = q_{ij}x_jx_i, i, j = 1, 2, \ldots, n. \]
Definition 1.9. Let N be the subgroup in the multiplicative group D^* of the ring D generated by the derived subgroup $[D^*, D^*]$ and by the set of all elements of the form $z^{-1}\sigma_i(z)$ where $z \in R^*$ and $i = 1, \ldots, n$. $\Lambda := D_{q,a}[x_1, x_2, \ldots, x_n]$ is a general (generic) quantum polynomials ring if the images of all multiparameters q_{ij}, $1 \leq i < j \leq n$, are independent in the multiplicative Abelian group D^*/N.

The ring O_q is a left and right Noetherian domain, it satisfies Ore Condition and it has a division ring of fractions $F := D_q(x_1, \ldots, x_n)$. We consider $\nu : F^* \rightarrow \Gamma$ a Γ-valuation with $\nu(D^*) = 0$.

Theorem 1.10 ([6]). A valuation of a quantum division ring D, is Abelian in the sense that the group Γ is Abelian.

Definition 1.11 ([4], [6]). Let $\nu_1 : D^* \rightarrow \Gamma_1$ and $\nu_2 : D^* \rightarrow \Gamma_2$ be two valuations. Set $\nu_1 \geq \nu_2$ if there exists an epimorphism of ordered groups $\tau : \Gamma_1 \rightarrow \Gamma_2$ such that $\tau \nu_1 = \nu_2$. It means that the diagram

$$
\begin{array}{ccc}
D^* & \xrightarrow{\nu_1} & \Gamma_1 \\
\downarrow{\nu_2} & & \downarrow{\tau} \\
\Gamma_2 & &
\end{array}
$$

is commutative.

Definition 1.12 ([4], [6]). A valuation ν has a maximal rank if τ is an isomorphism in the previous definition.

Theorem 1.13 ([4]). A valuation $\nu : F^* \rightarrow \Gamma$ of a general quantum division ring O_q is has maximal rank if only if $\Gamma \cong \mathbb{Z}^n$.

2 Completions of quantum polynomials

In this section $\nu : F^* \rightarrow \mathbb{Z}^n$ is a maximal \mathbb{Z}^n-valuation.

Definition 2.1 ([6]). Let F be the set of all maps $f : \mathbb{Z}^n \rightarrow k$ and the zero element such that $\text{supp } f := \{m \in \mathbb{Z}^n; f(m) \neq 0\}$ is Artinian with respect to the lexicographic order on \mathbb{Z}^n.

Theorem 2.2. F is a division ring containing F.

Expand the valuation ν to $f \in F$ in the following way. If $f \in F$ then $\nu(f)$ the least element from $\text{supp } f$.

Definition 2.3 ([6]). The division ring F is called a completion of F with respect to ν. 4
Remark 2.10. If $O := \{ f \in F ; \nu(f) \geq 0 \}$ and $m := \{ f \in F ; \nu(f) > 0 \}$, then O is a subring in F and m is an ideal in O. Moreover, $O/m \cong k$.

Let \mathbb{R}^n be a vector space of all rows (r_1, \ldots, r_n), $r_i \in \mathbb{R}$, of a length n and \mathbb{R}^n is equipped with the lexicographic order.

Theorem 2.5 ([10]). Let $\leq_{\mathbb{Z}^n}$ be a totally order in the additive group \mathbb{Z}^n. Then there exists order preserving group embedding $\mathbb{Z}^n \to \mathbb{R}^n$.

Definition 2.6. [6] A totally order $\leq_{\mathbb{Z}^n}$ is essentially lexicographic if it belongs to the orbit of the standard embedding of \mathbb{Z}^n in to \mathbb{R}^n under the action of the group $GL(n, \mathbb{Z})$. i.e., if $a, b \in \mathbb{Z}^n$, $a \leq_{\mathbb{Z}^n} b$ if and only if $aA \leq bA$ for some fixed A in $GL(n, \mathbb{Z})$ and \leq is the lexicographic order.

Conjecture 2.7 ([6]). A valuation ν is associated to an essentially lexicographic order on \mathbb{Z}^n if and only if $\cap_{i \geq 1} m^i = 0$.

In the study of this conjecture we obtain the following results partial:

Proposition 2.8. If $\nu : R \to \Gamma \cup \{ \infty \}$ is a valuation of a ring R and Γ is an Archimedean group with $\mathcal{W}_\nu := \{ a \in R ; \nu(a) > 0 \}$, $\inf \{ \nu(W_\nu) \} \neq 0$ and $\cap_{i \geq 1} W_\nu^i := I$, then $\nu(I) = \infty$.

Proof. Let $A_i := \nu(W_\nu^i)$ and $\lambda_i := \inf \{ A_i \}$ be, then $\lambda_1 < \lambda_2 < \ldots < \lambda_i$ and $i\lambda_1 \leq \lambda_i$, indeed: (by induction over i) as $\inf \{ \nu(W_\nu) \} \neq 0$ then $0 < \lambda_1 \leq \nu(a)$ for all $a \in W_\nu$, hence $\lambda_1 < 2\lambda_1 \leq \nu(ab)$ for all $a, b \in W_\nu$, therefore $2\lambda_1 \leq \lambda_2$, suppose that $\lambda_{i-1} < \lambda_i$ and $i\lambda_1 \leq \lambda_i$, then $i\lambda_1 < (i+1)\lambda_1 \leq \lambda_i + \lambda_1 \leq \nu(a) + \nu(b) = \nu(ab)$ for all $a \in W_\nu^i$ and $b \in W_\nu$, therefore $\lambda_i < \lambda_{i+1}$ and $(i+1)\lambda_1 \leq \lambda_{i+1}$.\hfill \Box

Now, suppose there exists $b \in I$ such that $\nu(b) = \lambda < \infty$, so $\lambda_1 < \lambda$ and as Γ is Archimedean there exists an integer m such that $m\lambda_1 > \lambda$, therefore $\lambda \notin A_m$, hence $b \notin W_\nu^m$, contradicting that $b \in I$.\hfill \Box

Corollary 2.9. If $\nu : D \to \Gamma \cup \{ \infty \}$ is a valuation of a division ring D and Γ is an Archimedean group with $\inf \{ \nu(W_\nu) \} \neq 0$, then $\cap_{i \geq 1} W_\nu^i = 0$.

Proof. $0 = \nu(1) = \nu(aa^{-1}) = \nu(a) + \nu(a^{-1})$ for all $a \in D^*$, therefore $\nu(a) < \infty$ for all $a \in D^*$, therefore $\nu(a) = \infty$ if only if $a = 0$.\hfill \Box

Remark 2.10. In the Proposition 2.8 the condition $\inf \{ \nu(W_\nu) \} \neq 0$ can be replaced by $\inf \{ \nu(W_\nu) \} \neq 0$ for any $i > 0$ in \mathbb{N}.

Example 2.11. If we take lexicographic order on \mathbb{Z}^2 the order does not have intersection property: consider $A := \{(x, y) \in \mathbb{Z}^2 ; (0, 0) < (x, y) \}$ and $nA := \sum_{i=1}^n A$ with $n > 0$, then $nA = \{(x, y) \in \mathbb{Z}^2 ; (0, n) \leq (x, y) \}$. By induction over n: If $n = 2$, then $2A = A \setminus \{(0, 1)\}$, indeed: as $\min \{ A \} = (0, 1)$ then $(0, 2) \leq (x, y)$ with $(x, y) \in 2A$, thus $2A \subseteq A \setminus \{(0, 1)\}$. Now, if (x, y)
in $2A$, then $(x, y - 1) \in A$, because $x > 0$ or $x = 0$ and $y \geq 2$.

Suppose that $nA = (n - 1)A \setminus \{(0, n - 1)\}$, as $\min\{nA\} = (0, n)$ then $(0, n + 1) \leq (x, y)$ with $(x, y) \in (n + 1)A$, thus $(n + 1)A \subseteq nA \setminus \{(0, n)\}$.

Now, if (x, y) in $(n + 1)A$, then $(x, y - 1) \in nA$, because $x > 0$ or $x = 0$ and $y \geq n + 1$. Consequently $(n + 1)A = \{(x, y) \in \mathbb{Z}^2; (0, n + 1) \leq (x, y)\}$.

Hence, as $(1, 0) \in nA$ for every $n \geq 1$ since $(0, n) < (1, 0)$, then $(1, 0) \in \bigcap_{n > 0} nA$.

It follows a counterexample to the conjecture, since a lexicographic order is essentially lexicographic.

3 Skew PBW extensions

In this section we recall the definition and some basic properties of skew PBW (Poincaré-Birkhoff-Witt) extensions, introduced in [11]. Some ring-theoretic and homological properties of these class of noncommutative rings have been studied in [12].

Definition 3.1. Let R and A be rings. We say that A is a skew PBW extension of R (also called a σ - PBW extension of R) if the following conditions hold:

(i) $R \subseteq A$.

(ii) There exists finitely many elements $x_1, \ldots, x_n \in A$ such A is a left R-free module with basis

$$\text{Mon}(A) := \{x^u = x_1^{u_1} \cdots x_n^{u_n} \mid u = (u_1, \ldots, u_n) \in \mathbb{N}^n\}.$$

In this case it also says that A is a left polynomial ring over R with respect to $\{x_1, \ldots, x_n\}$ and $\text{Mon}(A)$ is the set of standard monomials of A. Moreover, $x_1^0 \cdots x_n^0 := 1 \in \text{Mon}(A)$.

(iii) For every $1 \leq i \leq n$ and $r \in R - \{0\}$ there exists $c_{i,r} \in R - \{0\}$ such that

$$x_i r - c_{i,r} x_i \in R.$$ \hspace{1cm} (3.1)

(iv) For every $1 \leq i, j \leq n$ there exists $c_{i,j} \in R - \{0\}$ such that

$$x_j x_i - c_{i,j} x_i x_j \in R + Rx_1 + \cdots + Rx_n.$$ \hspace{1cm} (3.2)

Under these conditions we will write $A := \sigma(R) \langle x_1, \ldots, x_n \rangle$.

6
Proposition 3.2. Let A be a skew PBW extension of R. Then, for every $1 \leq i \leq n$, there exists an injective ring endomorphism $\sigma_i : R \to R$ and a σ_i-derivation $\delta_i : R \to R$ such that

$$x_i r = \sigma_i(r)x_i + \delta_i(r),$$

for each $r \in R$.

Proof. See [11], Proposition 3. \square

The previous proposition gives the notation and the alternative name given for the skew PBW extensions.

Definition 3.3. Let A be a skew PBW extension.

(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 3.1 are replaced by

(iii') For every $1 \leq i \leq n$ and $r \in R - \{0\}$ there exists $c_{i,r} \in R - \{0\}$ such that

$$x_i r = c_{i,r} x_i.$$ (3.3)

(iv') For every $1 \leq i, j \leq n$ there exists $c_{i,j} \in R - \{0\}$ such that

$$x_j x_i = c_{i,j} x_i x_j.$$ (3.4)

(b) A is bijective if σ_i is bijective for every $1 \leq i \leq n$ and $c_{i,j}$ is invertible for any $1 \leq i < j \leq n$.

Definition 3.4. Let A be a skew PBW extension of R with endomorphisms $\sigma_i, 1 \leq i \leq n$, as in Proposition 3.2.

(i) For $u = (u_1, \ldots, u_n) \in \mathbb{N}^n$, $\sigma^u := \sigma_1^{u_1} \cdots \sigma_n^{u_n}$, $|u| := u_1 + \cdots + u_n$. If $v = (v_1, \ldots, v_n) \in \mathbb{N}^n$, then $u + v := (u_1 + v_1, \ldots, u_n + v_n)$.

(ii) For $X = x^u \in \text{Mon}(A)$, $\exp(X) := u$ and $\deg(X) := |u|$.

(iii) If $f = c_1 X_1 + \cdots + c_t X_t$, with $X_i \in \text{Mon}(A)$ and $c_i \in R - \{0\}$, then $\deg(f) := \max\{\deg(X_i)\}_{i=1}^t$.

Theorem 3.5. Let A be a left polynomial ring over R w.r.t. $\{x_1, \ldots, x_n\}$. A is a skew PBW extension of R if and only if the following conditions hold:

(a) For every $x^u \in \text{Mon}(A)$ and every $0 \neq r \in R$ there exist unique elements $r_u := \sigma^u(r) \in R - \{0\}$ and $p_{u,r} \in A$ such that

$$x^u r = r_u x^u + p_{u,r},$$ (3.5)

where $p_{u,r} = 0$ or $\deg(p_{u,r}) < |u|$ if $p_{u,r} \neq 0$. Moreover, if r is left invertible, then r_u is left invertible.
(b) For every $x^u, x^v \in \text{Mon}(A)$ there exist unique elements $c_{u,v} \in R$ and $p_{u,v} \in A$ such that
\[
x^u x^v = c_{u,v} x^{u+v} + p_{u,v},
\]
where $c_{u,v}$ is left invertible, $p_{u,v} = 0$ or $\deg(p_{u,v}) < |u + v|$ if $p_{u,v} \neq 0$.

Proof. See [11], Theorem 7.

Proposition 3.6. Let A be a skew PBW extension of a ring R. If R is a domain, then A is a domain.

Proof. See [12].

The next theorem characterizes the quasi-commutative skew PBW extensions.

Theorem 3.7. Let A be a quasi-commutative skew PBW extension of a ring R. Then,

(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type, i.e.,

\[A \cong R[z_1; \theta_1] \cdots [z_n; \theta_n]. \]

(ii) If A is bijective, then each endomorphism θ_i is bijective, $1 \leq i \leq n$.

Proof. See [12].

Corollary 3.8. Let A be a bijective and quasi-commutative skew PBW extension of a ring R. If R is a left Ore domain, then A is a left Ore domain.

Proof. By Theorem 3.7, A is isomorphic to an iterated skew polynomial ring of automorphism type over a left Ore domain R.

Theorem 3.9. Let A be an arbitrary skew PBW extension of R. Then, A is a filtered ring with filtration given by
\[
F_m := \begin{cases} R & \text{if } m = 0 \\ \{ f \in A \mid \deg(f) \leq m \} & \text{if } m \geq 1 \end{cases}
\]

and the corresponding graded ring $\text{Gr}(A)$ is a quasi-commutative skew PBW extension of R. Moreover, if A is bijective, then $\text{Gr}(A)$ is a quasi-commutative bijective skew PBW extension of R.

Proof. See [12].

Theorem 3.10 (Hilbert Basis Theorem). Let A be a bijective skew PBW extension of R. If R is a left (right) Noetherian ring then A is also a left (right) Noetherian ring.

Proof. See [12].
3.1 Skew quantum polynomials

In this subsection we recall the definition and some basic properties of skew quantum polynomials ring over R, introduced in [12]. We mention some results generalized for valuations of skew quantum polynomials and bijective and quasi-commutative skew PBW extension.

Definition 3.11. Let R be a ring with matrix of parameters $q := [q_{ij}] \in M_n(R)$, $n \geq 2$, such that $q_{ii} = 1 = q_{ij}q_{ji}$ for each $1 \leq i, j \leq n$ and suppose also that is given a system $\sigma_1, \ldots, \sigma_n$ of automorphisms of R. The skew quantum polynomials ring over R, denoted by $R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n]$, is defined with the following conditions:

1. $R \subseteq R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n]$,
2. $R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n]$ is a free left R-module with basis $\{x^u; x^u = x_1^{u_1} \cdots x_n^{u_n}, u_i \in \mathbb{Z}, 1 \leq i \leq r$ and $u_i \in \mathbb{N}$ for $r+1 \leq i \leq n\}$,
3. The x_1, \ldots, x_n elements satisfy the defining relations

$$x_i x_i^{-1} = 1 = x_i^{-1} x_i, \quad 1 \leq i \leq r,$$

$$x_i x_j = q_{ij} x_j x_i, \quad 1 \leq i, j \leq n,$$

$$x_i r = \sigma_i(r) x_i, \quad r \in R \ y 1 \leq i \leq n.$$

When all automorphisms are trivial, we write $R_q[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n]$ and this ring is called the ring of quantum polynomials over R. If $R = K$ is a field, then $K_q[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n]$ is the algebra of skew quantum polynomials. For trivial automorphisms we get the algebra of quantum polynomials simply.

If $r = n$, $R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ is called the n-multiparametric skew quantum torus over R, when all automorphisms are trivial, is called the n-multiparametric quantum torus over R. If $r = 0$, $R_{q,\sigma}[x_1, \ldots, x_n]$ is called the n-multiparametric skew quantum space over R, when all automorphisms are trivial is called n-multiparametric quantum space over R.

The algebra of quantum polynomials can be defined as a quasi-commutative bijective skew PBW extension of the r-multiparameter quantum torus, or also, as a localization of a quasi-commutative bijective skew PBW extension.
Theorem 3.12. \(R_{q,\sigma}[x_1, \ldots, x_n] \cong R[z_1; \theta_1] \cdots [z_n; \theta_n] \), where

i) \(\theta_1 = \sigma_1 \),

ii) \(\theta_i : R[z_1; \theta_1] \cdots [z_{i-1}; \theta_{i-1}] \to R[z_1; \theta_1] \cdots [z_{i-1}; \theta_{i-1}] \),

iii) \(\theta_i(z_i) = q_{ij} z_i, 1 \leq i < j \leq n, \theta_i(r) = \sigma_i(r) \) for \(r \in R \).

In particular, \(R_{q}[x_1, \ldots, x_n] \cong R[z_1] \cdots [z_n] \).

Proof. See [12]. \(\square \)

Theorem 3.13. \(R_{q,\sigma}[x_1^1, \ldots, x_r^1, x_r+1, \ldots, x_n] \) is a ring of fractions of \(B := R_{q,\sigma}[x_1, \ldots, x_n] \) with respect to the multiplicative subset

\[
S = \{ rx^n; r \in R^*, x^n \in Mon\{x_1, \ldots, x_r\} \},
\]

i.e.,

\[R_{q,\sigma}[x_1^1, \ldots, x_r^1, x_{r+1}, \ldots, x_n] \cong S^{-1}B. \]

Proof. See [12]. \(\square \)

Remark 3.14. Let \(Q_{q,\sigma}^{r,n}(R) := R_{q,\sigma}[x_1^1, \ldots, x_r^1, x_{r+1}, \ldots, x_n] \) and \(R \) be a left (right) Noetherian ring, then \(Q_{q,\sigma}^{r,n}(R) \) is left (right) Noetherian by Theorem 3.10. Moreover, if \(R \) is a domain, then \(Q_{q,\sigma}^{r,n}(R) \) is also a domain by Theorem 3.6. Thus, if \(R \) is a left (right) Noetherian domain, then \(Q_{q,\sigma}^{r,n}(R) \) is a left (right) Ore domain.

Thus, \(Q_{q,\sigma}^{r,n}(R) \) has a total division ring of fractions

\[Q(Q_{q,\sigma}^{r,n}(R)) \cong Q(A) := \sigma(R)(x_1, \ldots, x_n), \]

where \(\sigma(R)(x_1, \ldots, x_n) \) denotes the rational fractions of \(A := \sigma(R)(x_1, \ldots, x_n) \).

3.2 Some properties

Definition 3.15. Let \(N \) be the subgroup in the multiplicative group \(R^* \) of the ring \(R \) generated by the derived subgroup \([R^*, R^*] \) and by the set of all elements of the form \(z_i^{-1} \sigma_i(z) \) where \(z \in R^* \) and \(i = 1, \ldots, n \).

Remark 3.16. \(N \) is a normal subgroup in \(R^* \).

Definition 3.17. If the images of \(q_{ij} \) with \(1 \leq i < j \leq n \) are independent in the multiplicative Abelian group \(\tilde{R} = R^*/N \) then, \(R_{q,\sigma}[x_1^1, \ldots, x_r^1, x_{r+1}, \ldots, x_n] \) is a generic skew quantum polynomials ring.

Remark 3.18. If \(n = 2 \) in \(R_{q,\sigma}[x_1^1, \ldots, x_r^1, x_{r+1}, \ldots, x_n] \), of the previous definition \(q = q_{12} \) is not a root of unity.

Proposition 3.19. For each \(a \in R^* \) and \(\sigma \) endomorphism over \(R \), \(\sigma^k(a) = an \) with \(k \in \mathbb{N} \) and \(n \in \mathbb{N} \).
Proof.

\[
\sigma^k(a) = a(a^{-1}\sigma(a))((\sigma(a))^{-1}\sigma^2(a)) \cdots ((\sigma^{k-1}(a))^{-1}\sigma^k(a)) = an, \text{ with } n \in N. \tag{3.12}
\]

Proposition 3.20. If \(u, v \in \mathbb{Z}^r \times \mathbb{N}^{n-r} \) and \(\lambda, \mu \in R^* \), then

(1) \(x_i x^u = \left(\prod_{j=1}^n q_{ji}^u \right) n_u \cdot x^u x_i \), for some \(n_u \in N \) and for any \(1 \leq i \leq n \).

(2) \((x^u)(x^v) = \left(\prod_{i<j} q_{ji}^{u,v} \right) n_{u+v} \cdot x^{u+v} \), with \(n_{u+v} \in N \).

(3) \((\lambda x^u)(\mu x^v) = \lambda \mu \left(\prod_{i<j} q_{ji}^{u,v} \right) n' \cdot x^{u+v} \), with \(n' \in N \).

Proof. Applying the Proposition 3.19 and note that \(x_i x^{-1} = q_{ji}^{-1} x_i^{-1} x_i \) with \(1 \leq j \leq r \). \(\square \)

Proposition 3.21. Let \(f := \sum_{u \in \mathbb{Z}} \lambda_u x^u \) be in \(R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}, x_{r+1}, \ldots, x_n] \) and \(x_i \) with \(1 \leq i \leq r \).

(1) If \(\lambda_u \in R \), then \(x_i f x_i^{-1} = \sum_{u \in \mathbb{Z}^n} \sigma_i(\lambda_u) \lambda'_u x^u \),

where \(\lambda'_u := \left(\prod_{j=1}^n q_{ji}^u \right) n_u \in R^* \).

(2) If \(\lambda_u \in R^* \), then \(x_i f x_i^{-1} = \sum_{u \in \mathbb{Z}^n} \lambda'_u x^u \),

where \(\lambda'_u \in R^* \).

Proof. (1) Note that \(N \subseteq R^* \) and

\[
x_i f x_i^{-1} = \sum_{u \in \mathbb{Z}^n} \sigma_i(\lambda_u) x_i x^u x_i^{-1} = \sum_{u \in \mathbb{Z}^n} \sigma_i(\lambda_u) \left(\prod_{j=1}^n q_{ji}^u \right) n_u x^u,
\]

where \(n_u \in N \).

(2) By item (1), \(\sigma_i(\lambda_u) \lambda'_u \in R^* \). \(\square \)
Remark 3.22. If \(Q(Q_{q,\sigma}^n(R))\) exists and \(G\) denotes the multiplicative subgroup in \(Q(Q_{q,\sigma}^n(R))^*\) generated by \(R^*\) and \(x_1, ..., x_n\). Then \(R^* \triangleleft G\) and \(G/R^*\) is a free abelian group with the base \(x_1R^*, ..., x_nR^*\).

Proposition 3.23. Let \(R\) be a left Ore domain and \(\sigma\) automorphisms over \(R\), then \(\sigma\) can be extended to \(Q(R)\) and is also an automorphism.

Proof. By universal property we have the following commutative diagram:

\[
\begin{array}{ccc}
R & \xrightarrow{\psi} & Q(R) \\
\downarrow{\sigma} & & \downarrow{	ilde{\sigma}} \\
R & \xrightarrow{\psi} & Q(R)
\end{array}
\]

where \(\psi, \sigma\) are injective and \(\tilde{\sigma}\left(\frac{a}{b}\right) = \frac{\sigma(a)}{\sigma(b)}\) for \(a, b \neq 0 \in R\). Therefore, \(\psi \circ \sigma\) is injective and so is \(\tilde{\sigma}\).

If \(\frac{a}{b} \in Q(R)\), then \(\frac{a}{b} = \psi(b)^{-1}\psi(a) = \psi(\sigma(b_0))^{-1}\psi(\sigma(a_0))\) for \(a_0, b_0 \neq 0 \in R\), consequently,

\[
\frac{a}{b} = \psi(\sigma(b_0))^{-1}\psi(\sigma(a_0)) \\
= \tilde{\sigma}(\psi(b_0))^{-1}\tilde{\sigma}(\psi(a_0)) \\
= \tilde{\sigma}(\psi(b_0)^{-1}\psi(a_0)) \\
= \tilde{\sigma}\left(\frac{a_0}{b_0}\right).
\]

\[\square\]

Theorem 3.24. Let \(R\) be a left Ore domain and \(S = R - \{0\}\), then

\[
S^{-1}(R_{q,\sigma}[x_1, ..., x_n]) \cong Q(R)_{\tilde{q},\tilde{\sigma}}[x_1, ..., x_n],
\]

where \(\tilde{q} = (\frac{q_1}{q_2}) \in M(n, Q(R))\).

Proof. By Theorem 3.12 \(R_{q,\sigma}[x_1, ..., x_n] \cong R[z_1; \theta_1] \cdots [z_n; \theta_n]\), with each \(\theta_i\) bijective. Thus, if \(S = R - \{0\}\) then

\[
S^{-1}(R_{q,\sigma}[x_1, ..., x_n]) \cong S^{-1}(R[z_1; \theta_1] \cdots [z_n; \theta_n]) \\
\cong S^{-1}(R[z_1; \tilde{\theta}_1] \cdots [z_n; \tilde{\theta}_n]) \\
= Q(R)[z_1; \tilde{\theta}_1] \cdots [z_n; \tilde{\theta}_n]
\]
where

\[\tilde{\theta}_i : Q(R) \rightarrow Q(R) \]
\[\frac{a}{b} \mapsto \tilde{\theta}_i \left(\frac{a}{b} \right) = \frac{\theta_i(a)}{\theta_i(b)} = \frac{\sigma_i(a)}{\sigma_i(b)} = \tilde{\sigma}_i \left(\frac{a}{b} \right), \]

and

\[\tilde{\theta}_i : Q(R) [z_1; \tilde{\theta}_1] \cdots [z_{i-1}; \tilde{\theta}_{i-1}] \rightarrow Q(R) [z_1; \tilde{\theta}_1] \cdots [z_{i-1}; \tilde{\theta}_{i-1}] \]

with
\[\tilde{\theta}_i \left(\frac{a}{b} \right) = \tilde{\sigma}_i \left(\frac{a}{b} \right) \quad y \tilde{\theta}_i (z_i) = \frac{q_{ij}}{1} z_i. \]

Therefore,

\[S^{-1}(R_{q,\sigma}[x_1, \ldots, x_n]) \cong Q(R)_{\tilde{q}, \tilde{\sigma}}[x_1, \ldots, x_n], \]

where \(\tilde{q} = (\frac{a}{b}) \in \mathcal{M}(n, Q(R)). \)

\[\Box \]

Proposition 3.25. Let \(R \) be a left Ore domain, there exists

\[\phi : R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \rightarrow Q(R)_{\tilde{q}, \tilde{\sigma}}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \]

an injective ring homomorphism.

Proof. Let \(B_R := R_{q,\sigma}[x_1, \ldots, x_n] \) and \(B_{Q(R)} := Q(R)_{\tilde{q}, \tilde{\sigma}}[x_1, \ldots, x_n] \) be, by Theorem 3.13 \(R_{q,\sigma}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \cong S^{-1}_1 B_R \) with \(S_1 = \{ rx^u : r \in R^*, x^u \in Mon\{x_1, \ldots, x_n\} \} \), and \(Q(R)_{\tilde{q}, \tilde{\sigma}}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \cong S^{-1}_1 B_{Q(R)} \) with \(S_1' = \{ rx^u : r \in Q(R)^*, x^u \in Mon\{x_1, \ldots, x_n\} \} \).

Now, consider the following diagram of ring homomorphisms:

\[
\begin{array}{ccc}
R & \xrightarrow{\psi} & R_{q,\sigma}[x_1, \ldots, x_n] \\
\downarrow \psi' & & \downarrow \psi
\end{array}
\]

\[
\begin{array}{ccc}
Q(R) & \xrightarrow{\psi'} & Q(R)_{\tilde{q}, \tilde{\sigma}}[x_1, \ldots, x_n] \\
\downarrow \psi' & & \downarrow \psi
\end{array}
\]

\[
\begin{array}{ccc}
& \xrightarrow{\psi'} & S^{-1}_1 B_R \\
& \downarrow \varphi & \downarrow \varphi
\end{array}
\]

\[
\begin{array}{ccc}
& \xrightarrow{\psi'} & S^{-1}_1 B_{Q(R)} \\
& \downarrow \varphi & \downarrow \varphi
\end{array}
\]

where \(\psi \) is the injection for the localisation of \(R \) to the total ring fractions \(Q(R) \), \(\psi' \) the injection determined by the isomorphism of Theorem 3.24 where \(\psi'(ax^u) = \frac{a}{1} x^u \), and \(\psi_1, \psi_1' \) injections determined by the localizations for \(B_R \) and \(B_{Q(R)} \) respectively.

As \(\psi'(S_1) \subseteq S_1' \), then \(\psi_1'(\psi'(S_1)) \subseteq \psi_1'(S_1') \subseteq (S^{-1}_1 B_{Q(R)})^* \), therefore, by universal property there exists \(\varphi \). If \(f = \sum a_n x^u \in R_{q,\sigma}[x_1, \ldots, x_n] \) and \(rx^u \in S_1 \) then,
\[
\varphi \left(\frac{f}{rx^v} \right) = \varphi \left(\frac{\sum a_u x^u}{rx^v} \right) \\
= \psi_1 \left(\psi'(rx^v) \right)^{-1} \psi_1' \left(\psi' \left(\sum a_u x^u \right) \right) \\
= \psi_1' \left(\frac{r}{1} \right)^{-1} \psi_1' \left(\sum \frac{a_u}{1} x^u \right) \\
= \frac{1}{r} \sum \frac{a_u}{1} x^u \\
= \sum \frac{a_u}{1} x^u \\
= \frac{r}{1} x^v \\
= \psi'(f) \\
= \psi'(rx^v).
\]

Also, \(\varphi \) is injective by \(\psi' \) and \(\psi_1' \) are injective.

\[\square\]

Need the following result for the subsequent theorem:

Proposition 3.26. Let \(R \) be a ring and \(S \subset R \) a multiplicative subset. If \(Q := S^{-1}R \) exists, then any finite set \(\{q_1, \ldots, q_n\} \) of elements of \(Q \) posses a common denominator, i.e., there exists \(r_1, \ldots, r_n \in R \) and \(s \in S \) such that \(q_i = \frac{r_i}{s}, 1 \leq i \leq n \).

Proof. See [13], Lemma 2.1.8. \(\square \)

Theorem 3.27. Let \(R \) be a left Ore domain, then \(Q(Q(Q_{n,n}(R))) \cong Q(Q_{n,n}(Q(R))). \)

Proof. With the notation of the proof in the Proposition 3.25 consider the following diagram of ring homomorphisms

\[
\begin{array}{ccc}
S_1^{-1}B_R & \xrightarrow{\psi_2} & Q(S_1^{-1}B_R) \\
\varphi \downarrow & & \varphi' \downarrow \\
S_1^{-1}B_{Q(R)} & \xrightarrow{\psi_2'} & Q(S_1^{-1}B_{Q(R)})
\end{array}
\]

where \(\psi_2, \psi_2' \) are injections determined by the localizations of \(S_1^{-1}B_R \) and \(S_1^{-1}B_{Q(R)} \) respectively and \(\varphi \) the injection of the Proposition 3.25.

By Remark 3.14, \(S_1^{-1}B_R \) and \(S_1^{-1}B_{Q(R)} \) are domain, now, if \(\frac{p_1}{q_1}, \frac{p_2}{q_2} \in S_1^{-1}B_R \) with \(\frac{p_1}{q_1} \neq 0 \), then \(p_1 \neq 0 \) and there exist \(f_1 \neq 0 \) and \(f_2 \in B_R \) such that \(f_1p_1 = f_2p_2 \). Then, \(\frac{f_1}{p_1} \frac{p_1}{q_1} = \frac{f_2}{q_2} \frac{p_2}{f_2} = \frac{f_2}{q_2} \frac{p_2}{f_2} \neq 0 \), therefore \(S_1^{-1}B_R \) is a Ore domain, similarly it has to \(S_1^{-1}B_{Q(R)} \). Thus, if \(S_2 = S_1^{-1}B_R - \{0\} \) and \(S_2' = S_1^{-1}B_{Q(R)} - \{0\} \) as \(\varphi(S_2) \subseteq S_2' \), then
ψ_2(ϕ(S_2)) ⊆ ψ_2(S_2) ⊆ (Q(S_t^{-1}B_Q(R)))^*, hence, by universal property there exists ϕ' injective ring homomorphism.

Note that if f, g ∈ B_R and ax^u, bx^v ∈ S_1, then

\[
\frac{f}{g} = \frac{g}{ax^u}f = bx^v \frac{f}{g}
\]

and

\[
\frac{f'}{g'} = \frac{1}{g'} \frac{f'}{1} = \left(\frac{g'}{1}\right)^{-1} \frac{f'}{1} = \frac{f'}{q'},
\]

where f', g' ∈ B_R by Remark 3.14 with r = 0. Similarly is obtained for Q(S_t^{-1}B_Q(R)).

Therefore,

\[
\phi' \left(\frac{f}{g}\right) = \psi_2^* \left(\phi \left(\frac{g}{1}\right)^{-1}\right) \psi_2^* \left(\phi \left(\frac{f}{1}\right)\right)
\]

\[
= \psi_2^* \left(\phi'(g)^{-1}\right) \psi_2^* \left(\phi'(f)^{-1}\right)
\]

\[
= \frac{1}{\phi'(g)} \phi'(f)
\]

Now, if f, 0 ≠ g ∈ S_t^{-1}B_Q(R), applying Theorem 3.26 must be

\[
\frac{f}{g} = \frac{\sum a_u x^u}{\sum \phi a_u x^v} = \frac{1}{s} \sum a_u x^u = \left(\sum c_{\nu} x^v\right)^{-1} \left(\frac{1}{s}\right)^{-1} \frac{1}{s} \sum a_u x^u
\]

\[
= \left(\sum c_{\nu} x^v\right)^{-1} \left(\frac{1}{s'}\right) \sum a_u x^u = \left(\sum c_{\nu} x^v\right)^{-1} \left(\frac{r'}{r}\right) \sum a_u x^u
\]

\[
= \left(\sum r c_{\nu} x^v\right)^{-1} \left(\sum r' a_u x^u\right)
\]

\[
= \frac{\sum r' a_u x^u}{\sum r c_{\nu} x^v} = \psi'(f') \psi'(g')
\]

\[
= \phi' \left(\frac{f'}{g'}\right).
\]

where f' = \sum (r' a_u) x^u and g' = \sum (r c_{\nu}) x^v, then φ is surjective. Hence Q(Q_{q,s}(R)) ∼= Q(Q_{q,s}^u(Q(R))).
3.3 Valuations of skew quantum polynomials.

Theorem 3.28. Let R be a left Ore domain and $\nu : Q(Q_{q,\sigma}^{n,n}(R))^* \rightarrow \Gamma$ is a valuation with $\nu(Q(R)^*) = 0$, then Γ is Abelian.

Proof. $Q(R)$ is a division ring and $Q(Q_{q,\sigma}^{n,n}(R)) \cong Q(Q_{q,\sigma}^{n,n}(Q(R)))$, by Theorem 1.10. Γ is Abelian.

Corollary 3.29. Let R be a left Ore domain, $\nu : Q(Q_{q,\sigma}^{n,n}(R))^* \rightarrow \Gamma$ a valuation with $\nu(Q(R)^*) = 0$ and $Q_{q,\sigma}^{n,n}(Q(R))$ generic, then Γ is Abelian.

Theorem 3.30. Let R be a left Ore domain, a valuation $\nu : Q(Q_{q,\sigma}^{n,n}(R))^* \rightarrow \Gamma$ with $\nu(Q(R)^*) = 0$ and $Q_{q,\sigma}^{n,n}(Q(R))$ generic. The valuation ν has maximal rank if only if $\Gamma \cong \mathbb{Z}^n$.

Proof. By Theorem 3.27. $Q(Q_{q,\sigma}^{n,n}(R)) \cong Q(Q_{q,\sigma}^{n,n}(Q(R)))$ with $Q(R)$ a division ring, by Theorem 1.13 the valuation ν has maximal rank if only if $\Gamma \cong \mathbb{Z}^n$.

3.4 Valuations of skew PBW extension.

Theorem 3.31. Let $A = \sigma(R)(x_1, \ldots, x_n)$ be a bijective and quasi-commutative skew PBW extension of a ring R. If R is a left Ore domain and $\nu : Q(A)^* \rightarrow \Gamma$ a valuation with $\nu(Q(R)^*) = 0$, then Γ is Abelian.

Proof. By Theorem 3.8 A is an Ore domain then, $Q(A)$ exists and is a division ring, by Remark 3.14. $Q(A) \cong Q(Q_{q,\sigma}^{n,n}(R))$ (in particular $r = 0$) and by Theorem 3.28 Γ is abelian.

Corollary 3.32. Let A be a bijective skew PBW extension of a ring R. If R is a left Ore domain and $\nu : Q(Gr(A))^* \rightarrow \Gamma$ a valuation with $\nu(Q(R)^*) = 0$, then Γ is Abelian.

Proof. By Theorem 3.9 $Gr(A)$ is bijective and quasi-commutative.

References

